Construcción del viaducto de O Eixo

El viaducto de O Eixo se encuentra situado en el amplio valle, que forma el Rego de Aríns, entre las localidades de O Eixo de Arriba y O Eixo de Abajo, de las que recibe su nombre. Forma parte del corredor norte-noreste del tren de alta velocidad Lalín-Santiago (A Coruña). Tiene una longitud total de 1.224,4 m repartidos en 25 vanos con luces de 42,5 + 25 x 50 + 39,10 m. Presenta un canto variable de 4,0 a 2,75 m y un ancho de tablero de 14,0 m. Las pilas, que varían entre 9 y 84 m de altura, son de sección octogonal de 5,5 m de anchura y variable en altura. Ocupando los vanos 12 y 13 se proyecta un arco ligeramente ojival donde se materializa el punto fijo.

En cuanto al proceso constructivo, cabe destacar que las pilas se ejecutaron mediante encofrado trepante, mientras que el tablero se construyó mediante cimbra autolanzable y ejecución vano a vano. El hormigonado se ejecutó en dos fases. En la primera se hormigona toda la sección compuesta por la tabla inferior y las almas. En la segunda fase se hormigona la losa superior. Posteriormente se introduce el postensado de la misma y se le da continuidad con los siguientes vanos mediante el cruce de tendones en los frentes de fase, evitando de esta manera disponer conectadores.

El arco se ejecutó en dos mitades ejecutadas por separado, ubicando cada uno de los semiarcos en vertical junto a las pilas 11 y 13. Una vez hormigonados los dos semiarcos realizó el giro de ambos por medio de unas rotulas metálicas ubicadas junto a las zapatas. Una vez colocados los dos semiarcos en su posición definitiva se hormigona la zona de empotramiento con la zapata uniendo las armaduras de espera de la pila con las de la zapata, utilizando manguitos. Dicha rótula quedará embebida posteriormente al hormigonarse la zona de empotramiento, pila-encepado.

Los semiarcos quedan fijos entre sí mediante el hormigonado de una zona de unión de ambos y con armadura pasiva. El arco una vez monolítico lleva en su parte superior un tetón de hormigón armado que quedará solidarizado con un hueco dejado en el tablero mediante un pretensado vertical y otro horizontal que se tesará en la fase correspondiente, es decir, una vez realizado el tesado de la fase 12.

Una descripción completa la podéis ver en el siguiente enlace: http://e-ache.com/modules/ache/ficheros/Realizaciones/Obra109.pdf

También os aconsejo el siguiente link de Xosé Manuel Carreira: http://notonlybridges.blogspot.com.es/2008/01/bridge-for-our-high-speed-train.html

 

Para aclarar estos aspectos constructivos, os dejo un vídeo donde se describen las peculiaridades, especialmente la construcción del arco. Espero que os guste.

También os dejo un vídeo (en gallego) sobre el viaducto:

Construcción de puentes empujados

Puente construido por empuje

El procedimiento consiste en fabricar o montar el tablero detrás del estribo y después empujarlo deslizándolo sobre las pilas hasta alcanzar su posición definitiva al llegar al otro estribo. Este tablero, también puede componerse mediante dovelas prefabricadas u hormigonadas “in situ”. El método del empuje ha permitido resolver satisfactoriamente la construcción de puentes sobre obstáculos importantes situados por debajo del tablero. Este procedimiento es particularmente ventajoso en los puentes muy largos, pues permiten aplicar la construcción industrializada -es rentable a partir de los 600 metros de longitud-.

Este sistema constructivo fue desarrollado en la segunda mitad del siglo XIX para ubicar en su situación definitiva grandes viaductos metálicos de celosía. De hecho, la ligereza de los tableros metálicos y mixtos es una ventaja sobre los de hormigón, mucho más pesados; sin embargo es habitual la construcción de estos puentes con hormigón pretensado. Los puentes de ferrocarril, en particular, son estructuras idóneas para construirlas mediante empuja, pues han de soportar, además de su peso propio, unas cargas de servicio elevadas que obligan a dimensionar secciones con una gran capacidad resistente. Al construir el puente, donde sólo actúa el peso propio, el exceso de capacidad puede aprovecharse sin sobredimensionar la estructura.

Pescante de lanzamiento en Papiol (Barcelona). http://www.cemetasa.com/

El primer viaducto de hormigón empujado fue el Puente de Ager en Austria en 1959, donde se usaban dovelas cortas prefabricadas; sin embargo, muchos autores citan el puente sobre el río Caroní (Venezuela), terminado en 1964, de Leonhardt y Baur como iniciadores de esta técnica con el hormigón. Posteriormente se consolidó el método de dovelas largas hormigonadas “in situ” en una instalación industrializada que se monta detrás del estribo, aunque sigue siendo habitual el empleo de dovelas de entre 10 y 25 metros de longitud, tanto fabricadas “in situ” como prefabricadas.

El campo de luces óptimo para los tableros empujados se encuentra entre los 30 y 60 metros, aunque de forma excepcional dicho intervalo se amplia desde los 20 a los 90 metros.

Muchas empresas españolas han realizado puentes empujados (Ferrovial, Dragados, FCC, etc.), y seguro que me dejo a alguien por nombrar. Como ejemplo de construcción de puentes empujados, os dejo un vídeo sobre la construcción de uno de los puentes más largos empujados del mundo. Lo construyó ACCIONA para el Ministerio de Transporte de Quebec (Canadá). La autopista consta de 42 kilómetros de longitud y dos carriles por sentido. La obra incluye la ejecución de dos puentes -uno de 1.860 metros sobre el río St.Lawrence y otro de 2.550 metros sobre el canal Beauharnois- el segundo puente empujado más largo del mundo; donde se ha conseguido superar la dificultad de la traza en cambio de altura y dirección horizontal. Os dejo un enlace a las características técnicas. Ha obtenido dos de los premios más relevantes del sector concesional el Gold Award concedido por The Canadian Council for Public-Private Partnerships y el North America Deal of the Year, por PFI.

Dejo aquí el cómo se realizó el lanzamiento en el viaducto de Millau.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Efecto del voladizo en la construcción de puentes atirantados

Puente Ingeniero Carlos Fernández Casado, en embalse de Barrios de Luna (León)
Puente Ingeniero Carlos Fernández Casado, en embalse de Barrios de Luna (León). Fotografía de V. Yepes.

La construcción del tablero de un puente atirantado puede realizarse mediante voladizos parciales que pueden construirse en obra o bien pueden ser prefabricados. El procedimiento constructivo es similar al de la construcción de tableros de puentes tipo viga, con la diferencia de que aquí se van montando los tirantes para fijar las estructuras parciales, que se van montando con grúas o similar.

En este tipo de procedimiento constructivo es necesario considerar que la estructura parcial formada por el voladizo en el frente de avance provoca en numerosas ocasiones esfuerzos sobre el tablero mayores de los que va a tener cuando el puente esté en servicio. Es por ello que estos voladizos se reducen en su dimensión lo máximo posible, aumentando con ello el número de tirantes necesarios.

Atirantado momentos 1
Ley de flectores antes de tesar la dovela. Dibujo: V. Yepes.

La diferencia de esfuerzos entre la estructura parcial y la definitiva son, entre otros, los siguientes:

  1. La estructura final tiene presenta un tablero continuo, que muestra un comportamiento estructural diferente al caso de tener los extremos en voladizo durante la construcción.
  2. El tablero definitivo se encuentra en un estado de compresión axil importante, superior al tablero en proceso de construcción, a excepción del centro del vano principal y de los extremos de los vanos de compensación, el tablero presenta un estado.
  3. El voladizo en construcción debe soportar al siguiente elemento hasta que se monta, además del peso de los medios auxiliares si el montaje se realiza desde la parte ya construida.
  4. El momento flector del voladizo se prolonga más allá de la ménsula libre, con un máximo que se sitúa varios tirantes atrás, dependiendo del peso del tablero, de los medios auxiliares y de las rigideces del dintel y tirantes.

 

Para solucionar este efecto contraproducente del voladizo se pueden aplicar varios procedimientos constructivos:

  1. Se puede reforzar el voladizo mediante un pretensado adicional para reducir los momentos máximos del voladizo. Este exceso de carga debe retirarse en cuanto pase el efecto del voladizo para evitar sobreesfuerzos en la estructura. Este proceso de tesado y destesado puede complicar la construcción, por lo que a veces se sobredimensionan los materiales en el dintel o se sobretesan los tirantes, tal y como se hizo en el puente de Barrios de Luna.
  2. Se puede reducir peso en el voladizo si se construye una parte del tablero. Una vez se atiranta, y tras un desfase en el ciclo de avance, se completa su construcción. Este método se ha utilizado mucho, por ejemplo en el puente de Oberkassel, en Düsseldorf, que presenta tirantes muy separados. Aquí se avanzó solo con la célula central del cajón, procedimiento que también se empleó en el puente Flehe, cerca de la misma ciudad. En el puente de Annancis (Canadá) se avanzaba con vigas metálicas laterales y transversales, hormigonándose después la losa.
  3. Otra posibilidad es cimbrar el voladizo hasta que se atirante. Se puede atirantar provisionalmente el carro de avance hasta el hormigonado, tal y como se hizo en el puente sobre el río Waal (Holanda). Otra posibilidad menos costosa y fácil es la cimbra convencional que obliga a inmovilizar el extremo de la zona construida, lo que obliga a soportar una gran parte del peso de la dovela anterior. Esta solución se ha empleado en el puente de Sama.
  4. Cuando la distancia entre tirantes es grande, se pueden colocar tirantes provisionales desde la torre definitiva o mediante torres auxiliares. Las torres provisionales se apoyan en el mismo lugar de los anclajes definitivos anteriormente montados para evitar flexiones adicionales. El atirantamiento se traslada sucesivamente según avanza la construcción. Este procedimiento se usó en el puente Kniebrucke en Düsseldorf.
  5. Otra posibilidad que se aleja del procedimiento de construcción por voladizos sucesivos consiste en disponer apoyos provisionales bajo el tablero, o bien un único apoyo en el extremo del voladizo que se eliminará al colocar los tirantes. Así se construyó el puente de Bratislava sobre el Danubio.
Puente de Oberkassel sobre el Rhin, en Düsseldorf. Fuente: https://commons.wikimedia.org/wiki/File:Oberkassel_Bruecke.jpg

 

Puente Flehe sobre el Rhin, cerca de Düsseldorf. Fuente: https://commons.wikimedia.org/wiki/File:Fleher_Br%C3%BCcke-2.jpg

 

Puente Kniebrucke en Düsseldorf sobre el Rhin. Fuente: https://de.wikipedia.org/wiki/Rheinkniebr%C3%BCcke#/media/File:Duesseldorf_1915.JPG

 

Puente de Bratislava, sobre el Danubio. Fuente: https://en.wikipedia.org/wiki/Cable-stayed_bridge#/media/File:Novy_Most_d.JPG

Referencias:

FERNÁNDEZ-TROYANO, L. (1999). Tierra sobre el agua. Visión histórica universal de los puentes. Colegio de Ingenieros de Caminos, Canales y Puertos. Colección de Ciencias, Humanidades e Ingeniería, n.º 55, Madrid.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La construcción romana, el hormigón y otras cosas en Radio Nacional

Puente de Alcántara, puente romano en arco construido entre 104 y 106, que cruza el río Tajo en la localidad cacereña de Alcántara.

Resulta gratificante tener la oportunidad de conversar tranquilamente en un medio de comunicación como es Radio Nacional de España sobre ciencia, tecnología e ingeniería. El otro día me entrevistaron en el programa «24 horas«, presentado por Miguel Ángel Domínguez sobre la construcción romana, el hormigón y otros aspectos relacionados con la ingeniería civil y la inteligencia artificial. Se trata de un programa que dedica un espacio los miércoles a la tertulia científica y es, para la ingeniería, una oportunidad para acercar la técnica al gran público, facilitando la labor tan importante de divulgación científica.

 

 

Hablamos sobre las razones por las cuales las construcciones romanas han llegado hasta nuestros días, de la calidad de los hormigones romanos, del impacto medioambiental de la fabricación del cemento Portland, de la tecnología actual de la construcción y de la aplicación de la inteligencia artificial en el diseño automático y óptimo de puentes. Aunque la entrevista se quedó muy corta y nos dejamos en el tintero muchas cosas, os paso el post para que lo escuchéis en cualquier momento. También tenéis otras entrevistas anteriores relacionadas con el puente Hong Kong-Zhuhai-Macao, o con el Golden Gate. Espero que os sean de interés.

 

 

Introducción a la técnica de construcción de puentes por voladizos sucesivos

Esquema del principio de la construcción por voladizos
Esquema del principio de la construcción por voladizos

La construcción por tramos o dovelas, prefabricadas o ejecutadas “in situ”, que avanzan en voladizo sobre las ya erigidas. El tablero avanza por tramos sucesivos soportando la parte construida el peso propio del tramo siguiente. La construcción en voladizo permite liberarse de cimbras y andamios, adaptándose especialmente a puentes con pilas muy altas, con valles extensos y profundos, en ríos con crecidas violentas y repentinas o bien cuando hay que dejar libre un gálibo para la circulación o la navegación.

Este procedimiento se puede usar en puentes rectos, arco y atirantados, de hormigón o metálicos. Las dovelas prefabricadas se izan con medios de elevación potentes y se unen a las anteriores. Si se ejecutan hormigonando “in situ”, existe un carro de avance que se apoya en las dovelas anteriores, asegurando la estabilidad de cada etapa con el pretensado de cables cuando la nueva dovela adquiere la resistencia suficiente.

La técnica del voladizo se utilizó en el siglo XIX en el lanzamiento de obras metálicas, en la construcción de grandes arcos y “cantilever”. Con la llegada del hormigón armado, este procedimiento empezó a interesal a los constructores. El primer puente construido por voladizos sucesivos fue el puente sobre el río Peixe en Herval (Brasil), data de 1930, siendo su autor Emilio Henrique Baumgart; se trata de un puente de hormigón armado de dintel continuo de tres vanos, con 68 m de luz en el central. En este puente las armaduras del tablero se extendían mediante manguitos roscados a medida que avanzaba el hormigonado. Sin embargo, con hormigón armado se necesitaban muchas armaduras para asegurar la resistencia de las ménsulas y aparecía una fuerte fisuración en el extradós del tablero, lo que provocó que el sistema no tuviese mucho éxito.

Puente de Balduinstein, sobre el Lahn (Alemania). Foto: Claudia Lenau. Fuente: http://structurae.net/photos/132164-balduinstein-bridge
Puente de Balduinstein, sobre el Lahn (Alemania). Foto: Claudia Lenau. Fuente: http://structurae.net/photos/132164-balduinstein-bridge

Sin embargo, con el hormigón pretensado el sistema empezó a desarrollarse plenamente. Así, Freyssinet empezó a utilizar el pretensado para el montaje en voladizo en las primeras dovelas del puente de Luzancy en 1945 y de los cinco puentes sobre el Marne, anclados en los estribos por pretensado. Pero es Finsterwalder quien inicia definitivamente la técnica del voladizo en 1950 en el puente de Balduinstein, sobre el Lahn, con 62,10 m de luz libre, cuando aplica esta tecnología con un pretensado a base de barras que se unían entre sí mediante un sistema roscado. En España, fue empleado en sus orígenes en el puente de Almodóvar (1962) y el de Castejón (1968).

En la construcción con dovelas prefabricadas se pueden distinguir tres etapas. La primera generación, en los años sesenta, las dovelas llevaban juntas de mortero de cemento, llave única a cortante y cables anclados en la propia junta. La segunda se caracteriza por la prefabricación conjugada, el empleo de resinas epoxi en las juntas, las llaves múltiples para el cortante y el anclaje de los cables en el interior de la dovela en unos bloque dispuestos al efecto. La tercera generación, iniciada en Francia, utiliza el pretensado exterior y las almas de celosía (puente de Bubiyán en Kuwait, 1983).

La construcción por voladizos sucesivos puede realizarse con una única dirección de avance, la denominada construcción evolutiva; o bien con crecimiento simétrico del tablero a ambos lados de las pilas, voladizos compensados. En el primer caso, se suprime uno de los inconvenientes de la progresión simétrica del tablero, con la consecuente multiplicación de equipos (uno por cada frente de avance) o su traslado.

El campo habitual de aplicación de los puentes construidos por voladizos sucesivos abarca luces entre 50 y 250 m. Sin embargo, y de forma excepcional, pueden encontrarse puentes con luces de 400 m construidos por voladizos sucesivos con dovelas atirantadas de forma provisional. Por debajo de 50 m de luz tampoco es muy corriente. A partir de los 200-300 m, se entra en competencia con los puentes atirantados. El rango de luces usual para dovelas “in situ” es de 125 a 175 m, mientras que para las prefabricadas es algo menor, de 60 a 130 m.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pinceladas acerca de la ingeniería en la antigua China

Quin Shi Huang, fundador de la Dínastia Quin.

En entradas anteriores ya hemos hecho mención a la ingeniería primitiva, la desarrollada en Mesopotamia o en la Grecia Clásica. Mención especial merecen los desarrollos alcanzados en la Antigua China, que en el siglo I ya tenía 57 millones de habitantes, superando a Roma, aunque ambos imperios apenas llegaran a conocerse entre ellos. Por tanto, hoy vamos a dar dos pinceladas a las realizaciones de la milenaria China, sabiendo que dejamos muchísima información por el camino. Los cuatro grandes inventos chinos fueron el papel, la brújula, la pólvora y la imprenta.

Una de las más grandes realizaciones de todos los tiempos fue la Gran Muralla China, con más de 4 km de muro en total. Esta muralla tiene unos 10 m de altura, 8 m de espesor en la base y 5 m en la parte superior, por donde discurre un camino pavimentado. Su construcción requirió un elevado número de personas. Los bloques de piedra se traían con rodillos a las zonas previamente excavadas para su colocación. Su construcción se complicaba en zonas con fuertes vientos o en otras de clima desértico. Los materiales empleados fueron los disponibles en cada sitio: piedra caliza, granito o ladrillo cocido. Especialmente eficaz a los impactos de armas de asedio fueron las tapias de arcilla y arena cubiertas con varias paredes de ladrillo. Para hacerse una idea, en el reinado de Qin Shi Huang, que empezó a gobernar en el 221 a.C., se construyeron caminos y vías. Nada menos que 6.800 km durante sus 20 años de imperio, lo cual es muy llamativo si tenemos en cuenta que los romanos, 300 años después, tuvieron un total de 5.984 km, casi mil menos.

 

Vista parcial del sistema de irrigación de Dujiangyan.
Vista parcial del sistema de irrigación de Dujiangyan.

También China tuvo canales desde hace miles de años. El sistema de irrigación de Dujiangyan comenzó en el siglo III a.C., basándose su construcción en un canal que tuvo que atravesar una montaña, lo cual no fue una tarea fácil teniendo en cuenta los procedimientos constructivos de la época. Para salvar dicho problema, se recurrió al calentamiento y enfriamiento repetido de la roca, lo cual fractura la roca y permitía su excavación.  Para evitar la acumulación de limo en el sistema de irrigación, se construyó un dique en el centro del río, cimentados en unos enormes gaviones hechos de bambú. Además, fueron los primeros constructores de puentes, con características únicas. Algunos de sus puentes más antiguos fueron de suspensión, con cables hechos de fibra de bambú. Aunque sin basarse en teorías científicas, los antiguos constructores chinos empleaban un método que está relacionado con los “drenes de arena”. En sus suelos aluviales blandos hincaban pilotes de madera que extraían, a continuación, por rotación. Los agujeros eran rellenados con cal viva bien compactada. Estos pozos de cal absorbían el agua que los rodeaba, produciendo, de este modo, una consolidación acelerada del suelo, siendo estos los principios del empleo de las técnicas de mejora del terreno.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Construcción de puentes arco por voladizos sucesivos atirantados con torre provisional

Arcos por atirantamientoSe pueden construir puentes arco por voladizos sucesivos, sujetando cada tramo mediante tirantes desde torres provisionales. Una vez se tocan los semiarcos, se puede eliminar el atirantamiento y las torres y construir sobre el arco las pilas y el tablero. Es una técnica similar al avance por voladizos sucesivos de los tableros rectos, pudiéndose realizar con dovelas prefabricadas o bien por carro de avance hormigonando “in situ”. Este procedimiento constructivo permite la construcción de arcos de grandes luces, empleando un volumen de medios auxiliares reducido en comparación con otros métodos.

Este procedimiento constructivo se empleó en el montaje de cimbras, aunque hasta finales del siglo XIX no se empezó a utilizar para construir un arco completo. En efecto, James B. Eads construyó el puente metálico de San Luis (1867-1874) sobre el Mississippi con atirantamientos provisionales. El sistema también lo utilizó Gustave Eiffel en la construcción de los puentes arco metálicos de María Pía y Garabit.

Puente Eads, sobre el Mississippi en San Luis (Misuri). Diseñado por James Buchanan Eads, fue un puente metálico construido en 1874. Con tres arcos de 153, 158 y 153 m dispuso del arco más grande de su tiempo. Destacó también el empleo de cajones de aire comprimido para su cimentación.

 

Construcción del puente María Pía (Oporto). Gustave Eiffel y Théophile Seyring proyectaron este puente, que con 160 m de luz principal, fue el arco más largo del mundo entre 1877, fecha de su terminación, y 1884.

 

Viaducto de Garabit , sobre el río Truyère (Francia). Con sus 165 m de luz principal, fue el mayor arco desde 1884 a 1886. El puente lo construyó la compañía de Eiffel.

La técnica empezó a usarse en arcos de hormigón en 1952, cuando Freyssinet empleó parcialmente este método en los arranques de los arcos en los viaductos de la carretera al puerto de La Guaira, en Caracas. El tramo central de la cimbra se elevó desde el fondo del barranco, apoyándose en los arranques de arco atirantados.

Construcción del Viaducto 1 de la autopista Caracas, la Guaira (Venezuela). Los viaductos, construidos en 1952, son tres puentes arco biarticulados de 152, 146 y 138 m de luz, de E. Freyssinet.

Una realización más reciente construida con este sistema de atirantamiento provisional es el puente arco de ferrocarril sobre el embalse de Contreras en la línea de alta velocidad Madrid-Levante (Manterola et al., 2012). Se trata de un arco de 261 m de luz, con tablero superior de hormigón pretensado y una longitud total de 587, 25 m. Los semiarcos avanzan por voladizos sucesivos mediante hormigonado con carro de avance, para lo cual se disponen dos pilonos metálicos sobre el tablero, en la vertical de unas pilas provisionales.

Puente de ferrocarril sobre el embalse de Contreras. Detalle de la construcción del arco.

A continuación os dejo algunos vídeos que muestran la construcción del viaducto de Contreras. Espero que os sean de interés.

Referencia:

MANTEROLA, J.; MARTÍNEZ, A.; NAVARRO, J.A.; MARTÍN, B. (2012). Puente arco de ferrocarril sobre el embalse de Contreras en la línea de alta velocidad Madrid-Levante. Hormigón y Acero, 63:5-29.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Ejecución de una losa postesada en edificación

http://www.edingaps.com

Los forjados de losa postesa o forjados postensados son forjados que han sido elaborados mediante la técnica de tesar cables de acero (armadura activa), después del fraguado del hormigón y cuando este ha alcanzado una resistencia suficiente para soportar las tensiones provocadas por dicho tesado. Se requieren hormigones y aceros de alta resistencia. Como consecuencia del trazado curvo de los tendones también aparecen fuerzas de desviación que pueden llegar a equilibrar el peso propio de la estructura, las cargas muertas e incluso parte de las sobrecargas. Existen dos variantes de la técnica: armadura postesa adherente y armadura postesa no adherente. Para forjados de edificación se suelen emplear armadura no adherente, por lo estricto de los cantos y por la facilidad de montaje. Este tipo de losas se utilizan en estructuras de edificios en altura, estructuras por debajo de la cota de rasante, cimentaciones por losa, parkings, puentes, depósitos, estructuras de edificaciones industriales, etc.

http://www.edingaps.com

Algunas de las ventajas del uso de estos sistemas son las siguientes:

  • Reducción de los materiales de construcción (hasta un 40% de hormigón y un 75% de acero).
  • La reducción de peso de la estructura permite reducir el espesor y el armado de la losa de cimentación.
  • Aumento de altura libre entre plantas al reducir a la mitad el canto de la losa comparado con un forjado tradicional.
  • Continuidad estructural que permite un menor número de juntas de hormigonado y dilatación, así como una mayor integridad estructural.
  • Reducción considerable del número de pilares y aumento de los vanos.
  • Evita la aparición de fisuras y es impermeable al estar el hormigón comprimido.

 

A continuación os dejo algunos vídeos explicativos.

¿Cómo se han diseñado los arcos a lo largo de la historia?

Pequeño puente de fábrica sobre el río de Pola de Somiedo (Asturias). Fotografía V. Yepes.
Pequeño puente de fábrica sobre el río de Pola de Somiedo (Asturias). Imagen: © V. Yepes, 2010

Seguimos con este artículo un repaso histórico de los arcos. Como en su día se dijo, este es un «invento diabólico» que revolucionó en su momento el arte de construir. Vamos, pues a seguir con esta labor divulgadora, a sabiendas que nos dejamos muchas cosas por el camino.

Desde la Roma clásica al Renacimiento, los arcos y los estribos se diseñaban con reglas de buena práctica y con criterios geométricos. Los constructores, desconocedores de las nociones de las fuerzas y sus líneas de acción, tuvieron que utilizar reglas en forma de proporciones o bien hacer modelos. Estos criterios empíricos no deberían ser tan absurdos pues, como indica Huerta (1996), la prueba es que muchas estructuras construidas en la época “pre-científica” -donde se incluyen todas las catedrales góticas-, fueron concebidas de esta forma.

Los secretos del oficio, guardados celosamente por los gremios y transmitidos oralmente, en un lenguaje hermético y oscurantista, empiezan a difundirse con los tratados de Arquitectura a partir del Renacimiento. Diego de Sagredo, Alberti o Palladio encabezan un listado de tratadistas que divulgan el pensamiento arquitectónico renacentista.

Pont Neuf, Toulouse. Imagen: © V. Yepes, 2017

Alberti[1] es el primer autor que establece, en 1452, las reglas para conseguir la estabilidad y constructibilidad de un puente de fábrica. Su tratado de arquitectura, De re aedificatoria, fue un compendio del saber constructivo de su época (Huerta, 2000:514). Sin embargo la edición en latín se publicó en 1485 –antes que la primera edición de Vitruvio[2]– y en España no se tradujo hasta 1582. La intuición mecánica de Alberti le sugiere que la forma del arco es la base para valorar su modo de trabajar: “El arco poco curvo es seguro para su propio peso, pero si se carga conviene componer muy bien su trasdós”, o bien: “El arco muy curvado será en sí mismo débil, cuanto más se carga menos problemas tendrá en su trasdós”. Cuanto más apuntado es un arco, es decir, cuanta mayor sensación visual da de no caer, más resistencia se le confiere.

Palladio[3], en su tratado I Quattro Libri dell’Architettura, de 1570, recoge el dimensionamiento de ejemplos de puentes romanos, dándolos como reglas prácticas.

Leonardo da Vinci[4] fue el primero que intentó estudiar los arcos desde el punto de vista mecánico, como muestran numerosos dibujos del Códice de Madrid, aunque sus análisis desconocían la ley del paralelogramo de fuerzas, fundamental en cualquier estudio estático, que no se resolvió hasta 1586 por Stevenin[5] (Heyman, 1999:92), si bien se formula en su forma actual en 1724 por Varignon[6] en su obra Nouvelle mécanicque.

Arco Leonardo
Códice de Leonardo da Vinci

La primera explicación científica del arco tuvo que esperar a Hooke[7], quien en 1676 apuntó que funcionaba justo al revés que un cable colgado, si bien no halló la ecuación matemática de dicha curva. En 1697 Gregory[8], de forma independiente a Hooke, formula la condición de estabilidad del arco cuando menciona la catenaria como directriz óptima. En 1695, La Hire[9] idealiza las dovelas en bolas de billar y observa que la forma resultante es como si engarzaran en un cable perfectamente elástico y sin peso, definiéndose su forma como antifunicular[10], lo contrario del cuelgue natural. Por tanto, el trazado de un arco ideal pasaría por conocer el estado de carga al que está sometido, donde el peso propio del arco es uno de los componentes principales, lo cual implica un proceso iterativo para establecer la forma definitiva.

Puente la Reina, sobre el río Arga. Camino de Santiago, Navarra. Imagen: © V. Yepes

Couplet, ofreció en 1730 una solución completa al problema, estableciendo el modo de colapso del arco por formación de un mecanismo de cuatro barras; pero fue Coulomb[11] en 1773 quien retomó el problema prácticamente de nuevo, dando una solución sintética a todos los modos de colapso posibles. A finales de la década de 1830, Moseley y Méry desarrollan casi simultáneamente el concepto de línea de empujes, que debe situarse dentro del espesor del arco. En 1833 Navier[12] enuncia la regla del tercio central, por donde debía circular la línea de presiones para evitar las tracciones. Poncelet[13], en 1835, desarrolla un método gráfico que ahorra considerablemente los tiempos de cálculo. Rankine[14] fue el primero en dar una aplicación práctica a la línea de empujes, siendo Barlow y Fuller los encargados de desarrollar la parte gráfica. En 1879 Castigliano[15]abre un nuevo enfoque analítico con planteamientos energéticos, sistematizándose a partir de ese momento el análisis de los arcos de fábrica. Ese mismo año Winkler propuso de forma explícita la aplicación de la teoría elástica para determinar la posición de la línea de empujes.

Sin embargo, el cálculo elástico, a pesar de su racionalidad, plantea sistemas de ecuaciones que son muy sensibles a las pequeñas variaciones en las condiciones de equilibrio (ver Huerta, 2005:78). Los procedimientos desarrollados por Heyman (1966) aplicando la teoría del análisis límite, validando el siguiente supuesto: si existe una configuración de equilibrio, es decir, una línea de empujes contenida dentro del arco, éste no se hundirá. Como consecuencia, la labor del calculista no es buscar el estado de equilibrio real del arco, sino encontrar estados razonables de equilibrio para la estructura estudiada (Heyman, 1967). Este ha sido el enfoque implícito en los diseños geométricos de los maestros de la antigüedad, tal y como indica Huerta (2005:81), justificando la validez de dichos planteamientos. Una recopilación del desarrollo histórico de la teoría del arco de fábrica puede seguirse en Huerta (1999, 2005).
Ejemplo de puente arco de madera. Cangas de Onís (Asturias). Fotografía V. Yepes.
Puente arco de madera. Cangas de Onís (Asturias). Imagen: © V. Yepes, 2010

[1] Leon Battista Alberti (1404-1472), fue arquitecto, matemático, humanista y poeta italiano.

[2] El texto fue descubierto en 1414 por Bracciolini. La edición princeps de la obra vitruviana fue publicada en latín por Giovani Suplicio da Verole en 1486, y en su epístola al cardenal Rafael Riario, se llama a esta obra divinum opus Vitruvi (Blánquez, 2007:XVII). En italiano no se imprimió hasta 1521 y en castellano hasta 1582.

[3] Andrea di Pietro della Góndola, más conocido como Andrea Palladio (1508-1580) fue un reconocido arquitecto italiano del Manierismo, que influyó notablemente en el Neoclasicismo. Una importante aportación a la ingeniería estructural fue la introducción del concepto de cercha o entramado.

[4] Leonardo di ser Piero da Vinci (1452-1519), nacido en Florencia, fue pintor y polímata, genial arquetipo del humanismo renacentista.

[5] Simón Stevenin (1548-1620), fue matemático holandés, ingeniero militar e hidráulico, entre otros oficios.

[6] Pierre Varignon (1654-1722), matemático francés precursor del cálculo infinitesimal, desarrolló la estática de estructuras.

[7] Robert Hooke, científico inglés (1635-1703). Formuló su famosa ley en la que describe cómo un cuerpo elástico se estira de forma proporcional a la fuerza que se ejerce sobre él. En esta época, para reclamar la paternidad de un descubrimiento, los hombres de ciencia enviaban anagramas a sus colegas para, después, cuando las circunstancias eran propicias, les hacían llegar o publicaban el mensaje que los anagramas escondías. Eso fue lo que ocurrió con la descripción que hizo Hooke en 1676 sobre el funcionamiento estructural del arco.

[8] David Gregory (1661-1708), profesor escocés de matemáticas y astronomía en la Universidad de Edimburgo.

[9] Philippe de La Hire, matemático, astrónomo y gnomonicista francés (1640-1719). La obra donde trata el arco es: Traité de mécanique: ou l’on explique tout ce qui est nécessaire dans la pratique des arts, & les propriétés des corps pesants lesquelles ont un plus grand usage dans la physique (1695).

[10] Del latín, funicŭlus, cuerda. Arenas (1996:10) define la antifunicularidad como una afinidad geométrica entre las ordenadas de la directriz de la bóveda y la ley de momentos flectores que produce el sistema de cargas sobre una viga virtual de la misma luz que el arco.

[11] Charles Agustin de Coulomb, físico e ingeniero militar francés (1736-1806), conocido por su famosa ley sobre atracción de cargas eléctricas. Elaboró en el campo estructural la actual teoría de la flexión y una primera teoría de la torsión (1787). También fueron importantes sus ideas sobre la deformación tangencial y el rozamiento.

[12] Claude Louis Marie Henri Navier, ingeniero y físico francés (1785-1836), trabajó en las matemáticas aplicadas a la ingeniería, la elasticidad y la mecánica de fluidos.

[13] Jean Victor Poncelet (1788-1867) fue un matemático e ingeniero francés que recuperó la geometría proyectiva.

[14] William John Macquorn Rankine, ingeniero y físico escocés (1820-1872), conocido también por sus trabajos en termodinámica.

[15] Carlo Alberto Castigliano, ingeniero italiano (1847-1884), elaboró nuevos métodos de análisis para sistemas elásticos.

REFERENCIAS

HEYMAN, J. (1966). The stone skeleton. International Journal of Solids and Structures, 2: 249-279.

HEYMAN, J. (1967). On the shell solutions of masonry domes. International Journal of Solids and Structures, 3: 227-241.

HEYMAN, J. (1999). Teoría, historia y restauración de estructuras de fábrica. CEHOPU, 2ª edición, Madrid.

HUERTA, S. (1996). La teoría del arco de fábrica: desarrollo histórico. Obra Pública, 38:18-29.

HUERTA, S. (2000): Estética y geometría: el proyecto de puentes de fábrica en los siglos XV al XVII, en Graciani, A.; Huerta, S.; Rabasa, E.; Tabales, M. (eds.): Actas del Tercer Congreso Nacional de Historia de la Construcción. Instituto Juan de Herrera/CEHOPU, Sevilla, 513-526.

HUERTA, S. (2005). Mecánica de las bóvedas de fábrica: el enfoque del equilibrio. Informes de la Construcción, 56(496):73-89.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Construcción de puentes en arco por abatimiento de semiarcos

El procedimiento consiste en construir los arcos verticalmente y luego abatirlos con ayuda de tirantes y cabrestantes con un giro alrededor de su extremo inferior. El giro se ve favorecido por el peso del semiarco, aunque al principio es necesario desplazarlo con unos cilindros hidráulicos horizontales. Luego las retenidas deben controlar el descenso, donde los semiarcos presentan esfuerzos flectores crecientes con su proyección horizontal. Este tipo de montaje supone importantes retenidas y rótulas de giro que pueden ser incompatibles con grandes luces, por lo que para estos casos se usan arcos metálicos, que incluso pueden quedar embebidos como autocimbras.

Cuando se construyen arcos de hormigón, los encofrados se sitúan casi en vertical, lo que permite un ahorro considerable en cimbras. Lo habitual es construir dos semiarcos que se cierran en clave al alcanzar su posición definitiva, pero también se puede abatir una longitud inferior al semiarco y montar el tramo central mediante un izado vertical.

Puente Paul Sauer o del río Storms. Puente de arco de hormigón, de 100 m de luz, en el Cabo Oriental de Sudáfrica. Inaugurado en 1955, la diseño Riccardo Morandi.

Este procedimiento constructivo lo utilizó Riccardo Morandi para arcos de hasta 100 m, como por ejemplo en el puente Paul Sauer, sobre el río Storms, en Sudáfrica. Otro puente reseñable con esta tecnología es el de Argentobel, en Alemania, con 145 m de luz. En España destaca el puente Arcos de Alconétar, en el embalse de Alcántara, formado por dos estructuras gemelas de 400 m de longitud, cuyo vano principal es un arco metálico de tablero superior, de 220 m de luz. A fecha de hoy, se trata del arco de mayor luz construido en el mundo con este procedimiento. Otras realizaciones españolas de interés son el Viaducto de Arroyo del Valle, el Viaducto de O’Eixo o el Viaducto sobre el río Deza (que ostentaría el récord actual de arcos de hormigón construido mediante este procedimiento, con una luz de 150 m).

Abatimiento de los semiarcos en el puente Arcos de Alconétar. Viaducto doble, con arco metálico de 220 m, en la autovía de La Plata (Cáceres). Inaugurado en 2006.

Os paso a continuación un vídeo de voxelestudios sobre la construcción del puente Arcos de Alconetar. Espero que os guste.

También podemos ver un vídeo de OHL sobre este mismo puente.

Os dejo un vídeo sobre el Viaducto sobre el río Deza (AVE).

Y también otro vídeo sobre la construcción del Viaducto de O’Eixo (AVE).

Referencias: 

del Pozo, F.J.; Arrieta, J.M.; Madrid, A.J. Viaducto Arroyo del Valle. Línea de Alta Velocidad Madrid-Segovia-Valladolid. Congreso ACHE, 20 pp. (enlace)

Llombart, J.A.; Revoltós, J.; Couto, S. (2006). Puente sobre el río Tajo, en el embalse de Alcántara («Arcos de Alconétar»). Hormigón y Acero, 242:5-38. (enlace)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.