Antonio da Ponte (Venecia, 1512-1595). https://www.urbipedia.org/hoja/Antonio_da_Ponte
Antonio da Ponte (Venecia, 1512-1595) fue un arquitecto e ingeniero italiano recordado principalmente por dirigir la reconstrucción del Puente de Rialto de Venecia, una de las obras más emblemáticas del Renacimiento tardío. Aunque es conocido sobre todo por esta estructura, su trayectoria profesional estuvo marcada por su amplia participación en proyectos públicos y arquitectónicos de gran relevancia para la ciudad.
De origen suizo —nació en Ponte Capriasca, en el actual cantón del Tesino—, se trasladó muy joven a la región del Véneto, donde comenzó su formación participando en la construcción de la basílica del Santo de Padua. Posiblemente, era hermano de Paolo da Ponte, otro arquitecto de Padua, lo que sugiere una tradición familiar ligada a este oficio. En 1535 se estableció definitivamente en Venecia, donde primero trabajó como aprendiz y, posteriormente, como propietario de su propio taller.
Su habilidad técnica y sus conocimientos de construcción le valieron pronto el reconocimiento de las autoridades venecianas. En 1563 fue nombrado Proto al Sal, un cargo vitalicio de superintendente de las obras públicas dependientes de la Magistratura del Sale, institución encargada de supervisar las construcciones financiadas con los ingresos del comercio de la sal. Este puesto lo consolidó como una figura clave en la ingeniería y la arquitectura venecianas del siglo XVI.
Uno de sus primeros trabajos destacados fue en el Palacio Ducal, donde, en 1575, proyectó el Salón de las Cuatro Puertas, una antecámara de honor que daba acceso a las salas del Senado y de la Señoría, basándose en un diseño original de Andrea Palladio. Sin embargo, tras el devastador incendio que sufrió el edificio el 20 de diciembre de 1577, Da Ponte desempeñó un papel decisivo en su reconstrucción. Ya en 1574 había sido nombrado arquitecto jefe de las obras de restauración del palacio. Tras el incendio, fue seleccionada su propuesta entre las quince presentadas por los arquitectos invitados para la rehabilitación del edificio, que devolvió al palacio su esplendor original. Además, dirigió la restauración de los arcos y pórticos que daban al oeste y al sur del conjunto.
A partir de entonces, Da Ponte recibió una gran cantidad de encargos públicos. En 1579 asumió nuevas responsabilidades en el Arsenal de Venecia, donde se encargó de elevar la cubierta principal. Entre 1577 y 1592 colaboró con Palladio en la construcción de la iglesia del Redentor. En 1589, continuó también las obras de las nuevas cárceles de Venecia, situadas frente al Palacio Ducal, al otro lado del canal, una obra que había sido iniciada por Giovanni Antonio Rusconi en 1563. Tras su fallecimiento, sus sobrinos Antonio y Tommaso Contin finalizaron la obra en 1614, tras haber trabajado estrechamente con él en sus últimos años.
Sin embargo, el proyecto que marcaría definitivamente su carrera fue el Puente de Rialto. Esta estructura, que cruzaba el Gran Canal, había sido originalmente de madera, pero su fragilidad había provocado su derrumbe en varias ocasiones a lo largo de los siglos. Tras su último derrumbe, las autoridades venecianas decidieron reconstruirlo en piedra, en busca de una solución definitiva y monumental. En 1587, se convocó un concurso público al que se presentaron algunos de los arquitectos más célebres del momento, como Miguel Ángel, Andrea Palladio y Jacopo Sansovino. Contra todo pronóstico, el proyecto ganador fue el de Antonio da Ponte.
El puente de Rialto sobre el Gran Canal. Por kallerna – Trabajo propio, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=168185275
Su diseño retomaba la idea básica del antiguo puente de madera, pero la reinterpretaba con una claridad estructural y una elegancia técnica admirables. El nuevo puente consta de un único arco de piedra sobre el que se disponen dos hileras de arcadas laterales que albergan tiendas y dos rampas que confluyen en una plataforma central. A pesar de su aparente sencillez, la solución estructural ideada por Da Ponte supuso un desafío técnico formidable para su época.
Una peculiaridad del Puente de Rialto es que, a primera vista, parece romper con la tradición de los puentes romanos de arco de medio punto al ofrecer un arco rebajado. Sin embargo, esta innovación es solo visual, ya que en realidad se trata de un arco de medio punto cuyas dovelas basales están ocultas bajo el nivel del agua, lo que crea la ilusión de una estructura más achatada. Este recurso permitió combinar una gran estabilidad estructural con una apariencia más ligera y moderna, adelantándose al gusto arquitectónico de los siglos posteriores.
Las obras del puente se llevaron a cabo entre 1588 y 1591, con la colaboración de su sobrino Antonio Contin, que años más tarde alcanzaría la fama como autor del Puente de los Suspiros. También participaron sus nietos Antonio y Tommaso Contin, con quienes había trabajado en la construcción de la Cárcel Nueva desde 1589.
A pesar de su éxito, la autoría de Da Ponte sobre el diseño del puente de Rialto no estuvo exenta de controversia. En 1841, el arquitecto parisino Antoine Rondelet publicó un tratado en el que cuestionaba la originalidad del proyecto y señalaba las sospechosas similitudes entre el diseño de Da Ponte y el presentado por Vincenzo Scamozzi al mismo concurso. No obstante, la documentación histórica y la coherencia estilística de la obra respaldan la autoría de Da Ponte.
En la actualidad, el Puente de Rialto sigue siendo el más antiguo de Venecia y uno de los monumentos más reconocidos del mundo. Su equilibrio entre solidez estructural, elegancia visual y funcionalidad urbana refleja la maestría de Antonio da Ponte, un ingeniero que supo unir la tradición técnica con la visión estética del Renacimiento veneciano. Su legado no solo transformó la fisonomía de Venecia, sino que también consolidó el papel central del ingeniero en la evolución de la arquitectura moderna.
Os dejo un vídeo del puente de Rialto, que espero os guste.
Rudolf Saliger nació el 1 de febrero de 1873 en Spachendorf, cerca de Freudenthal, en el Imperio austrohúngaro, y falleció el 31 de enero de 1958 en Viena. Fue un ingeniero civil y profesor universitario austríaco, considerado uno de los pioneros del hormigón armado. Era hijo de Gustav Saliger, un ebanista, y creció como el undécimo de doce hermanos. Cursó sus estudios secundarios en la Realschule de Troppau.
Entre 1891 y 1898 estudió Ingeniería Civil en la Technische Hochschule de Viena, convirtiéndose en uno de los primeros en recibir el título de Diplom-Ingenieur. Interrumpió sus estudios en 1895-1896 para cumplir con su servicio militar anual como voluntario. Tras superar el segundo examen estatal en 1898, comenzó a trabajar en el Brückenbaubüro y en la dirección de vías de la Südbahngesellschaft (1897-1899). Entre 1899 y 1900 trabajó como ingeniero de puentes en la gobernación de Alta Austria, en Linz.
Posteriormente, orientó su carrera hacia Alemania: trabajó en la empresa Beton- und Monierbau AG, colaboró con el Materialprüfungsamt de Berlín-Dahlem en 1906 y ejerció como ingeniero de puentes y de hormigón armado en Kassel. En ese periodo también fue docente en las escuelas de construcción de Poznań y Kassel. Durante esos años, realizó viajes de estudios a Suiza, Francia —donde asistió a la Exposición Universal de París de 1900— y Bélgica, donde se formó en la técnica del hormigón armado bajo la influencia de los pioneros François Hennebique y Joseph Monier.
En 1903 contrajo matrimonio con Marie Hettling y, ese mismo año, obtuvo el título de doctor en la Technische Hochschule de Viena con la tesis Über die Festigkeit der Bauwerke aus veränderlich elastischen Stoffen, vornehmlich der Beton-Eisen-Konstruktionen (publicada en 1904).
En 1907 fue llamado a la Technische Hochschule de Braunschweig y, en 1908/1909, a la Deutsche Technische Hochschule de Praga, donde fue profesor de mecánica estructural y construcción metálica. En 1909 se trasladó a Dresde y, finalmente, en 1910 fue nombrado catedrático de Estática y Hormigón Armado en la Universidad Técnica de Viena, donde permaneció hasta su jubilación en 1940.
Desde 1910, impartía cursos de hormigón armado y, gracias a su iniciativa, esta asignatura se convirtió en obligatoria en el curso 1916/1917. No obstante, no fue hasta el curso 1927/1928 cuando alcanzó el pleno reconocimiento dentro del plan de estudios con su curso de construcción en piedra y hormigón armado. Entre 1920 y 1922 fue decano de la Facultad de Arquitectura y, en 1924/1925, rector de la institución.
Además de su labor docente, entre 1927 y 1934 trabajó como asesor técnico de la ciudad de Viena, donde actuó como consultor y proyectista en obras que se convirtieron en símbolos urbanos, como el Dianabad, el Stadion Wien, el rascacielos de Herrengasse 8, la Reichsbrücke y los estudios cinematográficos de Rosenhügel.
Saliger fue un prolífico autor de manuales y tratados que tuvieron gran difusión internacional. Entre ellos destacan:
Über die Festigkeit veränderlich elastischer Konstruktionen insbesondere von Eisenbeton-Bauten (1904)
Der Eisenbeton in Theorie und Konstruktion (1906)
Praktische Statik (1921)
Schalendach aus Eisenbeton nach Bauart Kolb (1928)
Die neue Theorie des Stahlbetons auf Grund der Bildsamkeit im Bruchzustand (1947)
Ingenieur Gustav Adolf Wayss. Ein Bahnbrecher des Stahlbetons (1948)
Der Stahlbetonbau: Werkstoff, Berechnung, Gestaltung (1956).
Especial relevancia alcanzaron Praktische Statik y Der Stahlbetonbau, que conocieron numerosas ediciones y traducciones, incluidas en español y ruso. Estas obras consolidaron el análisis práctico de estructuras y la aplicación científica del hormigón armado, aportando un corpus sin precedentes a la ingeniería alemana y austríaca en el periodo 1900–1950.
Tras la anexión de Austria por parte de la Alemania nazi en marzo de 1938, Saliger fue nombrado rector interino de la TH de Viena en sustitución de Karl Holey. En este cargo, mostró públicamente su apoyo al régimen mediante telegramas y discursos de adhesión. En 1939, fue elegido miembro de número de la Academia Austríaca de Ciencias y, el 20 de febrero de 1940, solicitó formalmente su ingreso en el NSDAP, que se hizo efectivo el 1 de junio.
Antes de jubilarse en 1939, desempeñó un papel relevante en la nazificación de la universidad y en la discriminación y expulsión de estudiantes y profesores judíos y socialdemócratas. Según la historiadora Juliane Mikoletzky, este proceso se produjo en la TH de Viena de manera especialmente rápida y ordenada.
Tras 1945, fue clasificado como Minderbelasteter (cómplice menor) en los procesos de desnazificación. En 1948, le fue concedido el perdón por «razones técnico-científicas», lo que le permitió mantener su prestigio académico.
Rudolf Saliger falleció en su residencia de Larochegasse 29, en Viena, el 31 de enero de 1958, apenas unas horas antes de recibir la condecoración del presidente de Austria por sus servicios a la ciencia y al arte. Sus restos fueron incinerados y depositados en una tumba de honor diseñada por Viktor Hammer en el cementerio de la Feuerhalle Simmering.
En 1965, la ciudad de Viena dio su nombre a la calle Saligergasse, en el distrito de Favoriten. Décadas después, entre 2011 y 2013, una comisión de historiadores, por encargo del Ayuntamiento de Viena, revisó el papel de las personalidades que habían dado nombre a las calles y situó a Saliger como pionero técnico, pero también como académico vinculado al nacionalsocialismo.
El legado de Rudolf Saliger es amplio y complejo. Como ingeniero, fue pionero en el desarrollo y la enseñanza del hormigón armado en Austria, impulsó su institucionalización universitaria y participó en obras emblemáticas de Viena, además de dejar una extensa bibliografía técnica. Como figura pública, apoyó al régimen nazi y promovió políticas de exclusión en la universidad. Estas dos dimensiones, la científica y la política, forman parte inseparable de su legado en la historia de la ingeniería y del siglo XX.
François Hennebique (1842 – 1921). https://es.wikipedia.org/wiki/Fran%C3%A7ois_Hennebique
François Hennebique (Neuville-Saint-Vaast, 25 de abril de 1842 – París, 7 de marzo de 1921) fue un ingeniero, arquitecto y constructor francés autodidacta, pionero en el empleo del hormigón armado. Gracias a sus aportaciones prácticas, sus intuiciones estructurales y su extraordinaria capacidad empresarial, el hormigón armado se difundió rápidamente por toda Europa a finales del siglo XIX y principios del XX, hasta convertirse en el sistema constructivo hegemónico del siglo XX.
Entre las figuras vinculadas al desarrollo del hormigón armado, Hennebique ocupa un lugar destacado. No puede atribuírsele la invención de este material ni tampoco se le considera entre los científicos que, en sus inicios, intentaron comprender su comportamiento y formular modelos de cálculo basados en fundamentos teóricos. Tampoco creó una escuela propiamente dicha en los ámbitos de la ingeniería y la arquitectura. Sin embargo, fue probablemente la persona que más contribuyó a la difusión y consolidación del hormigón como material de construcción gracias a su intuición, más que a su erudición o formación técnica, y a su notable espíritu emprendedor y comercial.
Su padre, Benjamin Hennebique, era comerciante. Hennebique se formó inicialmente como albañil. Desde joven se formó como albañil y comenzó a ejercer en 1860, mostrando muy pronto un interés particular por la restauración de iglesias. En 1865 participó en la reconstrucción de la iglesia de Saint-Martin de Courtrai (Cortrique) y se especializó en este tipo de obras religiosas.
En 1867, con veinticinco años, se estableció por cuenta propia en Bruselas como contratista, donde fundó una empresa de construcción y reparación. Ese mismo año, durante la Exposición Universal de París, conoció los experimentos de Joseph Monier, quien utilizaba hormigón armado con mallas metálicas para fabricar tinas y depósitos. La visión de aquellas piezas lo estimuló para investigar cómo aplicar ese nuevo material a la construcción de edificios.
Durante la década de 1870, Hennebique se dedicó a la reconstrucción de iglesias, pero, paralelamente, buscó la manera de mejorar la resistencia al fuego de los edificios. Ideó un sistema de forjados con hierro forjado como refuerzo ignífugo que aplicó por primera vez en 1879 en un edificio residencial de Bruselas, donde recubrió perfiles metálicos con hormigón para protegerlos del fuego.
Durante este tiempo, Hennebique comprendió que el sistema podía perfeccionarse, de modo que el hierro se utilizara solo en las zonas sometidas a tracción y el hormigón trabajara en compresión. Así sentó las bases del hormigón armado moderno, que se concibió como una losa de hormigón con armaduras metálicas en la cara inferior. En 1886, registró en Bruselas su primera patente, relativa a un sistema de forjados tubulares de hormigón con barras longitudinales sujetas por placas metálicas. Ese mismo año formuló una idea fundamental: las fuerzas en el hormigón podían ser absorbidas por el refuerzo metálico, lo que permitía ahorrar material y mejorar la eficiencia estructural. Al describir las ventajas de su patente a los arquitectos belgas, Hennebique hizo hincapié en la economía de su sistema y en lo que sería una constante a lo largo de los años posteriores: la resistencia al fuego.
El gran salto llegó en 1892, cuando Hennebique registró en Francia y Bélgica su célebre patente titulada «Combinación especial del metal y el cemento para la formación de viguetas muy ligeras y de gran resistencia». Este invento dio origen al sistema Hennebique, que integraba de manera monolítica los distintos elementos estructurales (pilares, vigas y losas), y que supuso una de las primeras apariciones del método moderno de construcción en hormigón armado. Esta patente para construir forjados unidireccionales con chapa doblada, que cumplía una doble función: servir de encofrado y de elemento metálico resistente a la tracción. La estética de este tipo de forjado permite enmascarar fácilmente el uso del hormigón y hacerlo pasar por viguetas de madera.
La gran aportación de Hennebique fue la concepción de una articulación monolítica eficaz que integraba vigas, pilares y forjados en una única estructura. Para ello, empleó barras cilíndricas curvadas y entrelazadas entre sí, complementadas con estribos en los apoyos para resistir el esfuerzo cortante. Esta disposición, fruto más de la intuición que del cálculo matemático, anticipaba los sistemas de armado que hoy se utilizan de manera generalizada. En 1897, mejoró su patente al introducir vigas continuas mediante barras dobladas en los apoyos que reforzaban los momentos negativos, lo que incrementaba notablemente la resistencia y la economía del sistema. Su primera gran obra con este material fue un puente en Suiza en 1894, considerado el primer puente de hormigón armado diseñado por él.
Inmueble Hennebique (1900). 1, rue Danton
Paralelamente a sus innovaciones, Hennebique supo organizar una maquinaria empresarial y propagandística sin precedentes. En 1892, fundó en París la Maison Hennebique, cuya plantilla pasó rápidamente de cinco a veintidós empleados, por lo que fue necesario trasladarse a unas instalaciones más grandes.
La difusión internacional de su sistema se llevó a cabo mediante la concesión de licencias a socios en distintos países. Entre ellos, destacaron Louis Gustave Mouchel, en el Reino Unido; Eduard Züblin, en Alemania, y José Eugenio Ribera, en España. En Alemania, además, tuvo que competir con la empresa G. A. Wayss, que había comprado la patente Monier en 1879.
Su propaganda se basaba en dos argumentos constantes: la economía y la resistencia al fuego. Su lema era “Inalterables y a prueba de incendios”. Organizó demostraciones públicas en las que incendiaba edificios de prueba o sometía vigas a cargas excepcionales para demostrar la incombustibilidad y resistencia de su sistema.
En 1896, publicó un artículo en la revista Béton Armé. En 1898, lanzó su propia revista periódica, Le Béton Armé, que se convirtió en el escaparate principal de su empresa y en el que difundía con profusión de fotografías, proyectos y resultados de ensayos, funcionando como órgano propagandístico de su firma.
En 1900, construyó en la calle Danton de París el Edificio Hennebique, sede de su empresa hasta 1967, que fue el primer edificio parisino construido íntegramente con hormigón armado. El inmueble, sede de su empresa hasta 1967, mostraba molduras y balaustradas en hormigón que imitaban piedra tallada, prueba de la versatilidad arquitectónica del material.
El primer puente de hormigón armado diseñado por Hennebique y la obra más importante de este tipo construida hasta entonces fue el puente Camille de Hogues, erigido entre 1899 y 1900 en Châtellerault sobre el río Vienne. La estructura mide 140 metros de largo y está formada por tres arcos rebajados empotrados; el arco central es el de mayor tamaño y tiene una luz de 50 metros.
Entre 1901 y 1903, Hennebique construyó su residencia familiar en Bourg-la-Reine, una obra de arquitectura exuberante y técnicamente avanzada concebida para demostrar las amplias posibilidades del hormigón armado. La vivienda incluye una torre de 40 metros de altura que alberga un depósito de agua para el riego por gravedad de los parterres y jardines suspendidos de la propiedad. Con esta construcción, Hennebique quiso demostrar su convicción de que «al hormigón armado se le puede pedir todo y él puede reproducirlo». Desde 1972, la casa está catalogada como monumento histórico.
Entre 1892 y 1902 se construyeron más de 7000 edificios con el sistema Hennebique, que se aplicó en puentes, torres de agua, fábricas, presas y viviendas. Entre sus obras más relevantes destacan el puente de Wiggen, en Suiza (1894); el puente Camille de Hogues, en Châtellerault (1899-1900), el primer puente francés íntegramente de hormigón armado, con 140 m de longitud y un vano central de 50 m; los silos del puerto de Génova (1901); su participación en el Grand Palais de París (1900); y su casa familiar en Bourg-la-Reine (1890-1904), que contaba con una torre de 40 m que albergaba un depósito de agua, así como un complejo residencial en Bourg.-la-Reine (1904), el puente del Risorgimento en Roma (1910-1912) y su proyecto para la presa de Asuán en Egipto (1899), que no llegó a materializarse.
Puente Camille de Hogues (1900). Hennebique. https://es.m.wikipedia.org/wiki/Archivo:Ch%C3%A2tellerault_-_Pont_Camille-de-Hogues_-1.JPG
En 1896, Hector Guimard le encargó la terraza del arsenal Coutolleau, en Angers. El primer edificio británico construido con este sistema fue el Weaver Building de Swansea (1897), demolido en 1984. Se conservan restos de su estructura en el Science Museum, el Amberley Museum y junto al río Tawe, donde una placa lo conmemora (con el error de llamarlo «Francais» en lugar de François). En Irlanda, destacan el Batchelors Building de Sligo (1905), originariamente un molino y silo de grano, y el Irish Independent Building de Dublín (1924), obra de Donnelly, Moore, Robinson y Keefe.
El puente de la Mescla es un puente de arco superior de 75 metros de longitud, construido completamente en hormigón armado, tanto el arco como el tablero. Inaugurado en 1909, fue construido para dar servicio a una línea de ferrocarril ligero.
Puente de La Mescla (1909).
El sistema Hennebique se implantó con gran éxito en numerosos países, no solo en Francia y Bélgica, sino también en España (de la mano del ingeniero de Caminos, Canales y Puertos J. Eugenio Ribera), Suiza, Italia, Turquía y Egipto. En Alemania, la implantación de la patente Monier a través de Wayss & Freytag le mantuvo muy cerrado el mercado. Hennebique patentó en España más de diez aplicaciones de su sistema para traviesas de ferrocarril, pilotes, muros de contención y cimentación, tubos, cañerías, bloques flotantes para obras marítimas e incluso presas de hormigón armado.
Cabe destacar dos obras realizadas en Italia a comienzos del siglo XX: el edificio de silos del puerto de Génova, levantado en 1901, que fue el primero construido en el país con el sistema Hennebique, y el edificio de la Sociedad de Salvamento de Nápoles, construido en 1906. La primera de ellas, y la primera construida en el país con el sistema Hennebique, es el edificio de silos del puerto de Génova, levantado en 1901. Se trata de una obra de gran envergadura propia del ámbito portuario: el edificio mide 500 metros de largo y ocupa una superficie de 15 000 metros cuadrados. Está compuesto por enormes depósitos de grano de sección rectangular y más de 20 metros de altura.
Edificio de silos en Génova. https://upload.wikimedia.org/wikipedia/commons/2/2a/Silos_di_Genoa.jpg
El puente del Risorgimento es un arco muy rebajado construido entre 1910 y 1911. Fue construido con motivo del 50.º aniversario de la Unificación de Italia, en 1909. Su técnica de construcción, basada en el método de Hennebique, permitió llevar a cabo una obra atrevida para la época: un arco de más de 100 metros de luz y 20 metros de ancho.
Puente del Risorgimiento. https://tour.rome.it/es/roma/qu%C3%A9-ver/detalles/ponte-risorgimento-roma
Una de las aplicaciones más extendidas del sistema Hennebique fue la de los forjados de edificios, cuyo proceso consistía en la construcción de encofrados de vigas y viguetas, la colocación de armaduras longitudinales en las esquinas de los soportes y en las vigas y, por último, el hormigonado. Las maquetas demostrativas mostraban, mediante piezas de metacrilato transparente, la disposición de platabandas que unían las armaduras, las barras dobladas en los apoyos para resistir los esfuerzos cortantes, la mayor densidad de refuerzos cerca de los apoyos, las esperas necesarias para conectar fases de hormigonado y el engrosamiento característico de los soportes en su encuentro con las vigas.
El sistema Hennebique alcanzó su mayor auge hacia 1905, cuando la Maison Hennebique gestionaba 50 gabinetes de estudios, contaba con 380 técnicos, entre ingenieros y delineantes, y más de 10 000 obreros activos, y controlaba cerca del 20 % del mercado mundial del hormigón armado. En 1909, la red ya incluía 62 oficinas, 43 en Europa y 12 en Estados Unidos. No obstante, en 1903, la Oficina de Patentes francesa desestimó su patente en favor de la de Monier (1878), y aunque Hennebique ganó un pleito contra el constructor Boussiron por plagio, los derechos exclusivos de su sistema quedaron debilitados.
El verdadero golpe llegó con la Circular Ministerial francesa de 1906, que estableció una reglamentación científica general para el cálculo del hormigón armado, de modo que este material dejó de ser un «sistema» patentado para convertirse en un material estructural regulado y calculable. Esto supuso la separación de roles entre proyectista y constructor, y redujo el control que ejercía Hennebique, que a partir de entonces se dedicó principalmente a la consultoría técnica apoyada en el equipo de ingenieros que había formado.
François Hennebique falleció en París el 7 de marzo de 1921. Para entonces, su empresa había participado en más de 150 000 proyectos en todo el mundo. La empresa Bétons Armés Hennebique (BAH) permaneció activa hasta 1967, año en que cesó su actividad definitivamente.
Aunque no fue un gran teórico, sus estudios contribuyeron a consolidar el hormigón armado como material constructivo. Su verdadero talento residía en la combinación de intuición técnica, visión empresarial y capacidad propagandística, que permitió una difusión vertiginosa de este material en Europa y más allá.
Gracias a él, el hormigón armado pasó de ser una curiosidad experimental a convertirse en el material hegemónico de la ingeniería y la arquitectura del siglo XX.
Con motivo del homenaje a Javier Rui-Wamba que se celebrará esta tarde en el Colegio de Ingenieros de Caminos, Canales y Puertos, en el que participaré en una de las mesas redondas dedicadas a su trayectoria académica, he escrito unas notas sobre su figura.
Desgraciadamente, no tuve la ocasión de conocer a Javier personalmente y parece que esta visión externa es lo que buscaban los organizadores para esa mesa redonda. Si queréis participar en este homenaje, podéis seguirlo por streaming.
Javier Rui-Wamba Martija (Gernika, 1942 – Barcelona, 10 de julio de 2025) fue una figura preeminente de la ingeniería española, reconocida por su excepcional capacidad para combinar el rigor técnico con una profunda sensibilidad humanista. Fundó y presidió la empresa de ingeniería Esteyco en 1970, liderando más de 800 proyectos en 30 países, lo que dejó una huella indeleble en las áreas de infraestructuras, edificación y energía. Su obra se caracteriza por la innovación, como el desarrollo de torres eólicas telescópicas de hormigón, y por su participación en proyectos emblemáticos, como la transformación de la plaza de las Glorias de Barcelona y el análisis histórico-estructural de la ría de Bilbao y sus puentes.
Además de su faceta como constructor, Rui-Wamba fue un influyente académico y pensador. Durante diecisiete años fue profesor de Estructuras y Puentes Metálicos en la Escuela de Ingenieros de Caminos de Madrid, donde promovió un enfoque didáctico y conceptual. Su legado intelectual se consolida a través de la Fundación Esteyco, que ha editado más de cien libros para fomentar el diálogo entre la ingeniería y la arquitectura, y de sus propias publicaciones. Entre estas últimas destacan la monumental Teoría unificada de estructuras y cimientos (TUEC) y los célebres Aforismos estructurales, donde utiliza principios de ingeniería para explicar el comportamiento humano. Su visión de la ingeniería como una disciplina al servicio de la sociedad, que debe ser resistente, dúctil y tenaz, define su duradero impacto en la profesión.
Javier Rui-Wamba Martija (1942-2025). Foto cortesía de Esteyco
1. Perfil biográfico y trayectoria profesional.
Javier Ruiz-Wamba Martija nació en Guernica el 27 de septiembre de 1942. Cursó el bachillerato en el Colegio de los Jesuitas de Bilbao entre 1949 y 1959. Se graduó como ingeniero de Caminos, Canales y Puertos en 1966 por la Escuela de Ingenieros de Caminos de Madrid.
Comenzó su carrera profesional con proyectos como las cubiertas de MZOV y los puentes del Plan Sur de Valencia. En 1969 trabajó en París en la empresa de ingeniería Europe-Etudes. Un punto de inflexión en su carrera fue la fundación de su propia empresa, Esteyco, en enero de 1970. Desde esta plataforma, desarrolló una prolífica carrera en la que llevó a cabo más de 800 proyectos en 30 países, entre ellos Argelia, Argentina, Francia, la India y Catar.
Su trayectoria profesional fue reconocida con los más altos honores, entre los que se encuentran el Premio Nacional de Ingeniería Civil (2016), la Medalla de Honor del Colegio de Ingenieros de Caminos, Canales y Puertos y la Medalla Ildefons Cerdá. Fue miembro de la Real Academia de Ingenieros de España, de la que tomó posesión el 17 de marzo de 1998, y miembro correspondiente de la Real Academia de Bellas Artes de San Fernando desde 2002. Falleció el 10 de julio de 2025 y, en su memoria, el Colegio de Ingenieros de Caminos, Canales y Puertos organizó un homenaje el 1 de octubre de 2025.
Hito
Año
Descripción
Nacimiento
1942
Nace en Gernika, el 27 de septiembre.
Graduación
1966
Ingeniero de Caminos, Canales y Puertos por la Escuela de Caminos de Madrid.
Experiencia en París
1969
Trabaja en la ingeniería Europe-Etudes.
Fundación de Esteyco
1970
Crea su propia empresa de ingeniería.
Inicio de docencia
1974
Comienza su labor como profesor de Estructuras y Puentes Metálicos, que duraría 17 años.
Fundación Esteyco
1991
Constituye la Fundación Esteyco para el progreso de la Arquitectura y la Ingeniería.
Ingreso en la Academia
1998
Toma de posesión como Miembro Numerario Electo de la Real Academia de Ingeniería.
Fallecimiento
2025
Fallece en Barcelona el 10 de julio.
2. Filosofía de la ingeniería y el humanismo.
La visión de Rui-Wamba trascendía la mera aplicación técnica. Concebía la ingeniería como una disciplina profundamente humana, una herramienta para transformar la sociedad de manera reflexiva y sostenible.
2.1. El ingeniero como humanista.
Rui-Wamba defendía que la ingeniería y la arquitectura no debían verse como campos antagónicos, sino complementarios. Consideraba que la «competencia entre profesionales era cosa de mediocres» y fomentó la integración de arquitectos en Esteyco, valorando su visión espacial. A través de la Fundación Esteyco, buscó crear un «ámbito de encuentro en el que ambas disciplinas se someten a la exigencia común del rigor científico, la excelencia literaria y la belleza visual».
Su lema en Esteyco, «trabajar para saber, saber para trabajar», resume su creencia en que el conocimiento es el pilar de la práctica profesional. Argumentaba que «el ingeniero no se caracteriza por lo que sabe, sino por lo que tarda en aprender lo que necesita saber».
2.2. Aforismos estructurales: un puente entre la técnica y la vida.
Su discurso de ingreso en la Real Academia de Ingeniería, titulado «Aforismos estructurales que pueden ser de utilidad para comprender determinados comportamientos de los seres humanos», constituye la máxima expresión de su filosofía. En esta obra, establece paralelismos entre los principios de la estática y la dinámica de estructuras y la complejidad de la conducta humana.
Los ocho aforismos:
La inestabilidad estructural tiene mucha similitud con la inestabilidad del comportamiento de los seres humanos.
El conocimiento de las reacciones de los apoyos de una estructura es esencial para comprender su comportamiento y evaluar su seguridad.
La fatiga estructural depende, prioritariamente, de la amplitud y frecuencia de las variaciones tensionales.
No es posible conocer el estado tensional de una estructura.
Los ingenieros somos gestores de incertidumbres.
Los materiales y las estructuras que construimos con ellos deben ser resistentes, dúctiles y tenaces. La ductilidad es un puente sobre nuestra ignorancia y la tenacidad estructural expresa su tolerancia al daño.
No se debe calcular una estructura que no se sepa dibujar. No se deben utilizar fórmulas cuyo significado físico se desconoce. No se debe dimensionar con ordenador una estructura que no se sepa calcular manualmente.
Las patologías estructurales son el modo en que nuestras estructuras manifiestan su disgusto por el trato que han recibido en su concepción, proyecto, construcción o utilización.
Una de sus analogías más citadas es la de la amistad: «Cuando tienes un soporte que pandea, que flexiona, si pones una mano con un 1 % de fuerza vertical, aumentas cuatro veces la capacidad de carga de ese soporte. Esa es la amistad». Del mismo modo, define la fatiga en los seres humanos como «los recuerdos que pesan».
2.3. Visión sobre la formación y la docencia.
Javier Rui-Wamba ejerció como profesor en la Escuela de Ingenieros de Caminos de Madrid, donde impartió la asignatura de Estructuras y Puentes Metálicos durante 17 años. Su etapa docente se extendió desde 1974 hasta principios de los años noventa. Comenzó como profesor auxiliar y mantuvo este puesto durante toda su trayectoria en la escuela, ubicada entonces en el madrileño parque del Retiro. Además, entre 1992 y 1994 fue profesor honorífico de la Universidad Politécnica de Cataluña (UPC).
Desde el principio, Rui-Wamba mostró un compromiso excepcional con la enseñanza. Se entregaba a la preparación de sus clases con disciplina, llegando a levantarse a las cinco o seis de la mañana para preparar el material. Su objetivo era transformar una asignatura que hasta entonces se consideraba una «María»: apenas seis alumnos asistían regularmente a sus clases. Gracias a su rigor, dedicación y a su estilo pedagógico, consiguió que aquella materia se convirtiera en un curso exigente y respetado y llegó a congregar hasta doscientos estudiantes en el aula. Solía recordarles: «Venís a aprender, no a aprobar».
Su filosofía docente se basaba en la idea de que enseñar es la mejor forma de aprender. Creía firmemente que «para formar ingenieros hay que ser ingeniero» y lamentaba que muchos catedráticos carecieran de experiencia práctica. Rechazaba la rutina de quienes repetían el mismo temario cada año y criticaba la ausencia de un sistema de evaluación del profesorado, que comparaba con modelos más avanzados, como el de la Universidad de Harvard. Defendía que la enseñanza debía fomentar la comprensión profunda y no solo la aplicación de fórmulas, siguiendo la inspiración del libro Razón y ser de los tipos estructurales, de Eduardo Torroja. Por ello, insistía en que los estudiantes resolvieran problemas con enunciados imperfectos, similares a los que se encuentran en la práctica profesional.
Entre los principios que guiaban su enseñanza, destacaban varios aspectos. En primer lugar, el enfoque en el aprendizaje: los alumnos debían asistir a clase para comprender, no para aprobar exámenes. En segundo lugar, la contextualización práctica: consideraba fundamental entender los conocimientos micro, como el diagrama hierro-carbono, que inicialmente atemorizaba a los estudiantes, para interpretar el comportamiento macro de las estructuras. También subrayaba la heteroestructuralidad, resaltando la estrecha relación entre el acero y el hormigón armado, que no se puede comprender sin el primero.
En lo que respecta a los materiales de estudio, en 1983 promovió la elaboración de apuntes colectivos entre los profesores de la escuela. Él mismo redactó unos voluminosos apuntes sobre torsión, que consideraba especialmente valiosos por su esfuerzo de síntesis en conceptos complejos como el centro de esfuerzos cortantes. En ocasiones, estos apuntes eran manuscritos, lo que reflejaba la cercanía y el empeño personal de Rui-Wamba en su labor docente.
A Javier le preocupaba tanto que la universidad fuese una torre de marfil como que la empresa ignorara el conocimiento generado en ella. En suma, Javier Rui-Wamba fue un profesor entregado, crítico con el sistema universitario y profundamente convencido de la importancia de vincular el aprendizaje con la práctica real de la ingeniería. Gracias a su rigor y pasión por la enseñanza, logró transformar la percepción y el impacto de su asignatura, dejando una huella perdurable en la formación de generaciones de ingenieros.
3. Obras y proyectos relevantes
La obra de Rui-Wamba es extensa y diversa y abarca desde grandes infraestructuras urbanas hasta innovaciones en energías renovables.
3.1. La transformación de Barcelona: el caso de la plaza de las Glorias.
Rui-Wamba desempeñó un papel central en la remodelación de Barcelona para los Juegos Olímpicos de 1992, contribuyendo a «abrir la ciudad hacia el mar». Su proyecto más emblemático y complejo fue el anillo viario de la plaza de las Glorias (1990-1992). Diseñada para solucionar un nudo de tráfico y dignificar una zona degradada, esta estructura cumplió su función durante más de dos décadas.
Paradójicamente, fue su propia empresa, Esteyco, la encargada de dirigir la deconstrucción del anillo a partir de 2014 para dar paso a un nuevo parque y al soterramiento del tráfico. Rui-Wamba, aunque no compartía la decisión de derribarlo, afrontó el proceso con un profundo respeto por la estructura, describiéndolo como una «muerte asistida y controlada». Relató que se había despedido personalmente de la obra: «Me acerqué a solas a un pilar y le expliqué que quien tenía poder para hacerlo había decidido derribarlo, pero que lo íbamos a cortar con mucha atención y cuidado».
3.2. La ría de Bilbao y sus puentes.
Rui-Wamba dedicó un extenso análisis a la ría de Bilbao, un entorno que conocía desde su infancia. En su obra La ría de Bilbao y sus puentes, describe la evolución de la ría desde un puerto fluvial industrial hasta una avenida urbana. En ella, analiza la historia tipológica de sus puentes, desde el medieval de San Antón, de mampostería, hasta los puentes colgantes del siglo XIX, inspirados en la ingeniería inglesa, y los puentes móviles, que cedieron ante la primacía del tráfico de vehículos.
Realizó un profundo análisis sociológico del Puente Colgante de Bizkaia, que considera:
Un «fruto tardío de la Revolución Industrial».
Un símbolo de la Ría y testimonio de su época.
Un ejemplo de iniciativa privada bajo un modelo concesional.
Una estructura que, a pesar de su «funcionalidad discutible», preservó su entorno de agresiones urbanísticas.
Un ejemplo de que «la belleza ha contribuido decisivamente a preservar su destino».
3.3. Innovación en materiales: acero, hormigón y energía eólica.
Su relación con los materiales se basó en un aprendizaje constante y en la aplicación innovadora. En su conferencia «El acero y yo», narra su evolución desde el rechazo inicial al diagrama hierro-carbono en la universidad hasta alcanzar una profunda comprensión de cualidades como la ductilidad y la fragilidad. Definió el acero como «el hierro genéticamente modificado» y destacó cómo pequeñas adiciones de carbono cambian sustancialmente el comportamiento del material.
Esta maestría le permitió proyectar estructuras metálicas complejas, como:
El Nudo de la Trinidad en Barcelona, construido en un plazo muy breve.
El Puente de Tablate (Granada), un arco metálico de 142 metros de luz en una zona de alta sismicidad.
El puente sobre el río Cadagua en Bilbao, utilizando acero corten.
La rehabilitación del puente sobre el Duero en Zamora, donde aplicó por primera vez conceptos de mecánica de la fractura en colaboración con el departamento de Manuel Elices.
En el sector de la energía, fue un pionero al introducir el hormigón en el diseño de aerogeneradores. Su empresa desarrolló y patentó un sistema de torres prefabricadas de hormigón que alcanzan alturas de 100, 120 y 140 metros, superando así la limitación de 80 metros de las torres de acero. En China, construyó con esta técnica la torre telescópica terrestre más alta del mundo (170 metros) sin sistemas auxiliares de sujeción.
4. Legado intelectual y publicaciones
El impacto de Javier Rui-Wamba se extiende a través de sus escritos y la labor de difusión de la Fundación Esteyco.
4.1. Publicaciones clave
Teoría unificada de estructuras y cimientos (TUEC): Considerada la obra de su vida, es un tratado de 3.000 páginas manuscritas durante 12 años. En ella, unifica los fundamentos de la ingeniería estructural con un enfoque didáctico y transversal.
Aforismos Estructurales: Su discurso de ingreso en la Real Academia de Ingeniería, publicado en 1998.
La Ría de Bilbao y sus Puentes: Un análisis exhaustivo sobre la historia y la ingeniería de este enclave.
Redactor de normativas: Participó en la elaboración de documentos técnicos de gran influencia, como el Código Modelo 1990 del Comité Europeo del Hormigón (CEB), las Recomendaciones españolas para el proyecto de puentes metálicos y mixtos (RPM-RPX/95) y fue el representante español para el Eurocódigo 4.
4.2. La Fundación Esteyco
Creada en mayo de 1991, la Fundación Esteyco es un pilar fundamental de su legado. Con la publicación de más de 100 libros, se ha convertido en un referente para «fomentar un clima propicio de creatividad en el que se exija y valore el trabajo bien hecho». La fundación ha servido de plataforma para tender puentes entre la ingeniería, la arquitectura y la cultura en general, reflejando la visión integradora de su fundador.
Este vídeo os puede servir para sintetizar información interesante de Javier. Pero seguro que en el homenaje tendremos mucha más información de interés que la que puede aportarnos la inteligencia artificial de este vídeo.
Franz Anton Dischinger (1887-1953). https://www.b-tu.de/great-engineers-lexikon/ingenieure/dischinger-franz-anton-1887-1953
Franz Anton Dischinger (8 de octubre de 1887-9 de enero de 1953) nació en Heidelberg, Baden-Württemberg. Considerado uno de los ingenieros civiles alemanes más importantes del siglo XX, sus contribuciones decisivas en el campo de las estructuras laminares, los puentes atirantados y el hormigón pretensado le valieron este reconocimiento. Su trabajo fue reconocido internacionalmente y su influencia se extendió tanto a la investigación académica como a la práctica profesional. No obstante, aún falta un estudio exhaustivo que sitúe su obra en el contexto social y político de su tiempo.
Tras completar el Gymnasium en Karlsruhe, ingresó en la Technische Hochschule Karlsruhe para estudiar ingeniería civil. En 1911 finalizó sus estudios, influido por el matemático Karl Heun y el ingeniero estructural Friedrich Engesser. En 1912 comenzó a trabajar en la empresa Dyckerhoff & Widmann AG, donde permanecería hasta 1932, llegando a ocupar el cargo de director.
En paralelo a su trabajo profesional, inició sus primeras investigaciones sobre estructuras laminares. En 1922, junto con Walther Bauersfeld, diseñó el Planetario Zeiss de Jena, cuya cubierta hemisférica de hormigón laminar se convirtió en una referencia mundial. El sistema fue patentado y, en 1928, Dischinger publicó un artículo sobre las bases matemáticas de esta innovación.
Planetario Zeiss de Jena. https://es.wikipedia.org/wiki/Planetario
A partir de 1923, desarrolló métodos para la construcción y el análisis de láminas de hormigón, tema en el que profundizó en su tesis doctoral en la Universidad Técnica de Dresde, dirigida por Kurt Beyer y defendida en 1928. Su tesis trataba sobre el uso de láminas de hormigón para cubrir grandes espacios y se basaba en el aparato matemático ya disponible para calcular tensiones en superficies de tipo membrana. El hormigón, por su cualidad formácea, se adaptaba de manera óptima a estas soluciones estructurales.
Con el respaldo de Dyckerhoff & Widmann, llevó a cabo una amplia campaña de ensayos para estudiar las condiciones de contorno de las láminas, ya que estas podían generar esfuerzos parásitos indeseables. Al igual que los de Hennebique o Maillart en su día, estos experimentos se convirtieron en una auténtica carta de presentación del producto. Gracias a ello, las estructuras laminares ganaron enorme prestigio y abrieron el camino a ingenieros como Eduardo Torroja, Pier Luigi Nervi o Félix Candela.
Durante los años veinte y treinta, Dischinger firmó obras muy relevantes: la Großmarkthalle de Basilea (1929), con una cubierta en cúpula; el mercado de Leipzig (1930), con cubiertas poligonales; el puente de Koblenz (1935), un puente de tres arcos de hormigón, y el puente de Aue (1936). En 1931 recibió un premio de la Academia Prusiana de Construcción, lo que consolidó aún más su prestigio.
En 1932, fue nombrado profesor de construcción en hormigón armado en la Technische Hochschule Berlin-Charlottenburg, cátedra que desempeñó entre 1933 y 1945, y que continuó en la Technische Universität Berlin hasta 1951, con una breve interrupción de un año. Desde esta posición, publicó numerosos artículos sobre problemas relacionados con los puentes de hormigón armado y pretensado, lo que impulsó de manera decisiva la consolidación del hormigón estructural en el periodo de entreguerras.
En 1934, patentó la técnica del pretensado externo, en la que los tendones no quedaban embebidos en el hormigón, lo que supuso un hito en el desarrollo de este material. En 1938, Dyckerhoff & Widmann y Zeiss-Jena recibieron la medalla Edward Longstreth del Instituto Franklin de Filadelfia, premio que mencionaba expresamente a Dischinger junto con Walter Bauersfeld, Ulrich Finsterwalder, Hubert Rüsch y Wilhelm Flügge.
Ese mismo año diseñó un puente ferroviario colgante que no llegó a construirse y en el que aplicó conocimientos históricos sobre ingenieros como Ferdinand Arnodin y John Roebling. Sin embargo, su mayor aportación fue el desarrollo del puente atirantado moderno. Convencido de que los sistemas colgantes y los primeros atirantados eran deficientes, tanto técnica como estéticamente, propuso un concepto que ha servido de base a más de un centenar de estructuras posteriores.
En 1939, publicó su influyente trabajo sobre la retracción y la fluencia del hormigón, fenómenos que Freyssinet y Torroja ya habían observado, pero que hasta entonces carecían de un modelo sistemático. Dischinger recopiló datos, realizó ensayos y formuló un modelo analítico de predicción que estuvo vigente durante más de treinta años.
Puente de Strömsund. https://it.wikipedia.org/wiki/Franz_Dischinger
Entre sus obras más significativas de posguerra destaca el puente de Strömsund, en Suecia, con un vano de 183 metros. Aunque Dischinger falleció en Berlín en 1953 sin verlo finalizado, la obra se inauguró en 1955 y es considerada el primer puente atirantado de la tradición moderna. Su tablero de acero y la gran separación entre los tirantes lo convirtieron en un símbolo de la ciudad, hasta el punto de que aparece en su escudo. Poco antes de morir, también colaboró con Fritz Leonhardt y otros ingenieros en el puente de Rodenkirchen, en Colonia (1954).
Su trayectoria fue reconocida con doctorados honoris causa otorgados por el Instituto Tecnológico de Karlsruhe (1948), la Universidad Técnica de Aquisgrán (1949) y la Universidad Técnica de Estambul (1952).
Más allá de su faceta técnica, la figura de Dischinger se inscribe en un contexto sociopolítico complejo. Como profesor universitario e ingeniero de una empresa clave, formó parte de redes de la industria, la política e la inteligencia técnica en un periodo marcado por las tensiones entre la República de Weimar, el Tercer Reich y la posguerra de Bonn. Sus proyectos para el régimen nazi siguen planteando preguntas hoy en día sobre el papel de la ingeniería al servicio del poder y sobre la recepción posterior de esas obras.
Franz Dischinger fue un ingeniero sereno y riguroso, discípulo de grandes maestros y, a su vez, maestro de generaciones posteriores. Su obra consolidó el uso del hormigón estructural, impulsó nuevas formas arquitectónicas y abrió el camino al desarrollo del puente atirantado moderno. Es una figura fundamental en la historia de la ingeniería y sus aportaciones teóricas y prácticas siguen siendo una referencia indispensable.
Félix Candela Outeriño nació el 27 de enero de 1910 en la calle Mayor de Madrid, cerca del Ayuntamiento, en el corazón del Madrid de los Austrias. Aunque su apellido es de origen siciliano, la familia Candela procedía de la costa levantina. Su madre, Julia Outeriño Echeverría, era gallega, hija de un sargento de alabarderos, y su padre, Félix Candela Magro, era un comerciante valenciano que heredó la representación en Madrid del negocio familiar de derivados del cáñamo, especializado en alfombras y alpargatas. Félix era el mayor de tres hermanos, seguido de Antonio y Julia. Tras la muerte de su padre en 1929 a causa de la tuberculosis, la familia vendió la zapatería y vivió de las rentas mientras Candela estudiaba arquitectura.
Desde pequeño, Candela compaginó sus estudios con una intensa actividad deportiva, en la que destacó en esquí, rugby y atletismo. En 1927, ingresó en la Escuela Técnica Superior de Arquitectura de Madrid de la Universidad Politécnica de Madrid y terminó la carrera en 1935. Durante sus estudios, sobresalió en asignaturas técnicas como Geometría Descriptiva y Cálculo de Estructuras. Paralelamente, estudió en la Real Academia de Bellas Artes de San Fernando, donde coincidió con Eduardo Robles Piquer y Fernando Ramírez de Dampierre, y conoció a Eduardo Torroja y sus técnicas de cubiertas de hormigón. En 1936, recibió la beca Conde de Cartagena para ampliar estudios en Alemania con una tesis doctoral, y contó con cartas de presentación para los ingenieros Franz Dischinger y Ulrich Finsterwalder. Sin embargo, la guerra civil española truncó sus planes. Se alistó en el Ejército Popular de la República como capitán de ingenieros.
Tras la retirada de Cataluña, Candela pasó por los campos de concentración de Saint-Cyprien y Le Barcarés, cerca de Perpiñán (Francia), hasta febrero de 1939, cuando embarcó rumbo a México en el buque Sinaia, llegando a Veracruz el 13 de junio del mismo año. Durante sus primeras semanas en México, sobrevivió con la ayuda del Servicio de Evacuación de los Republicanos Españoles (SERE). Su primer trabajo fue en la colonia Santa Clara, ubicada a unos 100 km al norte de Chihuahua, donde participó en la construcción de un pequeño poblado denominado Ojos Azules. En 1940, logró traer desde España a su novia, Eladia Martín, con quien se casó en Ciudad de México. Vivieron brevemente en Ojos Azules antes de regresar a la capital. Posteriormente, se asoció con el contratista español González Bringas en obras de Acapulco y, el 20 de octubre de 1941, obtuvo la ciudadanía mexicana.
Trabajó dos años en Acapulco, lo que le permitió adquirir experiencia local y estabilidad económica. Durante ese tiempo, trajo a México a su madre, a su hermana Julia y, por último, a su hermano Antonio, que llegó en 1946. Candela y su familia realizaron algunos encargos profesionales, entre ellos un edificio de apartamentos en la calle de Gorostiza y el Hotel Catedral, en Donceles (Ciudad de México). Con el premio que su hermano Antonio ganó en la Lotería Nacional en 1948, viajaron por Europa y visitaron Londres, Ámsterdam, Róterdam, París y La Haya.
En 1949, Candela se interesó por las láminas cilíndricas de hormigón armado que construía su amigo Raúl Fernández y, en 1950, fundó junto con los hermanos Fernández Rangel la empresa Cubiertas Ala, S. A., especializada en arquitectura industrial y estructuras laminares de hormigón armado, conocidas mundialmente como «cascarones» o «paraboloides hiperbólicos». Esta empresa marcó el inicio de su etapa de madurez profesional y creatividad, sustentada en estudios autodidactas y literatura técnica especializada. Entre sus primeros proyectos se encuentran experimentos con bóvedas catenarias y escuelas rurales, y en 1951 Candela construyó su primer paraboloide hiperbólico (hypar) de 15 mm de hormigón armado para el Pabellón de Rayos Cósmicos de la UNAM.
Pabellón de Rayos Cósmicos, en colaboración con Jorge González Reyna. UNAM– Por Mario Yaír TS – Trabajo propio, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=151093076
Durante la década de los cincuenta, desarrolló numerosas obras de este tipo: almacenes para las Aduanas de México (1953), un paraguas modular de planta cuadrada para cubiertas industriales y la iglesia de la Virgen de la Medalla Milagrosa (1953-1955) en la colonia Narvarte de Ciudad de México. En 1955, colaboró con Fernando López Carmona y Enrique de la Mora en la construcción de la cubierta de la Bolsa de Valores de México, para la que utilizó paraboloides hiperbólicos con borde curvo y sin refuerzos perimetrales. A partir de entonces, inició una serie de obras religiosas y civiles muy fructífera: la capilla de Nuestra Señora de la Soledad (1955), las iglesias de San Vicente de Paúl y San José Obrero (ambas de 1959), la iglesia de San Antonio de las Huertas (1956), la cubierta del cabaret La Jacaranda (1957), la capilla de Lomas de Cuernavaca (1958-1959) y el icónico restaurante Los Manantiales (1957-1958). Entre las obras más importantes destacan la planta embotelladora de Bacardí (1960), la iglesia de Santa Mónica (1960) y la iglesia de Nuestra Señora de Guadalupe en Madrid (1963), en la que Candela participó como calculista. Durante esta década, Cubiertas Ala construyó 395 obras, la mayoría de ellas industriales.
El propio Candela resumía su filosofía arquitectónica y estructural con estas palabras:
«Toda obra de arte es una interpretación del mundo, de lo que estás contemplando; una determinación de la percepción que crea e intenta un mundo distinto. Al fin y al cabo, una obra de arte no es sino una ofrenda al arte.»
Candela es considerado uno de los arquitectos estructuristas más importantes del siglo XX, y destacó por su capacidad para replantear el papel del arquitecto frente a los problemas estructurales de la arquitectura basándose en la economía, la sencillez de cálculo y la flexibilidad, y siempre mostrando una sensibilidad única a la hora de proyectar espacios. Desde sus inicios, difundió sus ideas enviando artículos al American Concrete Institute (ACI) y participando en congresos internacionales, alcanzando la fama mundial a partir de los años cincuenta.
Candela también alcanzó reconocimiento internacional: presidió las Charles Eliot Norton Lectures en Harvard (1961-1962), recibió el Premio Auguste Perret (1961), la medalla de oro de The Institution of Structural Engineers y homenajes de la colonia de refugiados españoles. En 1964, tras el fallecimiento de su primera esposa, Eladia, y después de 25 años de actividad en México, recibió oficialmente la cédula de arquitecto mexicano. En 1967 se casó con Dorothy Davies. En 1968, proyectó junto a Antonio Peyrí y Enrique Castañeda el Palacio de los Deportes para los Juegos Olímpicos, que destacó por su gran cúpula de cobre conocida como el «palacio de los cien soles».
En 1969 regresó a España para participar en el Congreso de la IASS y fue nombrado profesor honorario de la Escuela Técnica Superior de Arquitectura de Madrid. En 1971 se trasladó a Estados Unidos y residió en Nueva York y, posteriormente, en Chicago, donde obtuvo la ciudadanía estadounidense y ocupó una cátedra en la Universidad de Illinois hasta 1978. Posteriormente, trabajó asociado al IDEA Center en Toronto, Grecia, Arabia Saudita y París, hasta la disolución de la oficina en 1979. Durante este período, Candela participó en proyectos internacionales como la Ciudad Deportiva de Kuwait, el Estadio Santiago Bernabéu, el Idea Center de Riad y Yanbú, el Centro Cultural Islámico de Madrid, una torre de oficinas en Riad, un aeropuerto en Murcia, la Feria de Muestras de Marbella, la Legislatura de Veracruz, el Máster Plan de la Universidad Islámica y la Procuraduría de Xalapa.
En sus últimos años residió entre Nueva York y Madrid, donde colaboró con Fernando Higueras y Typsa. Recibió numerosos reconocimientos: entre ellos, la medalla de oro del Consejo Superior de Colegios de Arquitectos de España (1981), el I Premio Antonio Camuñas (1985), la publicación de En defensa del formalismo y otros escritos (1985) y el doctorado honoris causa por la Universidad Politécnica de Madrid (1994). En 1995, los colegios de arquitectos e ingenieros de caminos de Madrid le rindieron un homenaje conjunto.
Candela falleció el 7 de diciembre de 1997 en el Hospital Duke de Durham (Carolina del Norte) a causa de complicaciones derivadas de una dolencia cardíaca que padecía desde hacía años. Su obra, caracterizada por el uso del paraboloide hiperbólico, ha influido en generaciones posteriores de arquitectos, entre los que se encuentra Javier Senosiain. Entre sus publicaciones destacan: Simple Concrete Shell Structures (1951), Hacia una nueva filosofía de las estructuras (1952), Una pequeña demostración práctica de la validez de la teoría de la membrana en superficies alabeadas (1952), Estéreo-estructuras (1953), The shell as space closer (1955), Fórmulas generales para el cálculo de esfuerzos en cascarones parabólico-hiperbólicos (1960) y En defensa del formalismo y otros escritos (1985).
Os dejo algunos vídeos sobre Candela.
Dejo también un artículo de Antonio Tomás y Tomás Martí con motivo del centenario de su nacimiento.
John Loudon McAdam (1756 – 1836). https://ca.wikipedia.org/wiki/
John Loudon McAdam (1756-1836) fue un ingeniero escocés que transformó para siempre la construcción de carreteras. Su método, conocido como macadamización, o simplemente «macadán», supuso un hito en la ingeniería civil, permitió el auge del transporte moderno en el siglo XIX y sentó las bases de la pavimentación contemporánea. Nació el 21 de septiembre de 1756 en Ayr, capital del condado histórico de Ayrshire (Escocia), en la casa de lady Cathcart. Pertenecía a la baja nobleza local y era el menor de los diez hijos de James McAdam y Susanna Cochrane, sobrina del séptimo conde de Dundonald.
En 1760, la familia se mudó al castillo de Lagwyne, en Carsphairn, y más tarde al castillo de Whitefoord. Su padre, James, llevaba un estilo de vida elevado y gestionó de manera deficiente el negocio familiar, el Banco de Ayr, lo que provocó grandes pérdidas económicas. Finalmente, se vio obligado a vender la finca ancestral de la familia, Waterhead, y quedó prácticamente arruinado.
John estudió en la escuela del señor Doick, en Maybole, hasta 1770. Ese mismo año, con tan solo 14 años, murió su padre tras la bancarrota del banco familiar. Con la familia en la ruina, John fue enviado a Nueva York para vivir con su tío William McAdam, un próspero comerciante, y con su tía Ann Dey, hija de Dirck Dey, otro neoyorquino. William McAdam era propietario de la empresa McAdam & Co. y poseía más de 30 000 acres en Middlesex, conocidos como Kilby Grant. En este entorno, John se formó como mercader y contable, y estableció relaciones comerciales con personas como Robert Gilmore, de Northfork.
Durante la guerra de la Independencia de las Trece Colonias (1775-1783), John apoyó la causa británica desde el principio. Se convirtió en un mercader de éxito y contratista del Gobierno, y amasó una considerable fortuna. Fue socio propietario del barco privado General Mathew y actuó como agente de premios de guerra: revendía las mercancías y materiales capturados a los rebeldes, lo que le reportó importantes beneficios personales. Se casó con Gloriana Nicoll, hija de William Nicoll de Suffolk, descendiente del coronel Nicoll, en Nueva York. El matrimonio heredó un tercio de las propiedades de West Neck, en Shelter Island, así como terrenos en Blue Point (Islip).
Sin embargo, en 1783, tras la derrota británica, él y su familia sufrieron las consecuencias de haber sido realistas. El nuevo gobierno estadounidense confiscó sus propiedades y activos en América, y él, su esposa y sus dos hijos fueron obligados a regresar a Escocia. Una vez en Escocia, McAdam aún conservaba suficiente capital como para comprar una finca en Sauchrie, cerca de Maybole. Gracias a sus lazos familiares, se asoció con el almirante lord Cochrane y con el conde de Dundonald en negocios de hierro y alquitrán. Estos productos, derivados del carbón, eran fundamentales para sellar los barcos de vela. Sin embargo, la introducción del cobre en los cascos redujo la demanda de alquitrán, lo que debilitó la industria en la que John había invertido.
Con el tiempo, McAdam se volcó en una nueva actividad que marcaría su vida: la construcción de carreteras. Empezó haciendo pruebas con piedras en caminos cercanos a su finca y acabó construyendo una carretera que conectaba Alloway con Maybole, que seguía en uso en 1936. En 1787 fue nombrado administrador de carreteras y, durante los siguientes quince años, ejerció como vicealmirante de Ayrshire, consolidando su experiencia en este campo. En 1798, gracias a un nombramiento oficial, se trasladó a Falmouth (Inglaterra) y, en 1801, con 45 años, fue designado inspector de carreteras de Bristol. Allí perfeccionó sus ideas y puso en práctica un sistema radicalmente distinto al habitual.
Carreteras de unos seis metros de ancho, con la parte central elevada ocho centímetros sobre los bordes para facilitar el drenaje del agua.
Cunetas laterales para evacuar el agua de lluvia y evitar encharcamientos.
Tres capas: la más profunda, de tierra compactada; una intermedia, de piedras grandes y regulares; y una superior, de piedra triturada, que quedaba perfectamente compactada con el paso de los carruajes.
El resultado era una superficie lisa, dura, resistente y barata, mucho más duradera y menos proclive a embarrarse que los caminos de tierra o los adoquinados.
McAdam recogió sus ideas en dos tratados fundamentales, en los que defendía la importancia de elevar las carreteras respecto al suelo circundante, asegurar un buen drenaje y emplear materiales seleccionados en capas sistemáticas:
Remarks on the Present System of Road-Making (1816)
Practical Essay on the Scientific Repair and Preservation of Roads (1819)
El prestigio de McAdam creció rápidamente. En 1815 fue nombrado inspector del Bristol Turnpike Trust y, en la década de 1820, alrededor de 70 patronatos de carreteras lo contrataron como consultor. En 1819, un comité parlamentario elogió públicamente su trabajo. En 1823, el Parlamento británico encargó un estudio sobre el deficiente estado de las carreteras del país, que estaban obsoletas para una nación en plena industrialización. Como resultado, McAdam fue nombrado inspector general de carreteras metropolitanas de Gran Bretaña. Desde este cargo, su método se estandarizó y extendió rápidamente no solo en el Reino Unido, sino también en Europa y Norteamérica. El impacto fue inmediato: gracias a la suavidad y durabilidad de las carreteras macadamizadas, el transporte en diligencia experimentó un auge sin precedentes. Poco tiempo después de su fallecimiento, en Inglaterra ya existían 35 000 kilómetros de carreteras construidas con su método.
Aunque McAdam recibió subvenciones del Parlamento (2000 libras para gastos en 1820 y 5000 libras por su trabajo en Bristol), nunca fue plenamente recompensado. Se le ofreció un título de caballero, pero lo rechazó por su avanzada edad. El macadán supuso el mayor avance en la construcción de carreteras desde el Imperio romano. Con el tiempo, su sistema dio origen a mejoras posteriores. La más significativa se produjo en 1901, cuando Edgar Purnell Hooley patentó el uso del alquitrán para ligar los áridos, creando el tarmac o tarmacadam, antecesor del asfalto moderno. Es curioso que McAdam, a pesar de haber sido propietario de una fábrica de alquitrán de hulla, nunca aplicara este material a su método. Desde la perspectiva actual, puede resultar llamativo, pero en su época su innovación ya era revolucionaria. Hoy en día, aunque las carreteras modernas emplean asfaltos derivados del petróleo sobre bases de hormigón armado, el uso de capas de piedra triturada sigue siendo heredero directo de la innovación de McAdam.
En sus últimos años, McAdam permaneció activo en el ámbito de la ingeniería viaria junto a sus hijos, quienes abandonaron sus ocupaciones en Escocia para ayudarle en Inglaterra. Finalmente, John Loudon McAdam murió el 20 de noviembre de 1836 en Moffat, un balneario del consejo de Dumfries y Galloway, a los 80 años. Fue enterrado en el cementerio local. Su apellido quedó inmortalizado en el lenguaje técnico y en la historia de la ingeniería civil.
Borís Grigórievich Galiorkin (1871–1945) fue un ingeniero y matemático soviético cuya obra transformó la teoría de estructuras y la física matemática. Nacido en una familia humilde en Polotsk, tuvo que compaginar desde joven sus estudios con distintos trabajos para poder subsistir. Su vida estuvo marcada tanto por la represión política —incluidos periodos en prisión— como por una intensa labor científica y docente. Galiorkin es recordado principalmente por el desarrollo del célebre Método de Galerkin, una técnica de aproximación para resolver ecuaciones diferenciales que hoy es pilar en disciplinas como la mecánica, la termodinámica o el electromagnetismo. Su legado sigue siendo fundamental en la ingeniería moderna.
Borís Grigórievich Galérkin (en ruso, Бори́с Григо́рьевич Галёркин, apellido a veces transliterado como Galerkin o Galyorkin) nació el 20 de febrero de 1871. Pólatsk, Gobernación de Vítebsk, Imperio ruso; actual Bielorrusia —falleció el 12 de julio de 1945 en Leningrado, URSS— fue un ingeniero civil y matemático soviético, célebre por formular el método de Galerkin, una técnica numérica fundamental para la resolución aproximada de ecuaciones diferenciales parciales.
Nació en el seno de una familia judía pobre. Sus padres, Girsh-Shleym (Hirsh-Shleym) Galerkin y Perla Basia Galerkina, poseían una casa en Polotsk, pero sus oficios artesanales apenas generaban ingresos. Desde los doce años trabajó como calígrafo en los tribunales para ayudar a la economía familiar.
Cursó sus estudios en Polotsk y, tras superar los exámenes de acceso en Minsk en 1893, obtuvo la oportunidad de continuar su formación superior. Ese mismo año ingresó en el Instituto Tecnológico Estatal de San Petersburgo, donde estudió matemáticas e ingeniería. Para mantenerse, dio clases particulares y, desde 1896, trabajó como diseñador técnico. Durante su etapa universitaria, se vinculó a los socialdemócratas rusos, lo que marcó el rumbo de su vida. En 1899, poco antes de graduarse, fue expulsado del instituto por sus actividades políticas, pero logró graduarse como estudiante externo ese mismo año.
Comenzó su carrera profesional en la fábrica de locomotoras de Járkov en 1899 y, en 1903, se trasladó a San Petersburgo para asumir el cargo de ingeniero jefe en la Northern Mechanical and Boiler Plant. Al mismo tiempo, continuó su activismo en el partido socialdemócrata y fundó un sindicato obrero. Fue encarcelado brevemente en 1905 y, en 1907, condenado a dieciocho meses de prisión. En la cárcel escribió su primer tratado científico: un manual sobre análisis estructural. En 1908, tras salir de prisión, decidió apartarse de la militancia y dedicarse a la ingeniería civil y a la ciencia.
En 1909, comenzó a enseñar mecánica estructural en el Instituto Tecnológico de San Petersburgo, bajo la influencia de V. L. Kirpichov, y en contacto con científicos como Iván Bubnov, A. N. Krylov, I. V. Meshcherskiy y S. P. Timoshenko. Ese mismo año, publicó su primer trabajo sobre pandeo longitudinal, inspirado en Euler y aplicable al diseño de puentes y estructuras de edificios.
Entre 1909 y 1914 viajó por Alemania, Austria, Suiza, Bélgica y Suecia para estudiar obras y sistemas constructivos modernos. En 1911, enseñó también en el Instituto Politécnico Femenino y, en 1913, diseñó la estructura metálica de una central termoeléctrica en San Petersburgo, considerada la primera gran edificación rusa con armazón metálico sometido a cargas pesadas, lo que supuso un hito en Europa.
En 1915 presentó el trabajo que le daría fama mundial: el método de aproximación para ecuaciones diferenciales, que aplicó inicialmente a entramados y placas. Aunque I. G. Bubnov había propuesto un enfoque similar en 1911, la formulación de Galerkin fue más general, ya que desvinculó el procedimiento de la resolución variacional directa e interpretó el método como una técnica universal aplicable a problemas de mecánica y física matemática.
En la actualidad, el método de Galerkin (también conocido como método de Bubnov-Galerkin) constituye la base de numerosos algoritmos en mecánica, termodinámica, electromagnetismo, hidrodinámica y otras disciplinas, y se considera uno de los antecedentes directos del método de elementos finitos.
En 1919 obtuvo una plaza de profesor en el Instituto Politécnico Femenino y, en 1920, ganó por concurso la cátedra de Mecánica Estructural en el Instituto Tecnológico de San Petersburgo. Al año siguiente, también impartía docencia en la Universidad de Leningrado y en el Instituto de Ingenieros de Comunicaciones de dicha ciudad. Ese mismo año, la Sociedad Matemática de San Petersburgo reabrió sus puertas tras la revolución con el nombre de Sociedad Físico-Matemática de Petrogrado. Galiorkin desempeñó un papel central en ella junto a científicos como V. A. Steklov, Serguéi Bernstein y Alexandr Friedmann.
En 1923, fue elegido decano de la Facultad de Ingeniería Civil del Politécnico, donde defendió la independencia académica frente a las presiones políticas y creó los primeros laboratorios de la facultad. En 1924 realizó su último viaje internacional, al Congreso de Mecánica Aplicada en los Países Bajos. En 1928 fue elegido miembro correspondiente de la Academia de Ciencias de la URSS, y en 1935, miembro de pleno derecho. Durante las décadas de 1920 y 1930, fue consultor en las principales obras industriales e hidráulicas de la URSS. Entre sus aportaciones, destacan sus estudios sobre la presa y la central hidroeléctrica del Dniéper (1929), en los que analizó las tensiones en los muros de la presa de perfil trapezoidal. En 1933 publicó Uprugie tonkie plity (Placas delgadas elásticas) y, en 1937, su monografía sobre membranas. Además, entre 1934 y 1945 investigó la teoría de recubrimientos o carcazas, que tenía aplicaciones industriales novedosas. Recibió dos doctorados en técnicas y matemáticas (1934) y el título de Trabajador Eminente en Ciencia e Ingeniería. Ese mismo año fue nombrado director del Instituto de Mecánica de la Academia de Ciencias, cargo que mantuvo hasta su fallecimiento.
En 1939, con la reorganización de la Universidad de Ingeniería Militar (VITU), fue nombrado director del Departamento de Mecánica Estructural y ascendido a teniente general de ingeniería, a pesar de no haber servido en el ejército. Durante la Segunda Guerra Mundial, dirigió la Comisión de Construcciones Defensivas de Leningrado y, tras ser evacuado a Moscú, trabajó en la Comisión de Ingeniería Militar de la Academia de Ciencias. En 1942 recibió el Premio Stalin por sus contribuciones.
Murió en Moscú el 12 de julio de 1945, poco después de la victoria soviética, y fue enterrado en el cementerio Volkovo de San Petersburgo.
El nombre de Galiorkin está ligado al método de Galerkin, uno de los pilares del análisis numérico moderno y del cálculo estructural. Sus investigaciones sobre entramados, placas, membranas y recubrimientos tuvieron un enorme impacto teórico y práctico, especialmente en presas hidroeléctricas, estructuras metálicas y en la consolidación de la ingeniería soviética.
En 1998, el asteroide (22611) Galerkin fue nombrado en su honor, consagrando el legado de uno de los ingenieros y matemáticos más influyentes del siglo XX.
La trayectoria de Borís Grigórievich Galerkin demuestra que la perseverancia y la pasión científica pueden superar las adversidades económicas y políticas. A lo largo de su vida, compaginó la enseñanza, la investigación y la práctica ingenieril, dejando una profunda huella en la ciencia y la técnica del siglo XX. El método de Galerkin y sus estudios sobre estructuras, placas y cáscaras elásticas no solo resolvieron problemas de su tiempo, sino que también sentaron las bases de los métodos numéricos que hoy en día utilizan ingenieros y científicos de todo el mundo. Su legado sigue vivo en cada cálculo estructural, simulación computacional y diseño que recurre a estas herramientas fundamentales.
En este audio podemos conocer más de su biografía.
Joseph William Bazalgette (1819 – 1891). https://en.wikipedia.org/wiki/Joseph_Bazalgette
Sir Joseph William Bazalgette (Enfield, Middlesex, actualmente Londres, 28 de marzo de 1819 – Wimbledon, Surrey, actualmente Merton, Londres, 15 de marzo de 1891) fue uno de los ingenieros civiles más importantes del Reino Unido. Es conocido principalmente por haber diseñado el sistema moderno de alcantarillado de Londres, que sigue en funcionamiento más de 150 años después, y por haber transformado el paisaje urbano de la ciudad tanto por encima como por debajo de la superficie.
Al igual que los Brunel, familia con la que compartió época y amistad, los Bazalgette eran inmigrantes franceses establecidos en Inglaterra a finales del siglo XVIII. Su abuelo, Jean Louis Bazalgette, provenía del sur de Francia y llegó a Londres en 1784. Allí se estableció como sastre y financiero, y llegó a ser sastre principal del príncipe de Gales, futuro Jorge IV. Su hijo, Joseph William Bazalgette, oficial retirado de la Marina Real británica, se casó con Theresa Philo Pilton y tuvieron un hijo varón, Joseph William. En 1827, la familia se mudó a Hamilton Terrace, en St John’s Wood (Londres), donde Joseph creció y desarrolló su temprano interés por la ingeniería.
Bazalgette comenzó su carrera como aprendiz del reconocido ingeniero Sir John Macneill, con quien trabajó en proyectos ferroviarios y de drenaje de tierras, algunos de ellos en Irlanda del Norte. En 1842, se estableció como ingeniero consultor en Westminster y participó en obras como el canal del valle del Tame, en Birmingham, y estudios ferroviarios. Durante la década de 1840, también participó en la mejora del sistema de alcantarillado de Londres, aunque estas soluciones resultaron insuficientes para hacer frente a los crecientes problemas sanitarios.
En 1847, debido al exceso de trabajo, sufrió una crisis de salud que lo obligó a retirarse temporalmente al campo. Tras recuperarse, regresó a Londres y, en agosto de 1849, fue nombrado asistente del inspector de la Segunda Comisión Metropolitana de Alcantarillado, con un salario de 250 libras anuales. En 1852, ascendió a ingeniero jefe.
El 25 de enero de 1855 fue nombrado ingeniero jefe de la recién creada Metropolitan Board of Works (MBW), con un salario de 1000 libras al año. Ocupó este cargo durante más de 30 años, hasta 1889. Fue recomendado para este puesto nada menos que por Isambard Kingdom Brunel, quien lo conocía bien y lo respaldó firmemente. Ese mismo año, Bazalgette se casó con Maria Keogh, de Wexford (Irlanda), con quien tendría diez hijos.
En la década de 1850, la ciudad de Londres sufría un grave problema: las aguas residuales se vertían directamente al río Támesis, lo que provocaba brotes de cólera y unas condiciones insalubres. La situación llegó a un punto crítico en 1858, durante el episodio conocido como el «Gran Hedor», cuando el intenso calor veraniego hizo insoportable el olor del río. El Parlamento estuvo a punto de trasladarse a Oxford o Henley y, presionado por la emergencia, aprobó una ley que otorgaba a Bazalgette el control total para desarrollar una solución adecuada.
Así comenzó su obra maestra: el sistema moderno de alcantarillado de Londres. Bazalgette y su equipo lo construyeron por etapas hasta principios de la década de 1870. Al diseñar las tuberías, estimó generosamente la cantidad diaria de residuos por persona y la multiplicó por la población; luego, la duplicó, anticipándose al crecimiento urbano. Gracias a su previsión, los conductos no colapsaron en la década de 1960, como habría ocurrido con cálculos más conservadores.
El sistema incluía 83 millas (134 km) de alcantarillas interceptoras y unas 1100 millas (1770 km) de red secundaria. Para transportar las aguas residuales río abajo fue necesario construir un enorme conducto paralelo al Támesis. Así surgieron los diques de contención (embankments): el Albert Embankment (1864-1870), el Victoria Embankment (1864-1870) y el Chelsea Embankment (1871-1874), con los que se recuperaron 52 acres de terreno. Estas obras también permitieron el trazado de la línea District del metro y la creación de los Embankment Gardens. El sistema fue inaugurado en 1865 por el príncipe de Gales y finalizado en 1875.
Para mover las enormes cantidades de aguas residuales, Bazalgette supervisó la construcción de cuatro estaciones de bombeo de vapor: Deptford (1865), Crossness (1865), Abbey Mills (1868) y Western, en Chelsea (1875). Aunque ya no están en uso, estas estaciones aún existen y destacan por su poco común arquitectura. También participó en la estación de Pimlico.
El sistema redujo drásticamente el cólera y mejoró enormemente la salud pública. Bazalgette se consideraba ante todo un ingeniero sanitario y su contribución fue crucial para la transformación higiénica de Londres.
Mientras desarrollaba esta gigantesca red, no descuidó sus funciones diarias en el MBW, que incluían la supervisión de múltiples informes y proyectos. También lideró la creación de nuevas vías urbanas como Southwark Street (1864), Queen Victoria Street (1871), Northumberland Avenue (1876), Shaftesbury Avenue (1886) y Charing Cross Road, lo que mejoró el tráfico en una ciudad cuyas calles ya eran inadecuadas para finales del siglo XIX.
Monumento a Sir Joseph Bazalgette. https://londonhistorians.wordpress.com/
En 1877, todos los puentes de Londres pasaron a ser de propiedad pública y se eliminaron los peajes. Bazalgette los inspeccionó y, al encontrar tres de ellos en mal estado, los reconstruyó según sus propios diseños: el puente de Battersea (1886-1890), el puente colgante de Hammersmith (1887) y el puente de Putney (1882-1886). Todos siguen en uso, aunque el de Hammersmith ha sufrido restricciones recientemente. Putney es, sorprendentemente, el puente con más tráfico de Londres. También estuvo detrás de la creación del Woolwich Free Ferry (1889), un servicio gratuito de transbordadores propulsados por vapor.
Su prestigio fue tal que lo solicitaron como consultor en otras ciudades británicas y extranjeras, como Pest (Hungría) y Odesa (Rusia). En reconocimiento a su labor, fue nombrado comendador de la Orden del Baño en 1871 y caballero en 1874. En 1889, tras la disolución del MBW y su reemplazo por el London County Council, recibió una pensión de 1333 libras, 6 chelines y 8 peniques.
Fue miembro de la Institution of Civil Engineers (ICE) desde 1846, vicepresidente en 1879 y presidente en 1884. También perteneció a la Smeatonian Society, de la que fue presidente en 1876. Su trabajo sobre alcantarillado le valió la Medalla Telford en 1865. En sus discursos institucionales, defendió la ingeniería como herramienta de salud pública para ciudades de todo el mundo.
Tras jubilarse, vivió en Wimbledon, donde montaba a caballo y cuidaba un terreno con vacas. Falleció en su casa de Arthur Road el 15 de marzo de 1891, a los 72 años. Fue enterrado en la iglesia de St Mary, en Wimbledon.
Su legado perdura de múltiples formas: una placa azul del Greater London Council en su antigua casa, un monumento en el Victoria Embankment y, en 2020, el anuncio del Bazalgette Embankment como nuevo espacio público a orillas del Támesis. El Dulwich College otorga una beca en su nombre para estudiantes destacados en ciencia, matemáticas o tecnología.
En 2018, el ICE lo incluyó en su campaña «Superhéroes invisibles» con el apodo de Captain Sanitation, en reconocimiento a su impacto en la salud y la sostenibilidad. Entre sus descendientes se encuentran el piloto Will Bazalgette, el director de televisión Edward Bazalgette y el productor Sir Peter Bazalgette, creador del programa Big Brother.
Bazalgette fue, sin duda, el gran ingeniero de Londres.
Os dejo algunos vídeos que espero que os resulten interesantes.
Joseph Baermann Strauss (1870-1938). https://magazine.uc.edu/
Joseph Baermann Strauss nació el 9 de enero de 1870 en Cincinnati, Ohio, apenas una década después del fin de la guerra de Secesión estadounidense. Creció en el seno de una familia de artistas de origen judío alemán: su madre era pianista, aunque un accidente frustró su carrera, y su padre, Raphael Strauss, fue pintor y escritor. En ese entorno, Joseph desarrolló desde joven una profunda sensibilidad artística y una pasión por la poesía, con el anhelo inicial de seguir una trayectoria en las artes. Sin embargo, su vida tomaría otro rumbo en el que la ciencia, la ingeniería y la expresión poética acabarían entrelazándose.
Ingresó en la Universidad de Cincinnati para estudiar ingeniería civil, donde destacó tanto por sus cualidades intelectuales como por su liderazgo. Fue elegido delegado de su clase y también poeta oficial. Durante su etapa universitaria, formó parte de la fraternidad Sigma Alpha Epsilon y escribió un extenso poema titulado Reveries, que leyó como discurso de graduación en 1892. En él presentó una tesis ambiciosa: un proyecto utópico para construir un ferrocarril que conectara Alaska con Rusia a través del estrecho de Bering. Aunque su propuesta sorprendió a la audiencia, su sinceridad, visión y entusiasmo le valieron el respeto del público.
Una experiencia marcó profundamente su orientación profesional. Durante una enfermedad, fue hospitalizado en la enfermería universitaria y, desde la cama, podía contemplar el puente colgante John A. Roebling, que cruzaba el río Ohio entre Cincinnati y Covington. Este puente, el más largo del mundo entre 1866 y 1883, le causó una impresión duradera y despertó en él una profunda fascinación por la ingeniería de puentes que definiría el resto de su vida.
Tras graduarse, Strauss comenzó su carrera profesional como delineante en la empresa New Jersey Steel and Iron Company y, posteriormente, en la compañía Lassig Bridge and Iron Works, en Chicago. En 1899, fue contratado como asistente principal del reconocido ingeniero Ralph Modjeski. Durante su etapa en la empresa, Strauss comenzó a especializarse en puentes basculantes, también conocidos como drawbridges. Se dio cuenta de que los contrapesos de hierro que se utilizaban en estas estructuras resultaban caros y pesados, por lo que propuso reemplazarlos por contrapesos de hormigón, que eran más económicos y eficientes. Su sugerencia fue rechazada, por lo que abandonó la empresa y, en 1904, fundó su propia compañía: la Strauss Bascule Bridge Company of Chicago, que posteriormente abrió también oficinas en San Francisco.
Durante las décadas siguientes, Strauss se convirtió en un innovador y referente nacional en el diseño de puentes móviles. Entre sus obras más representativas se encuentra el puente basculante del ferrocarril HB&T sobre el Buffalo Bayou de Houston, diseñado en 1912 y que aún se encuentra parcialmente operativo. También diseñó el puente basculante Cherry Street Strauss Trunnion en Toronto, el puente Skansen en Noruega, el puente Burnside en Portland (Oregón) y el puente Lewis y Clark sobre el río Columbia, que conecta Longview (Washington) con Rainier (Oregón). A lo largo de su carrera, participó en la construcción de más de cuatrocientos puentes basculantes en América del Norte y Europa, consolidándose como el máximo exponente de este tipo de estructuras.
El mayor desafío de su vida llegó en 1916, cuando el ingeniero municipal de San Francisco publicó un artículo en el que afirmaba que no sería posible construir un puente sobre el Golden Gate —el estrecho que conecta la bahía de San Francisco con el océano Pacífico— por menos de 100 millones de dólares. Strauss respondió que él podía hacerlo por 17 millones. Así comenzó una larga cruzada para hacer realidad lo que entonces parecía imposible. Durante más de diez años, Strauss trabajó sin descanso para convencer a ciudadanos, políticos, al ejército, a la marina y a los inversores de que el puente era viable. Se enfrentó a una fuerte oposición por parte de compañías de ferris, ecologistas, administraciones locales e incluso otros ingenieros.
En noviembre de 1930, ya en plena Gran Depresión, los votantes aprobaron una emisión de bonos que dio luz verde al proyecto. La obra comenzó en enero de 1933, con un presupuesto final de 35 millones de dólares, 13 millones menos de lo estimado inicialmente, y se finalizó antes de lo previsto. Aunque Strauss había propuesto inicialmente un diseño híbrido de suspensión y voladizo, finalmente optó por un diseño colgante clásico, con un tramo principal de 1280 metros, lo que lo convirtió en el puente colgante más largo del mundo hasta la década de 1960.
Strauss supervisó personalmente gran parte de la construcción. En homenaje a su alma mater, colocó un ladrillo del edificio McMicken de la Universidad de Cincinnati en el anclaje sur del puente. También introdujo un elemento innovador en materia de seguridad: una red de protección bajo el tablero que salvó la vida de 19 trabajadores, una cifra significativa para la época, lo que supuso una medida pionera en obras civiles de gran escala.
Monumento a Strauss en San Francisco (marzo de 2010). https://es.wikipedia.org/wiki/Joseph_Strauss_(ingeniero)
Sin embargo, el proceso no estuvo exento de conflictos. Aunque Strauss fue la cara visible del proyecto, el diseño estructural detallado fue obra de los ingenieros Charles Alton Ellis y Leon Moissieff. Strauss, empeñado en recibir todo el reconocimiento, minimizó las contribuciones de Ellis, que fue excluido de los créditos en la ceremonia inaugural de 1937. Esta omisión se corrigió finalmente en 2012, cuando se colocó una placa conmemorativa en su honor junto al puente.
Durante los años de construcción, Strauss empezó a mostrar signos de deterioro físico y emocional. Estuvo ausente durante más de seis meses, lo que generó rumores sobre una crisis nerviosa. En ese periodo se divorció de su mujer y se casó con una joven cantante muchos años menor que él. Tras finalizar el puente, agotado, se retiró a Arizona para recuperarse.
El puente Golden Gate se inauguró oficialmente el 27 de mayo de 1937. Strauss celebró el acontecimiento escribiendo y leyendo su poema The Mighty Task is Done, un homenaje lírico a la culminación de su obra más ambiciosa. Este poema supuso su despedida de la ingeniería y también el cierre simbólico de su vida profesional. Menos de un año después, el 16 de mayo de 1938, Strauss falleció en Los Ángeles a causa de un derrame cerebral. Tenía 68 años.
En 1941, su viuda financió la construcción de una estatua en su honor ubicada en el extremo sur del puente, en el lado de San Francisco. La inscripción reza: «Joseph B. Strauss, 1870-1938. El hombre que construyó el puente». Aunque su figura ha sido objeto de controversia, su contribución a la ingeniería es indiscutible. Además de su legado técnico, dejó una notable obra poética, que incluye el poema «Las secuoyas», inspirado en los árboles monumentales de California, y que aún hoy se vende como recuerdo en los parques naturales.
Joseph B. Strauss fue un ingeniero y poeta, un soñador meticuloso que cruzó el puente entre el arte y la técnica. Su vida demuestra que la grandeza de la ingeniería no solo se mide en acero y cemento, sino también en visión, valor y sensibilidad humana. El Golden Gate, con su silueta roja suspendida sobre el océano, sigue siendo el mejor poema que pudo haber escrito.
Pero aquí os dejo la pequeña entrevista que me hicieron sobre el Golden Gate.