Introducción a los equipos de compactación mecánica

Figura 1. https://www.noticiasmaquinaria.com/nuevos-modelos-de-la-serie-de-rodillos-tandem-de-hamm-en-conexpo/

Existe una amplia variedad de equipos capaces de compactar, pero la naturaleza del terreno y su humedad condicionarán la máquina y método empleado. La elección también depende de la función que desempeñe el relleno compactado.

La compactación en obra se basa en hacer circular cargas elevadas sobre capas de suelo el número de veces necesario para alcanzar la densidad especificada. Los esfuerzos transmitidos son máximos bajo la aplicación de la carga y decrecen con la profundidad. Los medios mecánicos usados para este menester combinan, en general, cuatro esfuerzos elementales: vertical estático, de amasado, de impacto y vibratorio.

  • El esfuerzo estático vertical produce fundamentalmente tensiones verticales que comprimen el suelo.
  • El esfuerzo de amasado provoca tensiones en al menos dos direcciones diferentes.
  • El esfuerzo de impacto alcanza mayor profundidad que el estático, al propagar una onda de presión hacia abajo.
  • El esfuerzo vibratorio supone una sucesión rápida de impactos, reduciendo el rozamiento interno entre las partículas y favoreciendo la densificación.

El tipo de esfuerzo aplicado influye en la estructura adoptada por las partículas del suelo. Estas se encontrarán menos “floculadas”, es decir, más orientadas y ordenadas, en orden creciente según sea el esfuerzo estático, vibratorio, de impacto y de amasado. La orientación de las partículas aumenta con las deformaciones de corte a que ha sido sometido el terreno, y éste será más resistente si la energía de compactación se utilizó en disminuir huecos y no en desarrollar deformaciones de corte.

La norma UNE-EN ISO 6165:2006 define al compactador como la “máquina autopropulsada o remolcada sobre ruedas, rulo o masa diseñada para aumentar la densidad de los materiales por: peso estático, impacto, vibración, amasado (presión dinámica) o combinación de estos efectos”.

Figura 2. http://www.wikivia.org/wikivia/index.php?title=Equipos_de_compactaci%C3%B3n

Estos equipos, que junto a las motoniveladoras se pueden considerar como máquinas de acabado de movimiento de tierras, se emplean para otros materiales tales como aglomerados asfálticos, grava-cemento, hormigón seco u otros.

Los equipos de compactación se pueden clasificar de varias formas. Atendiendo al modo en que se trasladan, se dividen en:

  • Compactadores remolcados.
  • Compactadores de conducción manual.
  • Compactadores autopropulsados.

Atendiendo al principio básico de trabajo, estos equipos se clasifican en:

  • Apisonadoras estáticas.
  • Rodillos vibratorios.
  • Compactadores de impactos.

A su vez, los compactadores pueden utilizar como herramienta de trabajo, en diversas combinaciones:

  • Rodillo liso.
  • Rodillo de patas apisonadoras o con tacos.
  • Ruedas neumáticas.
  • Bandeja vibrante.
  • Martinetes.
  • Pisones.

Atendiendo a su arquitectura, estos equipos pueden ser:

  • Tipo triciclo.
  • Tipo tándem.
  • De chasis articulado.
  • Monocilíndrico.
  • Mixto.

De esta forma podemos tener un rodillo autopropulsado vibratorio articulado con rodillos lisos, o bien un compactador autopropulsado estático tipo tándem de ruedas neumáticas. Las combinaciones son variadas.

Os dejo un vídeo explicativo que os he preparado explicando brevemente estas ideas básicas.

Otros vídeos explicativos son los siguientes:

 

https://www.youtube.com/watch?v=I7bH3PVbKE4

Referencias:

ABECASIS, J. y ROCCI, S. (1987). Sistematización de los medios de compactación y su control. Vol. 19 Tecnología carreteras MOPU. Ed. Secretaría General Técnica MOPU. Madrid, diciembre.

ROJO, J. (1988): Teoría y práctica de la compactación. (I) Suelos. Ed. Dynapac. Impresión Sanmartín. Madrid.

YEPES, V. (1995). Equipos y métodos de compactación. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-797. 102 pp. Depósito Legal: V-1639-1995.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5. Ref. 402.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Cursos:

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Compactador monocilíndrico vibratorio remolcado de patas apisonadoras

Figura 1. Rodillo de tiro pata de cabra vibrante. https://www.facebook.com/maquinariaescobal/photos/pcb.1645756895554174/1645756845554179

Son de características similares a los lisos en cuanto a dimensiones, peso y vibración, montándose incluso en el mismo bastidor. Las formas de las patas son distintas según los modelos. Se utilizan fundamentalmente en arcillas, limos arcillosos, arcilla limosa y grava con aglutinantes arcillosos, es decir, suelos cohesivos y muy cohesivos, especialmente en terrenos con humedad excesiva. No obstante, este tipo de compactador está casi en desuso, fundamentalmente por su pequeña velocidad de trabajo (2 km/h) y el gran número de pasadas (6-8 como mínimo).

Figura 2. Rodillo de tiro pata de cabra vibrante. https://www.facebook.com/maquinariaescobal/photos/pcb.1645756895554174/1645756838887513

Os dejo a continuación un vídeo explicativo de este compactador remolcado.

Referencias:

ABECASIS, J. y ROCCI, S. (1987). Sistematización de los medios de compactación y su control. Vol. 19 Tecnología carreteras MOPU. Ed. Secretaría General Técnica MOPU. Madrid, diciembre.

ROJO, J. (1988): Teoría y práctica de la compactación. (I) Suelos. Ed. Dynapac. Impresión Sanmartín. Madrid.

YEPES, V. (1995). Equipos y métodos de compactación. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-797. 102 pp. Depósito Legal: V-1639-1995.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Cursos:

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Compactador monocilíndrico vibratorio remolcado de rodillo liso

Consisten en un bastidor en forma de marco sobre el que se apoya el cilindro mediante unos amortiguadores y donde se sitúa también el motor que acciona las vibraciones. Ahora bien, algunos modelos toman la energía vibrante del tractor remolcador para evitar que la vibración perjudique al motor situado sobre el rodillo. Son máquinas aún utilizadas, que precisan de un tractor, difíciles de maniobrar, con grandes radios de giro y solo permiten el trabajo en un sólo sentido.

Figura 1. Compactador remolcado vibrante de rodillo liso Bomag BW6.  https://exarmyuk.files.wordpress.com/2015/09/dsc03804-20150908-153057.jpg

Se puede estimar el esfuerzo necesario en el gancho del tractor T como:

donde:

P = Peso del rodillo remolcado en kg.

% = Pendiente a superar por el rodillo.

e = Espesor de la tongada a compactar en cm.

Sus pesos oscilan entre las 3 y 15 t, con anchura de compactación de unos 2,00 m y diámetro de cilindro de hasta 1,80 m. Son normales frecuencias entre 25 y 30 Hz y amplitudes nominales del orden de los 2 mm. Su velocidad de trabajo se sitúa entre 2,0 y 5,0 km/h.

Este tipo de rodillo se utiliza cada vez menos, salvo los muy pesados en pedraplenes. Tratándose de suelos, las tongadas óptimas para un rodillo de 3-4 t es de 20 a 30 cm. Los rodillos de 10-12 t pueden compactar tongadas de hasta 50-60 cm. En el caso de pedraplenes, se llegan a utilizar los de mayor tonelaje sobre tongadas de 60-80 cm, que en ocasiones pueden llegar hasta 100-150 cm, aunque en este caso la efectividad es más bien escasa.

Os dejo a continuación algunos vídeos del funcionamiento de este compactador.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5. Ref. 402.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Cursos:

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Condiciones de seguridad de los compactadores

Los equipos de compactación presentan un elevado índice de accidentabilidad, materializado en atropellos, colisiones y vuelcos, debido fundamentalmente a la sencillez de manejo, monotonía del trabajo, continuo desplazamiento sobre el mismo circuito y posición relativamente elevada del centro de gravedad de la máquina, lo que les hace muy inestables al tratar de salvar pequeños desniveles.

Figura 1. Peligro por desnivel en compactación. https://www.equipmentworld.com/workforce/safety/article/14953939/how-to-avoid-deadly-roller-compactor-rollovers-on-jobsites-with-slopes-or-embankments

Como riesgos directos podemos citar las caídas de los operarios de las máquinas (por ejemplo, a una zanja), la caída del compactador sobre los miembros inferiores, causando aplastamiento, golpes o cortes y la quemadura por contacto con partes calientes de la máquina. También se pueden recibir golpes o daño por los fragmentos que se disparan al compactar, irritación de los ojos o de las vías respiratorias por el polvo, sordera por ruido a niveles altos, incendios y explosiones por averías y defectos de la máquina, golpes y atropellos por vehículos dentro de la obra o durante trabajos en vías abiertas y accidentes por falta de dirección o señalización de las maniobras.

Figura 2. Accidente de un compactador. https://reinadelaselva.pe/noticias/6511/rodillo-compactador-casi-ocasiona-accidente-en-pedro-ruiz

Normalmente los riesgos que surgen al manipular los compactadores tienen su origen en la falta de dispositivos de protección de los equipos, no seguir el manual de instrucciones del aparato y en las distracciones de los trabajadores.

Como normas generales, aplicables a cualquier tipo de máquina, antes de arrancar se comprobarán los niveles y controles, que no existen personas en las cercanías, que la máquina tiene extintor y desconectador de batería para combatir incendios, se eliminará el polvo del parabrisas, se organizará el tráfico, se repararán las pistas, se prohibirá el transporte de personas y se aumentará al máximo la precaución en las maniobras de marcha atrás. Al finalizar el trabajo, se descenderá el equipo al suelo, se parará el motor y se estacionará la máquina en el lugar adecuado.

Como normas particulares para evitar las situaciones de riesgo se recomienda la rotación del personal, controlando los períodos de permanencia en su manejo, emplear personal cualificado, dotar al conductor de medios de protección personal y controlar el mantenimiento de la maquinaria.

Figura 3. Accidente provocado al volcar un compactador. http://radiolavozbaguagrande.blogspot.com/2012/06/rodillo-compactador-se-voltea-y-chofer.html

En este último aspecto, referido al mantenimiento, se pueden dar las siguientes recomendaciones según el tipo de máquina:

Apisonadores:

  • Limpiar el filtro de aire una vez al día y examinarlo por si tiene escapes.
  • Procurar que no entre aire sin filtrar en el motor ya que perdería compresión y sufriría un daño irreparable.
  • Limpiar las lumbreras e inspeccionar el silenciador.
  • Examinar la mezcla de combustible y aceite.
  • Inspeccionar periódicamente el filtro del combustible.
  • Apretar los pernos de arado en la zapata e inspeccionar todas las tuercas que sujetan el silenciador.
  • Utilizar personal cualificado.

Placas vibrantes:

  • Limpiar el filtro de aire diariamente.
  • Examinar y cambiar el aceite del motor según las recomendaciones dadas para cada modelo.
  • Examinar y cambiar el aceite del excitador.
  • Examinar la tensión de la correa.
  • Levantar las máquinas con grúas.
  • Mantener la base de la plancha limpia y libre de tierra adherida.

Rodillo:

  • Examinar y cambiar el aceite del motor según las recomendaciones dadas para cada modelo.
Figura 4. Accidente de pequeño rodillo. https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29CR.1943-5495.0000144

Os dejo algunos vídeos sobre seguridad en los compactadores.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5. Ref. 402.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Cursos:

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Introducción a los compactadores vibratorios

Figura 1. Compactadores de Suelos Vibratorios de la serie GC de Cat®. Fuente: https://www.cat.com/es_MX/campaigns/npi/Compactadores-de-Suelo-Vibratorios-de-la-SerieGC.html

Son máquinas caracterizadas por transmitir el esfuerzo de compactación al terreno mediante la vibración de una masa, que puede ser un cilindro o bien un bloque aislado. La primera máquina de este tipo se empleó en Alemania en los años 30, siendo una bandeja vibratoria autopropulsada.

Estos equipos combinan los esfuerzos estáticos con los dinámicos. Eliminan en gran medida la fricción interna entre las partículas del suelo y mejoran la compactación. El resultado es mejor en terrenos granulares que en cohesivos. Otro efecto es el despegue del rodillo del suelo debido al impacto ejercido por el mismo a causa de la vibración. Todo ello ha propiciado mayores rendimientos respecto a la compactación estática, pudiéndose compactar tongadas de mayor espesor. La acción de un rodillo vibrante equivale a la de otro estático de mucho mayor peso, dependiendo del material a compactar. Como idea orientativa esta equivalencia es de 12 en gravas y escollera, y de 8 en suelos cohesivos.

El número de impulsos ejercidos por unidad de tiempo se nomina frecuencia y se expresa en ciclos por segundo. La distancia máxima que recorre la masa vibrante desde su posición de equilibrio se nombra amplitud.

La energía que el rodillo transmite al suelo depende, no solo de su masa, sino de la amplitud alcanzada por la oscilación. Esta amplitud está relacionada con la frecuencia, creciendo ambas hasta llegar a la frecuencia natural o de resonancia del sistema suelo-rodillo. Posteriormente disminuye asintóticamente la amplitud hasta el límite de la nominal del rodillo.

Figura 2. Frecuencia-amplitud. A0 : Amplitud nominal del rodillo, fr : Frecuencia de resonancia

Empleando el mismo compactador, la frecuencia natural aumenta a medida que se incrementa la densidad y disminuye la compresibilidad del terreno. Utilizan este fenómeno ciertas máquinas para evaluar el grado de compactación. Por ello a medida que se dan pases del cilindro sobre el relleno varía la frecuencia de resonancia y, por consiguiente, para seguir compactando en condiciones óptimas se tendrá que modificar en cada pasada la frecuencia de vibración, incrementándola. El asiento aumenta con rapidez al acercarse a la frecuencia natural, siendo este superior al producido por una carga estática de la misma magnitud que la fuerza vibratoria. Se llama zona crítica de frecuencias aquella donde se produce el mayor asiento y se extiende normalmente entre 0,5 y 1,5 veces la frecuencia natural.

La fuerza total aplicada sobre el suelo depende de la componente vertical de la fuerza centrífuga de la masa excéntrica, que varía sinusoidalmente, y del peso del cilindro. Puede “despegar” el rodillo del suelo en determinadas circunstancias y añadirse una acción de “impacto” sobre el terreno, consiguiéndose cierto efecto en “profundidad” de la compactación.

La amplitud de la vibración influye en el reparto de densidades en profundidad. De este modo, las amplitudes bajas dan mayores valores en superficie, y las altas en el fondo.

Como regla válida en gran número de casos, se puede decir que los materiales granulares se compactan mejor con frecuencia alta y amplitud reducida, mientras que para los cohesivos es preferible más amplitud y menor frecuencia.

Estas circunstancias implican que, en un rodillo vibrante, se debe:

  1. Utilizar la máxima amplitud posible acorde al tipo de relleno a compactar.
  2. Tener un dispositivo de ajuste de frecuencias, para acercarse a la de resonancia.
  3. Disponer una suspensión elástica en la máquina que debe aislar al menor costo el chasis del elemento vibrador.

Son idóneos en arenas y gravas sin finos, y en terrenos húmedos cohesivos. No son adecuados para limos y arcillas, suelos con un 5% o más de finos, o en suelos secos.

Generalmente el efecto en profundidad con los rodillos vibratorios es mayor del lado húmedo que del seco, y más importante cuanto más arcilloso es el material.

Os dejo algún vídeo de este tipo de maquinaria.

Os dejo también un folleto de la empresa Caterpillar sobre sus compactadores de suelos vibratorios de un solo tambor.

Descargar (PDF, 5.97MB)

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. ISBN: 84-7721-551-0.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5. Ref. 402.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Cursos:

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Compactadores remolcados de ruedas neumáticas. Los supercompactadores

Figura 1. Compactador de neumáticos remolcado. https://www.conquestattachments.com/wobbly-compactors

Los compactadores remolcados de neumáticos no son de uso habitual. Está formando dos ejes de 7 ruedas, 3 delante y 4 detrás. Su peso oscila sobre las 10 t, no superando la presión de inflado las 0,4 MPa.

Un caso especial son los supercompactadores. Consisten en una caja lastrable que puede sobrepasar las 50 t, llegando a las 200 t. Tienen un solo eje con dos o cuatro ruedas de gran tamaño, con una presión de inflado de hasta 1,0 MPa, rellenándose parcialmente de líquido para reducir el peligro de posibles reventones. El sistema de suspensión debe permitir que cada neumático soporte la misma carga, aunque actúen sobre superficies irregulares. Se utilizan en suelos arenosos, gravas y otros ligeramente cohesivos. Son muy robustos y de escaso entretenimiento. Necesitan grandes superficies para ser rentables, por lo que se usan cada vez menos por falta de maniobrabilidad en los tajos, aunque son exigidas por algunas administraciones, especialmente para detectar fallos y recibir obras.

Figura 2. Supercompactador

El PG-3 define en su artículo 304 la prueba con supercompactador. A una velocidad entre 4 y 8 km/h, el supercompactador señala la presencia de zonas inestables, que deben corregirse mediante un escarificado previo y una compactación adicional.

Descargar (PDF, 15KB)

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. ISBN: 84-7721-551-0.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5. Ref. 402.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Compactadores estáticos autopropulsados de ruedas neumáticas

Figura 1. Compactación de suelos con compactador de neumáticos. http://www.corinsa.es/tecnologia/compactacion/compactacion-de-tierras/

Los compactadores de neumáticos normalmente se utilizan en la compactación de mezclas asfálticas, pero también se emplean en la densificación de tierras (Figura 1). En el caso de la compactación de firmes, es importante la suavidad en los arranques y en la inversión de marchas. Estos equipos combinan el efecto estático, con el de amasado, debido a la deformación de los neumáticos en contacto con la superficie. De este modo las partículas ni se rompen ni se aplastan.

Se llama presión de contacto PC al cociente entre la carga por rueda P y el área de contacto del neumático, variable con la deformabilidad del suelo. La diferencia entre considerar rígida o deformable la superficie de apoyo puede dar resultados para la presión de contacto de igual al doble. La variación de PC no es grande, debido a que un aumento de P, también incrementa el área de contacto.

La presión de inflado Pi tiene una influencia superior en la compactación, ya que un aumento de Pi supone una disminución del área de contacto, y por tanto una mayor presión de contacto. Esta presión suele variar entre 0,4 y 0,7 MPa.

La carga por rueda P, influirá sobre todo en la profundidad a la que llegue el esfuerzo de compactación, según podemos comprobar en la Figura 2.

Figura 2. Superposición de bulbos de presión

Para que la compactación sea efectiva no es apropiado que las capas tengan un espesor superior a 1,5 – 2 veces el radio del área de contacto, por lo que suelen ser de 20-40 cm.

A efectos prácticos, se conseguirá la máxima compactación superficial subiendo la presión de inflado, mientras que incrementando la carga por rueda, el área de contacto, o ambas, se aumentará el efecto en profundidad. Tanto si se incrementa la carga por rueda como la presión de inflado, se consigue un peso específico seco máximo más alto, con el correspondiente descenso en el contenido de humedad óptimo.

Los neumáticos con dibujo dotan de mayor adherencia a la máquina y ejercen cierta acción de amasado (Figura 3). Caso de no querer dejar huella, o cuando se descompacten los dos o tres primeros centímetros de la capa, es preferible el neumático liso, tal y como se utiliza para compactar aglomerados asfálticos.

Figura 3. Compactador con neumáticos con dibujo. http://www.corinsa.es/tecnologia/compactacion/compactacion-de-tierras/

Los compactadores de neumáticos se prestan bien a cambios en su carga total y presión de contacto para adaptarlos a cada caso. La velocidad de traslación adecuada es algo mayor que en los compactadores de pata de cabra. Por otro lado, la máxima compactación se consigue en la superficie.

Estos compactadores son especialmente eficaces con los suelos algo cohesivos, y también suelen ser eficientes en rellenos compuestos de limos poco plásticos, comportándose peor en suelos granulares sin cohesión, en concreto los de granulometría uniforme. Tampoco son adecuados en arcillas muy blandas o en suelos de consistencia muy variable.

Se aconseja una presión de inflado máxima compatible con el estado de la superficie del terreno, ya que en caso de estar blando es posible que las ruedas patinen, por lo que se recomienda una menor presión de inflado para aumentar la superficie adherente. En cambio, cuando se exige un buen acabado superficial, puede ser perjudicial una fuerte presión que puede dejar huellas de importancia que no puedan ser borradas en pasadas posteriores de un rodillo.

Otra condición imprescindible sería la del isostaticismo del rodillo (ver Figura 4). Para conseguir una buena homogeneidad del trabajo es preciso que cada rueda transmita al suelo la misma fuerza, cualquiera que sea la desigualdad existente.

Figura 4. Sistema de suspensión isostática

Por consiguiente, un compactador de ruedas neumáticas deberá cumplir las siguientes condiciones:

  • Elevada carga por rueda.
  • Ser isostático.
  • Neumáticos de gran anchura de huella.
  • Disponer de un sistema de tracción que permita un arranque y una parada suave y progresiva.
  • Instalación de inflado de ruedas centralizado.
  • Solapamiento de las ruedas delanteras y traseras, incluso en curvas.

Las características fundamentales de los compactadores de ruedas autopropulsados son las siguientes. Constan de dos ejes, con un total de 7, 9 e incluso 11 ruedas. La anchura de trabajo es de 2,00 m, con modelos que llegan a 2,50 m. El efecto de compactación varía al lastrarlos con agua o arena, y variando la presión de los neumáticos. Se pueden clasificar estos equipos en tres grupos, atendiendo a su carga total y por rueda:

  • Ligeros: hasta 15 toneladas de carga total y 2,5 toneladas por rueda.
  • Medios: hasta 25 y 4 toneladas respectivamente.
  • Pesados: hasta 45 y 6 respectivamente.

La presión de inflado varía entre 0,2 y 0,9 MPa, y puede regularse en marcha. Estas máquinas pueden trasladarse hasta a 30 km/h, aunque su velocidad de trabajo oscila entre 6 y 8 km/h.

Os he preparado un vídeo donde os explico esta máquina. Espero que os guste.

Os dejo varios vídeos explicativos de este compactador.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. ISBN: 84-7721-551-0.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5. Ref. 402.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Dúmper sobre orugas

Figura 1. Dúmper sobre orugas Cat Raupentransporter de 30 t. https://www.youtube.com/watch?v=R2a-Eir2pss

El desplazamiento sobre dos carros de orugas supone, para las máquinas de movimiento de tierras, una mayor adherencia al terreno. Es el caso de terrenos embarrados o de baja capacidad portante, donde es necesaria cierta flotabilidad y adherencia y donde los neumáticos no son útiles. Un caso habitual del uso de las orugas son las palas cargadoras, buldóceres, retroexcavadoras, etc.

Las máquinas de acarreo de tierras, como los dúmperes, también pueden montarse sobre orugas. En la Figura 1 se observa un dúmper de gran tamaño, pero también podemos encontrar este tipo de máquinas en trabajos pequeños, donde su diseño compacto permite desplazarse por terrenos accidentados y bordillos (Figura 2).

Figura 2. Dúmper sobre orugas DT05 de Wacker Neuson, para carga útil de 500 kg. https://www.wackerneuson.es/es/productos/dumpers/dumpers-sobre-orugas/

Os dejo algunos vídeos de este tipo de maquinaria, que espero os sean de utilidad.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

 

Compactador mixto de neumáticos y cilindro vibrante

Figura 1. Compactador mixto Dynapac CC224HF

Los compactadores mixtos de neumáticos y de cilindro vibratorio (“combination rollers“) se usan principalmente en la compactación de firmes asfálticos. No obstante, en obras de tierra presentan la ventaja de combinar la acción profunda del cilindro vibratorio con el sellado superficial producido por el eje trasero formado por 3 o 4 neumáticos. Ambas partes pueden estar articuladas o presentar un bastidor rígido. La tracción suele darse en ambos ejes.

La anchura de compactación suele ser de 1,70 m, con modelos que llegan a 2,30 m. El diámetro del rodillo varía de 1,10 a 1,50 m, repartiéndose el peso en un 40% sobre el cilindro y el resto en las ruedas neumáticas. El peso oscila entre 7 y 16 t. La carga por rueda neumática suele ser de 2 a 3 t, lo que supone una carga lineal unitaria comprendida entre 25 y 30 kp/cm.

Las frecuencias de trabajo oscilan entre 25-40 Hz con amplitudes nominales a elegir, normalmente, entre dos o tres valores inferiores a 1 mm. La velocidad llega a 15 km/h, aunque la de trabajo puede ser de 7 km/h.

Este tipo de compactador mixto puede ser interesante en determinadas obras, pero hay que tener en cuenta que el rendimiento es comparativamente menor que el obtenido por dos máquinas por separado.

En ocasiones (Figura 2), puede ser este compactador híbrido remolcado. Son máquinas de mayor durabilidad, con un bastidor de alta resistencia capaz de lastrar hasta 14 t.

Figura 2. Compactador mixto remolcado. https://www.broons.com/product/combination-roller/

Os paso un vídeo de un compactador mixto de la empresa CASE.

https://www.youtube.com/watch?v=fQ8XSgIlkZE

Referencias:

ABECASIS, J. y ROCCI, S. (1987). Sistematización de los medios de compactación y su control. Vol. 19 Tecnología carreteras MOPU. Ed. Secretaría General Técnica MOPU. Madrid, diciembre.

ROJO, J. (1988): Teoría y práctica de la compactación. (I) Suelos. Ed. Dynapac. Impresión Sanmartín. Madrid.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Sustitución del terreno como técnica de mejora

Figura 1. Mototraílla excavando y transportando material.

La forma más directa de mejorar un terreno de mala calidad es sustituirlo. Sería el caso de suelos blandos, con baja capacidad portante, que presentan deformaciones diferidas importantes o incluso que provoquen roturas parciales en terraplenes. Aparentemente se trata de una solución sencilla en terrenos blandos, pero puede ser problemática desde el punto de vista medioambiental debido a la cantidad de trabajos de excavación y movimiento de tierras necesarios.

El proceso pasa por excavar y retirar el terreno original que presenta una capacidad portante baja, tales como rellenos antrópicos, tierra vegetal, arcillas y limos blandos, arcillas expansivas, suelos colapsables, etc. El material retirado se sustituye por la aportación de otro de mayor calidad que deberá ser compactado. Sin embargo, también es posible aportar terreno sin necesidad de retirarlo previamente cuando se construyen terraplenes, salvo la posible retirada del material que formará el cimiento del terraplén, si éste es inadecuado.

En otras ocasiones, se elimina parte del material y se sustituye por otro de menor peso para reducir la sobrecarga. Es el caso del uso de geoespumas de bloques de poliestireno expandido que se han utilizado en la rehabilitación de infraestructuras y en la construcción de carreteras y terraplenes.

Figura 2. Uso de geoespuma de poliestireno expandido. https://www.epsindustry.org/other-applications/geofoam

Se trata de un método sencillo cuando la profundidad de excavación no supera el entorno de los 3-4 m y se encuentra por encima del nivel freático. En caso contrario, se debe eliminar con maquinaria adecuada, como puede ser una dragalina; después se rellena con escollera para alcanzar cierto grado de compacidad. Otra complicación puede aparecer cuando los suelos son excesivamente blandos, como las turbas, donde a la maquinaria se le dificulta su trabajo.

Las ventajas de este procedimiento es que es aplicable a cualquier tipo de terreno que sea excavable. Además, la mejora se alcanza en un corto periodo de tiempo en comparación con otras técnicas que supongan la consolidación, por ejemplo. Asimismo, la capacidad de carga y los asientos del terreno se pueden controlar fácilmente.

Os dejo a continuación un vídeo de una dragalina extrayendo material.

En este otro vídeo podemos ver la colocación de bloques de poliestireno expandido.

References:

CHU, J.; VARAKSIN, S.; KLOTZ, U.; MENGÉ, P. (2009). Construction Processes. Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering, pp. 3006-3135. IOS Press, doi:10.3233/978-1-60750-031-5-3006

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.