Vehículos de mantenimiento de vía en el Museu de Catalunya. Author: Rafa Salvador
Llamamos «vía férrea» a la parte de la infraestructura ferroviaria formada por el conjunto de elementos que conforman el sitio por el cual se desplazan los trenes. Las vías constituyen el elemento fundamental de la infraestructura ferroviaria y constan, básicamente, de carriles apoyados sobre traviesas que se disponen dentro de una capa de balasto. En la construcción de las vías férreas, la precisión y la velocidad son siempre esenciales. No solo es necesario instalar los raíles, los durmientes y el balasto de forma precisa, sino que también debe llevarse a cabo un mantenimiento y una renovación periódica.
En la actualidad, la construcción de las vías férreas se realiza de forma mecanizada. Os dejo un vídeo donde se pueden ver claramente este tipo de trabajos. Espero que os resulte de interés.
La mezcladora intensiva Eirich reemplazó la mezcladora de artesa anular (1906) y la mezcladora planetaria (1924) y, a lo largo de su continuo desarrollo técnico, se ha convertido en sinónimo de óptima tecnología de mezclado. Las mezcladoras Eirich actuales comienzan a fabricarse en el año 1972 y constan de un plato de mezclado rotatorio en posición inclinada, una rascadora fija para el fondo y la pared, así como un agitador de giro rápido. Las mezcladoras de hasta 3 m³ cuentan con un solo dispositivo de mezclado móvil; en las mezcladoras mayores hay dos o tres agitadores. Con esta mezcladora, el rendimiento y la intensidad de la mezcla pueden ajustarse de manera independiente el uno de la otra, al contrario de lo que sucede con todos los demás sistemas de mezcla.
El principio de mezclado es único y característico: en el recipiente de mezclado, el material se transporta hacia arriba por rozamiento con la pared y cae por gravedad hacia abajo. Gracias a la rascadora de la pared, el material se conduce hasta el agitador de giro rápido. Durante la rotación del recipiente (unos pocos segundos), se voltea el 100 % del material. El agitador puede alcanzar una velocidad perimetral de entre 2 y 40 m/s.
En función del trabajo de mezclado, la mezcladora puede funcionar en contracorriente o en el mismo sentido. De hecho, con hormigones de gran calidad, la mayoría de las veces el recipiente de mezclado y el agitador circulan en la misma dirección, ya que de este modo se puede aplicar la máxima fuerza de cizalla en el material.
La diferencia característica de estas mezcladoras radica en la separación entre el transporte del material y el proceso de mezclado. Esto hace posible variar mucho más la velocidad del dispositivo de mezclado y controlar perfectamente la aplicación de energía en la mezcla.
El tiempo de mezclado, el orden de introducción de los componentes, el porcentaje de llenado de la cuba y la velocidad de rotación de los útiles son factores que van a condicionar la homogeneidad de la mezcla. El consumo de energía de la mezcladora se utiliza generalmente como medida de la calidad del hormigón obtenido.
Referencia:
MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014).Fabricación, transporte y colocación del hormigón.Apuntes de la Universitat Politècnica de València. 189 pp.
Los operadores o maquinistas de las máquinas empleadas en obras públicas constituyen una pieza clave en el funcionamiento de cualquier obra. La complejidad de algunos equipos y la incidencia de la maquinaria en los costes de producción, precisan de especialistas con una formación adecuada, capacidad de trabajar en equipo y con un fuerte sentido común. No en vano, una parte importante de las medidas de seguridad en el trabajo dependen de estos especialistas.
Os dejo un vídeo realizado por Structuralia que nos ofrece un perfil de este tipo de trabajo y algo de historia respecto a sus orígenes. Espero que os guste.
Referencias:
YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia, 158 pp.
Los pilotes CPI-8 o de barrena continua se ejecutan mediante una hélice que se introduce por rotación hasta alcanzar la profundidad prevista.Una vez introducida en el terreno se extrae simultáneamente el hormigonado a través del eje de la propia barrena. Extraída la barrena y rellenado el pilote de hormigón, se introduce la armadura. De este tipo de pilote ya hicimos un post, que os recomiendo visitéis.
En el post de hoy vamos a centrarnos en aspectos relacionados con la seguridad. Para ello os recomiendo la Guía Técnica de Seguridad AETESS de pilotes de barrena continua (enlace) y, además, la siguiente guía técnica audiovisual de la Asociación de Empresas de la Tecnología del Suelo y del Subsuelo (AETESS) donde describen los trabajos de ejecución de pilotes de barrena continua (www.aetess.com Comité de Seguridad de AETESS). Espero que os guste.
Tuneladora de doble escudo. https://www.xeologosdelmundu.org/tuneladora-de-doble-escudo-geologos-del-mundo/
Los denominados dobles escudos son tuneladoras que presentan características tanto del topo como del escudo. Se trata de un escudo telescópico articulado en dos piezas pensado para sostener el terreno al avanzar en la excavación del túnel. Su principal característica es su doble sistema de propulsión independiente, el primero para el escudo y el segundo para el topo.
Se trata de una máquina muy versátil, pues permite excavar tanto la roca dura que los escudos propiamente dichos no podrían perforar, con rendimientos parecidos a los de los topos. Pero además, permite la excavación en terrenos inestables y heterogéneos que los topos no podrían realizar. Por tanto, es la mejor solución para macizos con tramos de tipología variable suelo-roca.
La máquina presenta dos escudos: el delantero y el trasero. El delantero soporta la cabeza de corte, contiene el rodamiento principal, la corona de accionamiento y los sellos interno y externo. El trasero, también llamado escudo de anclaje, incorpora las zapatas de los «grippers» operables a través de ventanas. En su parte posterior incorpora el erector de dovelas y los cilindros de empuje para la propulsión en modo escudo normal.
El movimiento de estas dos partes es independiente, situándose los «grippers» en un hueco abierto entre ambas, por lo que la cabeza puede excavar mientras que en la cola se van montando los anillos de dovelas. Así, los rendimientos alcanzados son mayores que con un escudo simple. Al mismo tiempo que los cilindros de empuje principal impulsan hacia delante el escudo de cabeza y la rueda de corte realiza la excavación, en el escudo trasero se procede al montaje de un nuevo anillo de dovelas de sostenimiento al abrigo del mismo. Este sistema se aplica en aquellos terrenos capaces de resistir la presión que transmiten los “grippers”.
Cuando el terreno no es capaz de resistir la presión de los “grippers”, la tuneladora funciona como escudo simple, cerrandose el hueco de los «grippers», apoyándose mediante unos cilindros auxiliares en el último anillo colocado, para así obtener la reacción necesaria para el empuje de la cabeza de corte. Por ello, trabajando en modo escudo, no es posible simultanear la excavación con el montaje del anillo de dovelas.
Para aclarar esta explicación, vamos a ver un vídeo de HERRENKNECHT, donde se muestra el funcionamiento de la maquina tuneladora de doble escudo (TBM) utilizada en la perforación del tunel de Guadarrama para el AVE. Espero que os guste.
Referencias:
MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Métodos y equipos de excavación en túnel. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.835. Valencia, 52 pp.
Una retroaraña (spider excavator o walking excavator) es una retroexcavadora que presenta garras en vez de ruedas u orugas, lo cual hace que sea un máquina especialmente adaptada a orografías pronunciadas. La araña (como se la conoce para abreviar) tiene en la parte de delante unas garras telescópicas y articuladas, y en la parte de detrás unas ruedas con unas cadenas. Cuando la máquina se traslada por terrenos llanos los hace con las cuatro ruedas, pero si éste se complica, se anulan las delanteras y se desplaza apoyándose en los brazos telescópicos en en el brazo. El brazo de grúa de una retroaraña presenta diferencias con respecto al de una retroexcavadora, pues es articulado además de telescópico. Se trata, por tanto, de una máquina muy versátil en trabajos de orografía complicada como es el caso de la repoblación de montes.
http://ingenieriaycomputacion.blogspot.com
Os dejo a continuación una entrevista realizada por RTV Tarifa realizada con motivo de la repoblación del monte público en dicho municipio gaditano:
También os dejo una serie de vídeos sobre el trabajo de la máquina, alguno de ellos espectaculares. Espero que os gusten.
Referencia:
YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia, 158 pp.
Los pilotes empujados por hélices «helical piles«, o pilotes helicoidales, son pilotes prefabricados que se introducen en el terreno como si fuera un tornillo, debido a la forma en hélice del elemento, mediante equipos de perforación hidráulicos o eléctricos que se manejan manualmente o se montan sobre maquinaria. Estos pilotes se empezaron a utilizar en 1838 por parte del ingeniero norirlandés Alexander Mitchell en la construcción del faro Maplin Sands, en la desembocadura del Támesis. Fue el primero de una serie de faros cimentados sobre pilotes de rosca.
Se trata de un eje central de acero galvanizado al que se le sueldan unas chapas de acero circulares que forman pequeñas hélices. El pilote queda incluido en el suelo, compactándolo durante la instalación. Una de las ventajas es que no es necesario extraer el material, lo cual lo hace muy interesante en algunos casos, como cuando no queremos producir residuos en un terreno contaminado. Otras ventajas son la rapidez de ejecución, la economía en su rango de uso de cargas, la mínima perturbación del terreno circundante, el impacto reducido en el medio ambiente y la gran durabilidad en ambientes corrosivos al usar acero galvanizado. En España su uso es muy poco habitual, pero es utilizado en otros países, sobre todo en el ámbito anglosajón.
Las características de la rosca dependen del tipo del terreno. El diámetro del tubo se encuentra entre 15 y 30 cm, mientras que la hélice puede variar entre 45 y 150 cm. Así, en terrenos blandos, como arcillas blandas o arenas sueltas, se usan hélices muy salientes; mientras en suelos más resistentes como arcillas o gravas, las hélices lo son menos. Las hélices de gran tamaño presentan una gran resistencia al levantamiento; además, su diámetro le dota de una gran resistencia a fuerzas laterales, lo cual los hace muy eficaces en muelles o embarcaderos.
Os presento en esta entrada un nuevo libro que he publicado sobre coste, producción y mantenimiento de maquinaria para construcción. El libro trata de los fundamentos del coste, la producción y el mantenimiento de la maquinaria empleada en la construcción de obras civiles y de edificación. Se desarrollan los aspectos relacionados con la selección de las máquinas, su vida económica y estructura de coste. Se introducen los conceptos básicos sobre disponibilidad, fiabilidad y mantenimiento de equipos, así como otros referentes a la gestión de inventarios y parques de maquinaria. Además, se explican aspectos necesarios para el cálculo de la producción de máquinas y conceptos relacionados con el estudio de métodos y medición del trabajo. El libro se complementa con un listado de referencias bibliográficas, así como numerosas cuestiones de autoevaluación y problemas resueltos que permiten al alumno ampliar y aplicar los conocimientos desarrollados. Este texto tiene como objetivo apoyar los contenidos lectivos de los programas de los estudios de grado relacionados con la ingeniería civil, la edificación y las obras públicas.
Sobre el autor: Víctor Yepes Piqueras. Doctor Ingeniero de Caminos, Canales y Puertos. Catedrático de Universidad, del Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil de la Universitat Politècnica de Valéncia. Número 1 de su promoción, ha desarrollado su vida profesional en empresas constructoras, en el sector público y en el ámbito universitario. Ha sido director académico del Máster Universitario en Ingeniería del Hormigón (acreditado con el sello EUR-ACE®), investigador del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y profesor visitante en la Pontificia Universidad Católica de Chile. Imparte docencia en asignaturas de grado y posgrado relacionadas con procedimientos de construcción y gestión de obras, calidad e innovación, modelos predictivos y optimización en la ingeniería. Sus líneas de investigación actuales se centran en la optimización multiobjetivo, la sostenibilidad y el análisis de ciclo de vida de puentes y estructuras de hormigón.
Son máquinas de ataque frontal para la excavación y carga de grandes masas, equipadas para ello de un equipo de excavación de empuje o frontal: cuchara frontal. Surgieron como alternativa a máquinas de arranque y carga (principalmente palas de ruedas), en trabajos en que la dureza del terreno, obligaba para poder utilizar a estas como máquina de carga a la escarificación previa del terreno, para obtener unos rendimientos altos. En terrenos comprendidos por su dureza entre escarificación media y voladura de terrenos blandos la pala frontal, por su mejor aprovechamiento de la fuerza de arrancamiento y su diferente forma de cargar, permitían el arranque directo del material, prescindiendo del tractor de escarificación y aportando por tanto una bajada importante de los costes de explotación.
La cuchara está colocada de forma que los dientes miran hacia el exterior, debido a esto, para cargarla hay que moverla de abajo hacia arriba, cayendo el material arrancado por los dientes dentro del cazo como en las palas cargadoras. A pesar de que las grandes máquinas de este tipo son específicas, existen modelos donde es fácil el cambio de equipo de uno frontal a uno de retroexcavación. Con todo, a una pala frontal se le exige mayor robustez, plumas, balancines y cucharas específicamente diseñadas para su trabajo.
El cucharón frontal puede configurarse con descarga frontal o de fondo. Estos últimos descargan mediante una puerta articulada que se abre mediante una apertura hidráulica que permite la salida del material. También se podrían recoger rocas del suelo utilizando este mecanismo tipo pinza. A pesar de ello el uso normal es la cuchara de descarga frontal, por menor coste y mantenimiento.
La máquina debe realizar esfuerzos de penetración y de excavación para realizar su trabajo. Éste puede ser de excavación y carga de materiales en banco o únicamente carga de materiales sueltos.
Sus posibilidades y aplicaciones son amplias, usándose en canteras de roca volada o de roca blanda, carga y descarga de grandes bloques extraídos de canteras, en bancos de arena o grava, y extracciones de mineral. Realiza cortes en laderas, abre zanjas y cimientos profundos. Su forma de trabajar efectiva es cuando excava el terreno desde el nivel de sustentación hacia arriba. Se utiliza fundamentalmente en excavación con carga directa a las unidades de transporte.
Os dejo un vídeo de una pala frontal, la Hitachi EX8000.
Referencias:
YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia, 158 pp.
La perforación realizada en una voladura, consiste en la operación de llevar a cabo varias penetraciones cilíndricas en la superficie del macizo a volar, llamadas barrenos que tendrán una distribución y un ángulo de inclinación diseñados con el fin de producir el arranque, fragmentación y desplazamiento de parte del macizo rocoso. Estos barrenos alojarán las cargas explosivas que se detonarán con una secuencia de disparo diseñada para obtener un tamaño de piedra medio o fragmentación óptimos con mínimas proyecciones y vibraciones.
La correcta ejecución de los barrenos, sea cual sea el sistema de perforación empleado, se caracteriza fundamentalmente por los siguientes factores:
El diámetro del barreno
La longitud o profundidad del barreno
La desviación de la perforación
La estabilidad del barreno
El diámetro del barreno
El diámetro del taladro necesario en una voladura constituye un factor clave a la hora de obtener el coste económico más favorable en el conjunto de operaciones de arranque de la roca. Se determina este valor en función de los equipos de perforación disponibles y de los explosivos a utilizar. Este parámetro se debe combinar con un esquema geométrico de los barrenos que permita una fragmentación adecuada del material para su carga, transporte y posible trituración.
Por tanto el diámetro de perforación idóneo depende de los siguientes factores:
Características del macizo rocoso
Grado de fragmentación requerido
Altura de banco y configuración de las cargas
Economía del proceso de perforación y voladura
Dimensiones del equipo de carga y transporte
Profundidad del barreno
La longitud del barreno se encuentra directamente relacionada con el diseño previsto para la excavación, ya sea a cielo abierto o subterránea. A mayor profundidad de barreno, mayor tamaño del equipo de perforación (perforadora, carro, compresor y barras). Además, hay que tener en cuenta que cuando las longitudes del barreno son muy grandes, pueden presentarse problemas de desviación de los barrenos que afectarán a la fragmentación de la roca y que aumentarán el riesgo de generar fuertes vibraciones, proyecciones y sobreexcavaciones.
Desviación de la perforación
Que los barrenos se encuentren correctamente alineados y rectos es una condición necesaria para que la voladura se desarrolle según lo previsto. Para ello se debe minimizar la desviación de los taladros utilizando barras de perforación rígidas. Además, son necesarios otros factores básicos: la precisión del emboquillado, la fuerza de avance, la compatibilidad entre la barra y la boca y los diversos dispositivos de guía. Como se ha visto en el punto anterior, la desviación aumenta con la longitud de la perforación.
Los factores que causan las desviaciones de los barrenos se pueden clasificar en los siguientes:
Propiedades estructurales de la roca: planos de esquistosidad, diaclasas, cambios de litología, etc.
Diámetro de perforación: si es demasiado grande en relación con el varillaje, se producirán desviaciones por la falta de resistencia de la sarta al pandeo y se desgastará antes.
Errores de alineación y emboquille: es frecuente valores de más de 10 cm o de una distancia igual a la magnitud del diámetro de perforación.
Estabilidad del barreno
Las paredes de la perforación deben permanecer sin derrumbes ni desprendimientos locales hasta que se produzca la operación de carga del explosivo. La estabilidad dependerá de la geología de la roca y de la existencia de agua en el macizo. Si se seleccionan correctamente los útiles de perforación, se podrá garantizar una mejora de la estabilización de los barrenos.
A continuación os paso un Polimedia donde se explican estos conceptos.
Referencias:
DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Editorial de la Universitat Politècnica de València. Ref. 530, 165 pp.
UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.