Plantas desarenadoras para la reutilización de los fluidos estabilizadores

Figura 1. Desarenador de lodos. ttps://maquinariacimentaciones.wordpress.com

En artículos anteriores hemos descrito los fluidos estabilizadores de excavaciones. Dentro de este uso, la estabilización de excavaciones de muros pantalla esta ampliamente difundida en España. Los fluidos bentoníticos se utilizan también habitualmente para estabilizar las paredes de la excavación de pilotes excavados de cierto diámetro e incluso en los de pequeño diámetro en competencia con las entibaciones recuperables. También se usan en estos fluidos de perforación en la Perforación Horizontal Dirigida. En cualquier caso, uno de los problemas a resolver es separar las partículas de la excavación del fluido para que pueda ser reutilizado. Para ello se describe a continuación brevemente el funcionamiento de una planta desarenadora.

La misión de las plantas desarenadoras es la de separar las partículas de suelo (sólidos) que se encuentran en suspensión en los fluidos estabilizadores. Son necesarias para la reutilización de los lodos (circuito de recirculación). Además de en cimentaciones profundas se utilizan también en plantas de tratamiento de áridos, obras de túneles, etc.

El contenido de arena y otras partículas en suspensión en los lodos minerales debe ser inferior al 4% del volumen antes de volver a verterlo en la excavación. En el caso de polímeros este porcentaje debe ser inferior al 1%. Antes del hormigonado se permite máximo hasta el 10%.

Figura 2. Salida de sólidos de una desarenadora (Bauer)

Se pueden distinguir en el mercado dos tipos de desarenadoras; aquellas por las que el fluido a limpiar pasa una única vez por un hidrociclón y las que pasan dos. El de simple ciclonado está recomendado para terrenos poco arenosos o con arenas poco finas; en este caso, los lodos solo pasan una vez por el ciclón tras pasar por una o varias fases de criba con el objeto de eliminar el material de mayor tamaño. El desarenador de doble ciclonado es más eficaz, pues presentan una mayor capacidad de regeneración del fluido, siendo necesario para terrenos arenosos o con muchas arenas finas, incluso limos; normalmente tras pasar a través del ciclón principal pasan por una serie de hidrociclones más pequeños.

Figura 3. Esquema de la recirculación de fluidos (Caltrans)

 

En la Figura 4 se muestra el esquema de una desarenadora con un solo paso a través del ciclón, en el que se distinguen los siguientes elementos:

(1) Motores para las cribas vibratorias.

(2) Criba de gruesos que realiza funciones de “precribado”, retiene partículas > 5mm.

(3) Tanque de almacenamiento del material procedente de la criba de gruesos.

(4) Bomba de alimentación del ciclón a 2-3 bar.

(5) Hidrociclón;.

(6) Salida de sólidos del hidrociclón.

(7) Cribas separadoras del agua del material grueso procedente del hidrociclón.

(8) Salida superior del hidrociclón, con el fluido “limpio”.

(9) Depósito de regulación

(10) Control automático de nivel.

Figura 4. Esquema de funcionamiento de una desarenadora (Bauer)

El rendimiento de una desarenadora se mide en m3/h de fluido estabilizador regenerado. Para determinar la eficiencia se mide a través del punto de corte o “cut point”, que es el d50, que mide el menor tamaño de partícula en suspensión que al menos el 50% puede ser separado del fluido. Se mide en 1/1000 mm o micras.

Referencia:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Perforación rotativa con cazo

Figura 1. Cazo rotativo abierto

Cuando se utilizan lodos tixotrópicos para el sostenimiento de la perforación, o estamos ante la presencia de agua, la barrena helicoidal no puede retirar el material, pues éste se escurre entre los pasos de ésta. En estos casos se emplea la perforación rotativa con cazo (bucket auger boring).

La perforadora con cazo rotativo utiliza un accionamiento mecánico o hidráulico que hace girar una Kelly que se fija a la cuchara. Para perforar, la cuchara gira para permitir que la parte inferior de los dientes de corte llene la cuchara. Las aletas en el fondo de la cuchara se cierran para mantener los detritus en su interior. El fondo de la cuchara es abatible (Figura 1) para permitir el vertido de la excavación.

La perforación con cazo es más lenta, con rendimientos previstos pueden ser la mitad (40-50 m/turno) de los conseguidos con hélices. Si bien es cierto que pueden triplicar los alcanzados con cuchara de valvas. Existen variantes de cazo con dientes de tierra, con dientes de widia, de fondo plano, se entrada simple, doble, etc.

Este sistema presenta algunos inconvenientes, además de los asociados a la perforación con lodos. Cuando se extrae el cazo se ejerce cierta succión que puede inestabilizar las paredes. Este efecto es particularmente sensible con diámetros de 500 mm o menos, por lo que lo habitual es perforar con cazo por encima de los 600 mm de diámetro.

Figura 2. Cazo rotativo

 

Os dejo algunos vídeos que ilustran la forma de trabajar con este tipo de perforación rotativa.

En el siguiente vídeo de Keller se muestra la perforación de un pozo de gran diámetro mediante cazos de diámetros sucesivamente mayores. Previamente se ha realizado una pantalla de pilotes secantes.

Referencias:

INSTITUTO TECNOLÓGICO Y MINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Ed. IGME. Madrid, 500 pp.

YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Palas cargadoras

La norma ISO 6165:2012 define como cargadora a la máquina autopropulsada sobre ruedas o cadenas con un equipo montado en la parte frontal, cuya función principal es la operación de carga (utiliando una cuchara), con la que carga o excava mediante el movimiento de la máquina hacia delante. Por tanto, aparte de la cuchara frontal, su estructura, soporte y un sistema de brazos articulados capaz de cargar y excavar mediante su desplazamiento y el movimiento de sus brazos, y de elevar, transportar y descargar materiales.

Son máquinas diseñadas para la excavación, carga y pequeño transporte de material. Se denominan genéricamente palas cargadoras, aunque otros nombres podrían ser la de pala tractora o cargadora frontal. Se trata de un tractor al que se le acopla una cuchara que se llena por empuje de la máquina sobre el terreno, dotada de un dispositivo de elevación y otro de volteo para manipular las tierras. Estas máquinas tienen como funciones principales las de cargar en las unidades de transporte materiales sueltos o la alimentación de tolvas, acopiar productos, efectuar operaciones de excavación en terrenos no muy duros o compactos, elevación y manejo de cargas y acarreos a distancias pequeñas de materiales (no más de 30 o 50 m. si no se quiere bajar rápidamente su producción). Atendiendo a su sistema de desplazamiento, se dividen en palas cargadoras sobre neumáticos y sobre orugas.

Como una imagen vale más que mil palabras, os dejo unos vídeos para que veáis cómo trabaja esta máquina.

https://www.youtube.com/watch?v=z002KeNgdy4

Referencias:
AENOR (2012). UNE-EN ISO 6165 «Maquinaria para movimiento de tierras. Tipos básicos. Identificación, términos y definiciones».
YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Tractor sobre ruedas: el turnadozer

Figura 1. Turnadozer Caterpillar 824

El turnadozer es un tractor montado sobre neumáticos. A diferencia de los tractores montados sobre orugas, los buldóceres (bulldozers, en inglés), los turnadozers transmiten mayor presión específica sobre el terreno (0,35 MPa). Presentan una tracción de hasta 82 t, necesitan tracción a las cuatro ruedas y son más veloces que los buldóceres (hasta 60 km/h), por lo que presentarían cierta ventaja en el desplazamiento de tierras a mayores distancias (aunque entraría en competencia con las cargadoras). Sin embargo, no son aconsejables en terrenos rocosos por el desgaste y los cortes de neumáticos. Es por ello que no son muy frecuentes en las obras. En una de mis primeras obras tuve la ocasión de utilizar uno de ellos, debido a exigencias de uso del parque de maquinaria de la empresa, pero se usaba principalmente para labores auxiliares de limpieza de la zona de carga y en el mantenimiento de pistas y caminos de obra.

Un vídeo antiguo sobre esta máquina, que espero os guste.

Aquí tenéis otro vídeo ilustrativo:

En este otro podemos ver un turnadozer con múltiples ejes de ruedas.

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Apisonadoras estáticas de rodillos lisos

Figura 1. Apisonadora estática de rodillo liso tipo triciclo. Imagen: V. Yepes

Las apisonadoras estáticas son los compactadores más antiguos, constituidas por rodillos metálicos lisos revestidos mediante una gruesa chapa de acero. Se caracterizan por la presión estática que ejercen sobre el terreno, considerándose un área de contacto que depende del diámetro de los cilindros, del peso de la máquina y del tipo de suelo. Sin embargo, el efecto de la compactación estática alcanza muy poca profundidad, por lo que no son eficientes. Es por ello que hoy en día no se fabrican compactadores estáticos de rodillos, sino que son los vibratorios los que, en ausencia de vibración, se usan de forma estática para determinadas aplicaciones, como puede ser el planchado o sellado de la última capa compactada de suelo en una jornada o en las primeras pasadas de compactación de aglomerados asfálticos.

La densificación del suelo que provocan los rodillos lisos se reduce considerablemente a medida que éste profundiza en la tongada que se compacta y dicho efecto de compactación se produce de arriba hacia abajo.

En la compactación de suelos, estas máquinas serían adecuadas para arenas y gravas bien graduadas, limos y arcillas de baja plasticidad, en tongadas de 10-20 cm y 4-8 pasadas, pero no lo son en arenas uniformes, arenas limosas y arcillas blandas. Cuando se utiliza en arcillas y limos plásticos, es común que al cabo de cierto número de pasadas lleguen a presentarse fracturas o grietas en la parte superior de la tongada, debido a la rigidez que esta zona adquiere por excesiva compactación en comparación con la zona inferior de la misma capa. En este caso, queda la capa inferior con una rigidez y una compacidad más baja.

Existen dos tipos básicos: triciclo y tándem, pues no es habitual el uso del rodillo liso remolcado. Sus velocidades varían hasta 10-12 km/h.

Tipo triciclo

Figura 2. Apisonadora estática tipo triciclo

Consta de un cilindro delantero dividido normalmente en dos mitades con giro independiente para facilitar los cambios de dirección, y dos cilindros traseros en el eje motor de gran diámetro. Los rodillos delantero y traseros se encuentran solapados, con una anchura de compactación de unos 2 m. La distribución por eje del peso, es generalmente del 70% hacia el eje motriz (trasero) y el 30% hacia el eje direccional (delantero). La energía de trabajo se puede variar lastrándolo con agua. Sus pesos oscilan entre 7 y 20 t. Los motores diésel que los propulsan tienen una potencia media de 40 kW. La velocidad máxima de estas apisonadoras está entre 8 y 10 km/h.

El rodillo triciclo se utiliza en compactación de caminos de macadán, bacheos e incrustación de gravilla en tratamientos superficiales, no utilizándose ya en compactación de aglomerados y, menos aún, de terraplenes.

 

Tipo tándem

Figura 3. Apisonadora estática de rodillo liso tipo tándem. Imagen: V. Yepes

Lo componen dos cilindros, el delantero de dirección, y el trasero tractor, aunque a veces ambos son tractores. El movimiento direccional se obtiene con un ángulo entre los ejes de los dos rodillos. El ancho de compactación suele ser inferior a los 1,60 m. El peso normal oscila entre 5 y 15 t. La potencia de su motor diésel varía entre 25 y 125 kW. La velocidad máxima de estas apisonadoras está entre 8 y 15 km/h.

Las apisonadoras estáticas de rodillo liso son secundarias en las obras de tierra, ya que la presión transmitida al terreno es muy superficial debido a la reducida área de contacto -generatriz del cilindro. Se crea una costra rígida en superficie, por lo que muchas veces sirve la máquina para el sellado y cierre de una tongada. Otra de sus limitaciones, es que la carga transmitida siempre es constante, no adaptándose a la capacidad resistente que va adquiriendo el suelo con cada una de las pasadas.

El rodillo tándem ha quedado casi exclusivamente relegado al aglomerado, empleándose en algunos casos como compactador y en otros, simplemente como alisador, ya que con frecuencia la fase principal de compactación del aglomerado la realiza el compactador de neumáticos.

Referencia:

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Cómo se distribuyen las presiones en el suelo al paso de un compactador?

Figura 1. Compactador de neumáticos

Un aspecto de gran interés práctico en la compactación es conocer cómo se distribuyen las presiones bajo la superficie por la que pasa el compactador. Si en vez de considerar las tensiones y deformaciones uniformemente distribuidas por todo el material, tal y como hemos visto en los ensayos descritos en entradas anteriores, nos centramos en lo que ocurre bajo la superficie donde se aplica la carga, comprobaremos que los efectos de la carga únicamente se soportan por una porción del suelo bajo ella.

Boussinesq desarrolló, para un suelo homogéneo, isótropo y elástico, la distribución de las tensiones bajo placas cargadas (en 1885 obtuvo una solución para los esfuerzos debidos a una carga aplicada en dirección normal a la superficie de un semiespacio elástico semi-infinito). Se forma un bulbo de presiones bajo la placa, de forma que la presión a determinada profundidad es proporcional a la presión de contacto (Figura 2).

Figura 2. Distribuciones de presiones según Boussinesq

Asimismo, la forma y el tamaño de la placa influyen en el bulbo de presiones. A igualdad de carga y superficie, una placa cuadrada produce mayores presiones a medida que aumenta la profundidad. También se observa que, para una presión de contacto dada, cuanto más ancha es la placa de carga, mayor es la profundidad alcanzada para la misma compresión. Ello explica que un compactador de neumáticos (Figura 1) -cuya huella se aproxima a un círculo- es más eficaz en cuanto a penetración que un compactador de cilindro liso (Figura 3), estando cargados por igual, y a igual superficie total de contacto.

Figura 3. Compactador de rodillo liso

Tanto las tensiones como las deformaciones disminuyen rápidamente con la profundidad de la tongada a compactar. Así en un neumático de una anchura D, con una presión de contacto con la superficie de PC, transmite a 0,5 D solo 0,6 PC, a una distancia D transmite 0,3 PC y al llegar a 2D únicamente nos llega 0,09 PC. El tamaño del bulbo nos indica qué partes de la masa del suelo serán afectadas por la carga aplicada de forma significativa, tanto en profundidad como en extensión lateral. La Tabla 1 proporciona los valores aproximados de la profundidad y ancho de los bulbos de presión de 0,2q y 0,1q.

Tabla 1
Tabla 1. Bulbos de presión bajo el terreno

Como existe una presión por debajo de la cual las deformaciones dejan de ser permanentes (se puede tomar como idea unos 0,2 MPa), por ser de tipo elástico, es fácil comprender que la presión en superficie, al ir disminuyendo, encontrará una línea divisoria por debajo de la cual no es posible compactar el terreno.

Debido a que para cada carga, existe una deformación remanente límite, independiente del número de ciclos, se obtendrá una profundidad límite de capa para cada compactador y para cada peso unitario especificado. Se puede calcular dicho espesor límite interpolando entre varios valores de deformación límite y grosor de capa, para un compactador prefijado. Las relaciones entre los pesos unitarios iniciales, especificada y las deformaciones son las descritas mediante la siguiente ecuación, basada en que el peso unitario de cada capa crece en la misma relación que disminuye la altura:donde:

ε = deformación unitaria

δ = deflexión

h = grosor de la tongada

γ0 = peso unitario inicial

γesp = peso unitario especificado

Referencia:

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Cómo influye el tiempo y la velocidad de aplicación de la sobrecarga en la compactación?

Figura 1. Compactador vibratorio JCB

La influencia del tiempo de actuación de la sobrecarga se observa con facilidad en un ensayo edométrico, tal y como hemos visto en una entrada anterior. Si se aplica una carga constante, la deformación aumenta con el tiempo pero tiende asintóticamente a una deformación unitaria, tal y como se ve en la Figura 2. Al mismo tiempo, se puede comprobar la pérdida de humedad por las paredes de la probeta.

Si la prueba se repite aplicando la misma carga con una probeta mayor, se comprueba que se llega a idéntica deformación unitaria, pero éstas al principio son más lentas, tardando más en salir el agua.

Figura 2. Variación de la deformación del suelo con el tiempo de aplicación de la carga

En cuanto a la influencia de la velocidad de aplicación de la sobrecarga y las deformaciones obtenidas se constata cómo la máxima se retrasa respecto a la aplicación efectiva de la máxima presión, debido a los fenómenos descritos con anterioridad. En este caso la carga se aplica de forma creciente hasta llegar a su máximo, disminuyéndola de forma análoga.

A su vez, si dicho esfuerzo se aplica con rapidez, la deformación máxima alcanzada será menor. Sin embargo, al incrementar la velocidad de traslación se puede dar un mayor número de pases por hora de trabajo, existiendo una velocidad idónea, compromiso entre ambos efectos contradictorios. Por consiguiente, y a efectos prácticos, se consideran dos vías para aumentar el efecto de la compactación: o bien incrementar la carga aplicada, o disminuir la velocidad del compactador. Estas circunstancias serán importantes en los terrenos finos, y menos en terrenos granulares.

Referencia:

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Diagramas de carga-deflexión en la compactación mecánica de suelos

Figura 1. Rodillo compactador Hamm 3412

La compactación mecánica está basada en las relaciones entre las tensiones y las deformaciones o deflexiones causadas por una carga compresora.

Si se analiza el ensayo realizado sobre una probeta de suelo cilíndrica, permaneciendo la superficie lateral libre y en cuya base superior aplicamos una carga mediante una chapa metálica, con un valor que vaya aumentando a velocidad constante, se obtiene el diagrama de carga-deflexión como el de la Figura 2. En este ensayo, una vez alcanzado determinado valor en la carga, la probeta rompe. Asimismo, la pendiente de la curva cargas-asientos correspondiente a cada ciclo permite calcular el módulo de deformación del suelo.

Figura 2. Tensión-deformación en una probeta con paredes laterales libres

La curva permite comprobar ciertos fenómenos significativos. El primero de ellos es que si al llegar al punto 3 dejamos de aumentar la carga, sigue la probeta deformándose hasta estabilizarse en el punto 4 al cabo de cierto tiempo. Este efecto es acusado en suelos plásticos y húmedos por su dificultad en evacuar el aire y el agua. El segundo fenómeno es que si a partir de un punto tal como el 1 descargamos a la misma velocidad que veníamos cargando, la probeta recupera parte de su deformación, hasta llegar a 2 cuando ya no existe tensión. Si a partir de este punto repetimos el proceso, la nueva curva se aproxima a la original hasta ser tangente con ella. Estas dos ramas, de compresión y de descompresión, no se confunden, sino que forman un lazo nominado de histéresis.

Si este experimento se realiza con un terreno natural, y otro recompuesto de la rotura de los anteriores ensayos, y ambos se vuelven a testar con la misma humedad, se observa que a igualdad de cargas, los suelos recompuestos o amasados rompen antes y sufren mayor deformación. Análogamente, si experimentamos a mayores velocidades de incremento de carga, las deformaciones son menores ya que no da tiempo suficiente a evacuar aire y agua de la muestra.

El segundo tipo de ensayo propuesto sería someter la probeta cilíndrica a un proceso de cargas escalonado, de forma que permanezca constante la compresión durante un periodo de tiempo dilatado que garantice que se alcanza el alargamiento límite para dicha carga. A su vez, la probeta tendrá impedida su deformación lateral, siendo porosas las bases del cilindro, pudiendo así aplicar cargas de mayor magnitud. En este caso sólo existe deformación vertical siendo la lateral nula, hablándose entonces de deformación edométrica, por ser el edómetro el aparato en el cual se realiza este experimento. Por cierto, edómetro viene del griego «oidos«, hinchamiento, por ser la medida de la expansividad de los suelos en contacto en el agua, una de sus primeras aplicaciones.

Figura 3. Celda de edómetro

En este caso, la curva obtenida presenta las mismas características que la anterior. Si no se descarga, la curva (0135) se denomina de compresión noval. Al descargar, nos movemos de forma lineal por la rama de descarga. Se llama presión de preconsolidación la máxima que ha sufrido el material en su historia, siendo por tanto que un suelo o está en la rama elástica o en la tensión de preconsolidación.

Se distinguen tres tipos de asientos al realizar un ensayo edométrico. La consolidación inicial es un asiento independiente del fenómeno de consolidación y que está asociado a deformaciones debidas al cierre de fisuras de la muestra, a rozamientos y huelgos del sistema de aplicación de la carga, etc. La consolidación primaria se rige por la teoría de la consolidación, es decir, existe un asiento debido a la expulsión del agua como consecuencia de la sobrepresión aplicada. Por último, la consolidación secundaria se debe a fenómenos viscosos y de reajuste de la estructura del suelo una vez las sobrepresiones se han anulado, y tampoco se debe al fenómeno de consolidación. La teoría de la consolidación está basada en el principio de Terzaghi, y plantea que un suelo saturado y poco permeable reacciona inicialmente a un cambio tensional como si no cambiara de volumen, generando sobrepresiones intersticiales. A medida que éstas se van disipando hacia los contornos drenantes, las tensiones totales transmitidas inicialmente se transforman, gradualmente, en presiones efectivas, y el suelo se deforma.

Se llaman suelos normalmente consolidados aquellos en los que la tensión efectiva actual es la máxima que han tenido en su historia, y suelos sobreconsolidados o preconsolidados los que han soportado en el pasado una tensión superior a la actual. Es evidente que cuanto antes se hablaba de un suelo remoldeado en anteriores ensayos, este es, por definición, sobreconsolidado.

A continuación os dejo un vídeo sobre el ensayo edométrico. Espero que os sea de interés.

Referencia:

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Mejor pocas pasadas de un compactador muy pesado?

Figura 1. Compactador vibratorio

Una pregunta que suelen hacerme es saber si resulta más económico compactar un terreno con un compactador pesado con pocas pasadas o un compactador menos pesado, pero con más pasadas. Es conocido que el número de pasadas y la profundidad de la capa de terreno a compactar dependerá no solo de las características de la máquina, sino también de la naturaleza del suelo y su humedad. La determinación de estos parámetros se puede realizar mediante un tramo de prueba. Sin embargo, en esta entrada quiero centrarme en el aspecto energético del problema. En efecto, voy a contar qué ocurre con los ciclos de carga-descarga sobre un terreno al que se le aplican deformaciones remanentes progresivas.

Si se consideran varios ciclos de carga y descarga, es interesante comprobar cómo los módulos de deformación de cada lazo de histéresis van aumentando progresivamente hasta alcanzar un valor de equilibrio. La densificación del terreno va provocando deformaciones remanentes progresivas, que llegan a un límite, en cuyo rango de presiones el suelo se comporta elásticamente (esto es cierto salvo en terrenos muy plásticos y con gran humedad).

En la Figura 2 se observa la variación de la deformación residual con el número de ciclos de carga-descarga.

Figura 2. Número de ciclos de carga-descarga con respecto a la deformación residual

Estos mismos ciclos de carga y descarga ocurren al pasar un compactador por encima de una capa que se desea compactar. Cada pasada constituye un ciclo completo de carga y descarga, con un terreno que se encuentra en una situación intermedia entre el confinamiento horizontal total y el libre, que son los dos experimentos descritos.

El proceso provoca deformaciones residuales cada vez menores, hasta llegar a una situación en el límite, donde las tensiones y deformaciones son lineales, y donde una carga mayor rompe el suelo, subiendo éste alrededor del compactador. Veamos en la Figura 3 las sucesivas relaciones entre tensiones y deformaciones que se producen en cada pasada de compactador. El área formada por los puntos OA1B1 es proporcional a la energía necesaria para obtener la deformación remanente OB1. Por tanto, cuanto mayor sea la carga del compactador, menos pasadas serán necesarias para llegar a la deformación remanente deseada, es decir, al grado de densidad especificado. Ahora bien, dicha carga debe ser inferior a la de rotura del material.

Figura 3. Relación entre tensión y deformación con ciclos de cargas y descargas sucesivas

Se presentan dos formas de llegar a la deformación remanente necesaria: o bien con muchas pasadas de un compactador menos pesado, o bien con pocas pasadas de un compactador más pesado. En el límite la energía necesaria con una sola pasada sería proporcional a la curva OAB, mientras que con muchas pasadas sería proporcional aproximadamente a OANBN. Ello podría hacer pensar que sería más económico muchas pasadas con un compactador pequeño que pocas con uno más grande. Esto no es del todo cierto ya que también se consume energía por rozamiento al trasladarse los equipos. Bajo una perspectiva energética, lo óptimo se encuentra en una situación intermedia.

Referencia:

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Bandejas vibratorias o placas vibrantes

Figura 1. Bandeja Vibratoria Reversible VDR 26H

Son máquinas que transmiten su vibración mediante una bandeja accionada por el giro de masas excéntricas unidas a ella. Decaladas convenientemente las masas, se consigue una resultante de la fuerza centrífuga en el sentido de la marcha del operador. Las bandejas vibratorias con movimiento sólo de avance tienen una excéntrica situada en la parte delantera de la placa, mientras que las bandejas con movimiento en ambos sentidos, tienen dos. Las dos excéntricas permiten la regulación gradual de la velocidad. Son accionados por motores de gasolina o diésel, e incluso por motores eléctricos.

El motor y el manillar se montan sobre una placa separada, que está aislada de la bandeja vibratoria por muelles de acero o amortiguadores de goma. Tienen una longitud entre 0,50 y 1,00 m, con anchos entre 30 y 80 cm. Su velocidad varía entre 20 y 25 m/min. Se clasifican según su peso y frecuencia en:

  • Ligeros: alrededor de 100 kg, 100 Hz.
  • Medios: 500-1000 kg, 50 Hz.
  • Pesados: 1500-3000 kg, 20 Hz.

Las bandejas ligeras operan normalmente a altas frecuencias y bajas amplitudes. Son adecuadas para la compactación de arena y grava, cuando trabajan en capas delgadas (10-15 cm). Cuando se equipan con sistema de riego, también son útiles para el tratamiento de superficies asfálticas. Las bandejas vibratorias medio-pesadas (>400 kg) son efectivas sobre suelos semicohesivos -hasta 12-15% de finos- debido a su peso y sus mayores amplitudes. Evidentemente, no se aconsejan para trabajos de alto volumen. Suelen ser muy útiles en la compactación de rellenos de zanjas.

Se pueden acoplar varias placas a una máquina sobre neumáticos o sobre orugas constituyendo un compactador de multiplacas vibrantes.

Figura 2. Compactador de multiplacas vibrantes

 

Figura 3. Placa vibrante acoplada al brazo de una retroexcavadora. Imagen: V. Yepes

Os dejo algún vídeo para que veáis el funcionamiento de esta máquina.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.