32 científicos de la Universidad Politécnica de Valencia, entre los 10 mejores de España en 21 disciplinas (incluida la ingeniería civil)

Avelino Corma, investigador de la UPV con el mejor índice h de España (h=152)

Avelino Corma, investigador con mejor índice h de España, Jaime Lloret y Rubén Ruiz, números 1 en sus respectivas disciplinas

Aparece hoy como noticia de portada en la web de la Universitat Politècnica de València la noticia de que 32 científicos de la UPV se encuentran en la élite nacional atendiendo a sus índices h de investigación. Es un auténtico orgullo comprobar que soy el único investigador de nuestra universidad que se encuentra en el top 10 del área de “ingeniería civil”. En el cuadro que os dejo a continuación se encuentra el ranking de esta disciplina. Os paso, por su interés, el contenido de esta noticia.

 

Los investigadores Avelino Corma, Jaime Lloret y Rubén Ruiz, que desarrollan su actividad en la Universitat Politècnica de València (UPV), son los mejores de España en sus respectivas disciplinas según el índice h, sistema que mide su calidad científica a partir del número de citaciones de sus artículos.

El ranking, elaborado por el Grupo para la Difusión del Índice h (DIH) a partir de la base de datos sobre publicaciones científicas ISI Web of Knowledge, establece una clasificación específica para cada una de las disciplinas enmarcadas dentro de las diez áreas de conocimiento consideradas: agricultura, biología, ciencias de los materiales, ciencias de la salud, ciencias de la tierra, física, informática, ingeniería, matemáticas y química.

La citada clasificación, cuya última actualización tuvo lugar durante el recién finalizado primer trimestre de 2021 en las ramas de agricultura, ciencias de los materiales, ciencias de la tierra, informática, ingeniería y matemáticas, detalla tanto el índice h de cada investigador como su factor h, es decir, la relación entre el valor h del científico y la media de los del ranking del campo al que pertenece.

Avelino Corma (UPV-CSIC), científico español con mejor índice h

Avelino Corma, profesor de investigación del Consejo Superior de Investigaciones Científicas en el Instituto de Tecnología Química (ITQ, centro mixto UPV-CSIC), no solo encabeza el campo de química física sino que, además, es el científico español con mejor índice h. No en vano, su índice h de 152 es el único superior, en toda España, a 130.

También son líderes nacionales en sus respectivos ámbitos Jaime Lloret, investigador del Instituto de Investigación para la Gestión Integrada de Zonas Costeras (IGIC) del campus de Gandia UPV (en telecomunicaciones), y Rubén Ruiz, investigador del Instituto Universitario Mixto de Tecnología Informática y director del Área de Tecnologías y Recursos de la Información UPV (en investigación operativa y gestión).

3 investigadores más de la UPV, en segunda posición, y otros 4, terceros

Junto a los tres investigadores que lideran sus disciplinas, otros tantos científicos de la UPV aparecen en segunda posición de sus respectivos campos: Raúl Payri, del Instituto CMT-Motores Térmicos (en ingeniería mecánica); Sebastián Martorell, investigador del Grupo de Medioambiente y Seguridad Industrial (en ingeniería industrial); y Juan Carlos Cano, del Grupo de Redes de Computadores (en telecomunicaciones).

Completando los podios nacionales en sus disciplinas, figuran también Hermenegildo García (con un destacado índice h de 102, lo que le sitúa en el top 20 nacional), del ITQ (en química física); Francisco Javier Salvador, del CMT-Motores Térmicos (en ingeniería mecánica); José Duato, del Grupo de Arquitecturas Paralelas (en teoría informática y métodos); y Sandra Sendra, del IGIC (en telecomunicaciones).

A ellos hay que añadir a Jordi Payá, del Instituto de Ciencia y Tecnología del Hormigón (ICITECH), (en tecnologías de la construcción y la edificación); José Ramón Serrano, del CMT-Motores Térmicos (en ingeniería mecánica); y Josefa Mula Bru, del Centro de Investigación en Gestión e Ingeniería de la Producción (en ingeniería industrial); cuartos, los tres, en sus respectivos ámbitos.

Junto a todos los anteriores, en el top 5 nacional figuran también otros 6 científicos UPV: Luis María Guanter, del Instituto Universitario de Ingeniería del Agua y del Medio Ambiente (IIAMA), (en teledetección); José Capmany, del Instituto Universitario de Telecomunicación y Aplicaciones Multimedia (en óptica); Mª Victoria Borrachero, del ICITECH (en tecnologías de la construcción y la edificación); Jaime Gómez, del IIAMA (en recursos hídricos); Francisco Payri, del CMT-Motores Térmicos (en ingeniería mecánica); y Alberto José Ferrer, del Grupo de Ingeniería Estadística Multivariante (en probabilidad y estadística).

Un total de 32 científicos UPV, entre los 10 mejores de España en 21 disciplinas

Si se amplía la lista al top ten de cada disciplina, la UPV cuenta con 13 científicos clasificados más al margen de los ya citados, lo que supone un total de 32 entre los 10 mejores de España en 21 disciplinas (Martí, Lloret, Martorell y Ferrer aparecen, cada uno, en la élite de dos campos distintos).

Sextos a nivel nacional son Amparo Chiralt, del Instituto Universitario de Ingeniería de Alimentos para el Desarrollo (en ciencia y tecnología de la alimentación); Javier Martí, del Instituto Universitario de Tecnología Nanofotónica (en electrónica e ingeniería eléctrica); Víctor Yepes Piqueras, del ICITECH (en ingeniería civil); Alfred Peris, del Instituto Universitario de Matemática Pura y Aplicada (en matemáticas); y Alberto José Ferrer, del Grupo de Ingeniería Estadística Multivariante (en aplicaciones matemáticas interdisciplinares).

En séptimo lugar aparecen Ricardo Flores, del Instituto de Biología Molecular y Celular de Plantas (IBMCP), (en virología); Manuel Agustí, del Instituto Agroforestal Mediterráneo (en horticultura); Jaime Gimeno, del CMT-Motores Térmicos (en ingeniería mecánica); y Pedro Albertos, del Departamento de Ingeniería de Sistemas, Computadores y Automática (en sistemas de control y automatización); y en octavo, Ramón Martínez Máñez, secretario del Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (en química multidisciplinar); y José María Monzó, del ICITECH (en tecnologías de la construcción y la edificación).

Completan la lista de investigadores UPV destacados a nivel nacional José Luis Gómez, del Centro de Biomateriales e Ingeniería Tisular (en ciencia polimérica); y Javier Martí, del Instituto Universitario de Tecnología Nanofotónica (en óptica); ambos novenos en las disciplinas consideradas; y Jaime Lloret, del IGIC (en electrónica e ingeniería eléctrica); Sebastián Martorell, investigador del Grupo de Medioambiente y Seguridad Industrial (en investigación operativa y gestión); y José María Desantes y José Galindo, ambos del CMT-Motores Térmicos, en décimo lugar a nivel nacional.

Capas y bases tratadas: Gravaescoria

Figura 1. Escoria granulada. http://www.cedex.es/NR/rdonlyres/BFF81F23-BDB7-4B5B-85A5-A7ABD2974A42/119856/ESCORIASDEHORNOALTO.pdf

La gravaescoria consiste en una mezcla homogénea de áridos, escoria granulada de alto horno, cal y agua, que convenientemente compactada, se utiliza en la construcción de firmes de carreteras. La regulación de esta unidad de obra se recogía en el ya derogado artículo 515 del PG3. Se trata de un tipo de base desarrollada en Francia en los años 60 del siglo pasado. Su mayor problema es el coste del transporte de la escoria desde el alto horno a la central de fabricación, siendo 100 km una distancia límite. Esta es una de las razones por las que se encuentra desregulado su empleo. De hecho, actualmente en España la producción de escoria se localiza en Asturias, concentrándose su consumo principalmente en la zona norte del país.

La escoria granulada es una arena vitrificada obtenida por el enfriamiento brusco y controlado de la escoria de alto horno, a la salida de éste. Está constituida fundamentalmente por silicatos cálcicos, conteniendo también otras sustancias, principalmente alúmina y magnesia. La gravaescoria parte de una mezcla de árido, un 15-20% de escoria granulada de alto horno, agua y un 1% de cal viva o apagada que actúa como catalizador del fraguado. El catalizador es necesario porque la escoria granulada no es un conglomerante hidráulico, sino puzolánico. Por ello el fraguado (en puridad, una cristalización) es progresivo y lento, que puede durar varios meses, llegando al cabo de unos 2 años a alcanzar las resistencias obtenidas con la gravacemento. En otros países se utiliza escoria aireada, obtenida por enfriamiento con agua y aire.

Los áridos utilizados serán naturales o procedentes del machaqueo y trituración de piedra de cantera o grava natural. Serán limpios, sólidos y resistentes, de uniformidad razonable, exentos de polvo, suciedad, arcilla y otros materiales extraños. Su huso granulométrico es algo más abierto que en el caso del árido para la gravacemento. La humedad de la mezcla es algo superior a la óptima del Proctor Modificado. Se aconseja un riego de curado, aunque no es estrictamente necesario.

El proceso de ejecución será el que se indica a continuación:

  • Preparación de la superficie
  • Fabricación de la mezcla
  • Transporte y vertido
  • Compactación y acabado

La fabricación en central permite dosificar por separado el árido, la escoria granulada, la cal y el agua. Se debe asegurar una compactación que llegue al 100 % del Proctor Modificado, así como un buen drenaje del firme para evitar futuros problemas. La extensión se realiza por capas que, una vez compactadas, varíen entre 15 y 30 cm. Sin embargo, la compactación se realizará en una sola tongada.

La compactación se inicia por el borde más bajo de las distintas bandas longitudinales y continuará hacia el borde más alto de la capa, con el solape correspondiente. En los bordes se debe disponer de una contención lateral adecuada. Esta unidad de obra se puede ejecutar si la temperatura ambiente a la sombra supera los 5ºC y no se prevean heladas. Sin embargo, si la temperatura tiene tendencia a crecer, podrá bajarse el límite a 2ºC.

Cuando la gravaescoria es económicamente factible, presenta algunas ventajas respecto a la gravacemento. Así, su lento endurecimiento permite más tiempo de puesta en obra y abrir al tráfico ligero inmediatamente. Aunque se deforme la capa, siempre se podrá reperfilar antes de extender el pavimento. Otra ventaja es la homogeneidad conseguida en la mezcla debido a la elevada proporción de conglomerante, siendo la humedad y el contenido de escoria factores menos críticos. El problema del reflejo de las grietas en el firme se reduce debido a su menor retracción, por lo que es posible disminuir el espesor del pavimento bituminoso.

Descargar (PDF, 279KB)

Referencias:

JOFRE, C.; KRAEMER, C. (dir.) (2008). Manual de estabilización de suelos con cemento o cal. Instituto Español del Cemento y sus Aplicaciones (IECA), 217 pp.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Percepción de los estudiantes de postgrado de ingeniería y arquitectura sobre el diseño sostenible

 

La construcción es uno de los responsables de los niveles actuales de estrés ambiental, pero también se reconoce como un sector esencial para promover el bienestar humano, el acceso a la educación o la la erradicación de la pobreza mediante el desarrollo de infraestructuras y servicios. Por ello, desde el reciente establecimiento de los Objetivos de Desarrollo Sostenible en 2015, los arquitectos e ingenieros civiles se han erigido como actores clave para el futuro sostenible al que aspiramos. Sin embargo, la complejidad de la sostenibilidad reclama cambios fundamentales en los actuales planes de estudio universitarios para formar profesionales que puedan afrontar dicho reto. Los cursos universitarios convencionales de ingeniería y arquitectura suelen quedarse cortos a la hora de proporcionar una educación holística en la que los estudiantes perciban adecuadamente la relevancia de considerar no sólo los requisitos funcionales de sus diseños, sino también sus consecuencias sociales y medioambientales. La presente comunicación pretende ofrecer una herramienta de evaluación para detectar las principales lagunas en la formación de estos profesionales a partir de las percepciones de los estudiantes de posgrado sobre el diseño sostenible. Se realiza una encuesta a los alumnos de los posgrados “Modelos predictivos y optimización de estructuras de hormigón” del Máster Universitario en Ingeniería del Hormigón, y “Gestión de la innovación en el sector de la construcción” del Máster en Planificación y Gestión en Ingeniería Civil, ambos impartidos en la Universidad Politécnica de Valencia. La consistencia de las respuestas se evalúa de forma objetiva a partir del método del Proceso Analítico Jerárquico, sacando a la luz los campos educativos en los que se debe poner especial empeño a la hora de adaptar los planes de estudio universitarios hacia la educación en sostenibilidad.

Figura. Matriz AHP completa

Referencia:

NAVARRO, I.J.; SÁNCHEZ-GARRIDO, A.J.; YEPES, V. (2021). Engineering and architecture postgraduate student’s perceptions on sustainable design. 15th annual International Technology, Education and Development Conference (INTED 2021), 8th-9th March, 2021, pp. 2554-2563, Valencia, Spain. ISBN: 978-84-09-27666-0

Descargar (PDF, 378KB)

Special Issue “New Trends in Smart Construction Education and Research”

J Multidisciplinary Scientific Journal (ISSN 2571-8800) is a peer-reviewed, open access journal on all natural and applied sciences published quarterly online by MDPI. The goal of this journal is to improve dissemination of new research results and ideas, and to allow research groups to build new studies, innovations and knowledge.

  • Open Access— free for readers, free to re-use.
  • High Visibility: indexed within FSTACAPlus / SciFinder, and many other databases.
  • Recognition of reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.

Special Issue “New Trends in Smart Construction Education and Research”

Deadline for manuscript submissions: 31 December 2021.

Special Issue Editor

Prof. Dr. Víctor Yepes Website

Guest Editor

Institute of Concrete Science and Technology (ICITECH), Universitat Politècnica de València, 46022 València, Spain
Interests: multiobjective optimization; structures optimization; lifecycle assessment; social sustainability of infrastructures; reliability-based maintenance optimization; optimization and decision-making under uncertainty
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

University education related to architecture, engineering and construction is changing rapidly, especially in these challenging times of the COVID-19 pandemic. Methodologies are changing: competency-based education is being imposed, online teaching, and affecting active participation of students in the learning process, among others. In fact, the education provided today at universities should be the basis for future graduates to be able to practice their profession in the coming decades. It cannot, therefore, be taught the same as it has been taught for the last 50 years.

In this educational context, the concept of “smart construction” takes on special importance. It is a concept that is associated with digital design, information and communication technologies, artificial intelligence, BIM, Lean Construction, prefabrication, drones, robotization, the Internet of Things and automation, innovation and sustainability, among many other concepts. Among these concepts, one that particularly interests me is the association with new construction methods (a term that includes new products and new construction procedures). They aim to improve business efficiency, quality, customer satisfaction, environmental performance, sustainability and predictability of delivery times. Therefore, modern construction methods are more than just a particular focus on the product. They engage people to seek improvements, through better processes, in construction delivery and execution. For all this technological revolution to be possible, it is essential to change the current educational methods in universities, especially in those engineering studies related to the field of construction. The challenge is twofold: on the one hand, to teach those trends in smart construction that will become a reality in the coming years and, on the other hand, to change the way of teaching at the university, adapting to these new technologies.

This Special Issue aims at promoting original and high-quality papers on new trends in Architecture, Engineering and Education from a multidisciplinary perspective. In particular, the Special Issue seeks to collect best educational practices, innovations in the learning process, problem- and project-based education, collaborative learning, etc. It is about collecting the trends towards which university education related to the world of construction is heading.

We cordially invite you to submit a high-quality original research paper or review to this Special Issue,“ New Trends in Smart Construction Education and Research”.

Prof. Dr. Víctor Yepes
Guest Editor

 

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. J is an international peer-reviewed open access quarterly journal published by MDPI.

Keywords

  • university education
  • collaborative learning
  • online teaching
  • new educational technologies
  • engineering and architecture
  • COVID-19
  • smart construction
  • lean construction
  • BIM
  • sustainability

Autoevaluación de la capacidad de pensamiento crítico de los estudiantes de ingeniería civil mediante un software basado en AHP

La autoevaluación de los estudiantes desempeña un papel central en su formación. Sin embargo, se ha prestado poca atención a su medición para que sea válida y precisa. Esta capacidad, relacionada con el pensamiento crítico, puede estimarse comparando la evaluación de los alumnos con su rendimiento en los exámenes. Se propone el índice de consistencia como una métrica para medir el pensamiento crítico que permite observar el bajo rendimiento en la capacidad de juicio de una muestra de 23 estudiantes de ingeniería civil. Esto subraya la necesidad de mejorar este aspecto de la formación, que se requiere no solo como competencia transversal, sino también para la consecución de una capacidad de autoevaluación efectiva. Aquí presentamos un software educativo basado en el Proceso Analítico Jerárquico (AHP) que facilita a los estudiantes la autoevaluación para emitir juicios coherentes, así como para entrenar su pensamiento crítico. De este modo, se pretende que los estudiantes sean conscientes de las posibles carencias en su habilidad para la evaluación válida y consistente, así como darles la oportunidad de mejorar este aspecto a través de la autoevaluación. El software incorpora un proceso de tres pasos, en el que la autoevaluación ocurre en la última etapa: en primer lugar, se pide al estudiante una evaluación convencional del profesor basada en criterios ponderados por él mismo mediante AHP sin control de consistencia. En segundo lugar, se le solicita que active el control del índice de consistencia del software, que revelará eventuales incoherencias, y que, en consecuencia, revise sus juicios hasta que sean aceptables. Por último, se le invita a autoevaluar su capacidad para emitir un juicio coherente analizando las diferencias entre su evaluación con (paso 2) y sin (paso 1) la ayuda del control de coherencia. Ello le permite reflexionar sobre las diferencias entre la evaluación coherente y la incoherente, y a pensar en sus posibles causas. Los estudiantes pueden realizar de forma autónoma todo el proceso en el software presentado. Además, sirve como plataforma para la auto-retroalimentación efectiva y el entrenamiento de su precisión de evaluación y capacidad de pensamiento crítico.

Referencia:

SALAS, J.; SIERRA, L.; YEPES, V. (2021). AHP-based educational sofware for strudents’ self-assessment of critical thinking capacity. 15th annual International Technology, Education and Development Conference (INTED 2021), 8th-9th March, 2021, pp. 2744-2753, Valencia, Spain. ISBN: 978-84-09-27666-0

Descargar (PDF, 675KB)

Docencia remota en ingeniería de la construcción durante el COVID-19

Este trabajo describe el impacto del cambio de clases presenciales a no presenciales de un curso de postgrado de la Universitat Politècnica de València. Se analizan las asignaturas de instalación, organización y aseguramiento de la calidad en la construcción, así como la de Procedimientos de Construcción, de los grados en Ingeniería de Obras Públicas e Ingeniería Civil. En ellas se desarrollan las competencias del estudiante para integrarse en una empresa constructora, como Jefe de Obra o Director de Producción, a partir de un recorrido por las diferentes fases del proceso de proyecto-construcción. Como parte de este tema, se discuten los métodos de programación de actividades en la obra. En el método tradicional, se resuelven los problemas en presencia del estudiante. Para ello deben haber aprendido previamente técnicas de programación: redes de flechas, redes de precedencias, y cómo aplicar el método PERT para obtener estadísticamente la probabilidad de finalización de una obra o la realización de actividades relacionadas. Debido a la situación actual de la pandemia causada por el COVID-19, la enseñanza presencial ha cambiado a clases virtuales en muy poco tiempo. Esto ha exigido un giro radical hacia la educación a distancia. Este trabajo explica cómo se ha realizado este cambio, qué nuevos métodos se han utilizado para impartir los contenidos correspondientes a la programación de las tareas, y cuál ha sido la percepción de los estudiantes. Se analiza la calidad de la enseñanza y las dificultades encontradas para adquirir los resultados de aprendizaje requeridos en estas asignaturas.

Referencia:

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2021). Remote teaching in construction engineering management during COVID-19. 15th annual International Technology, Education and Development Conference (INTED 2021), 8th-9th March, 2021, pp. 879-887, Valencia, Spain. ISBN: 978-84-09-27666-0

Descargar (PDF, 458KB)

 

 

Evaluación crítica de una revista de muy alto impacto en ingeniería civil: Automation in Construction

Acaban de publicarnos un artículo en la revista científica Journal of Civil Engineering & Management (indexada en el JCR, Q2) un artículo que analiza la evolución de una de las revistas científicas de mayor impacto en ingeniería civil: Automation in Construction. Este tipo de publicaciones críticas está siendo habitual en el ámbito científico porque permite conocer las luces y las sombras, así como detectar las claves de las líneas de investigación punteras ahora y en un futuro próximo. Además, permite a los editores conocer si están acertando en su línea editorial o está la revista escorándose hacia derroteros poco recomendables. No es el caso. Asimismo, esta publicación es de especial interés porque se encardina dentro de mi colaboración internacional, que está creciendo enormemente en estos últimos años.

Automation in Construction es una de las principales revistas internacionales de ingeniería civil y construcción que se remonta a 1992. En este trabajo se ha cuantificado y visualizado la evolución de las publicaciones de esta revista mediante métodos bibliométricos. Nuestro trabajo consta de dos partes: 1) estadísticas de publicación y citación en términos de distribución anual, fuentes de citación, países/regiones e institutos prolíficos y artículos altamente citados, 2) análisis de redes y mapas científicos en términos de red de coautoría, red de co-citación y evolución temática. Para realizar los análisis se utilizan dos programas informáticos bibliométricos, VOSviewer y SciMAT. Los resultados sugieren que la revista ha obtenido una creciente influencia y reputación por parte de la comunidad científica en las últimas décadas. Se espera que nuestro estudio tenga una importancia orientadora para los editores y los lectores de esta revista, pues proporciona información clave sobre la evolución en el tiempo.

Este artículo está en abierto y lo podéis descargar aquí, o directamente desde el enlace de la revista: https://journals.vgtu.lt/index.php/JCEM/article/view/14365

Abstract:

Automation in Construction is one of the leading international journals in construction and building dating back to 1992. This study aims to quantify and visualize the evolution of Automation in Construction publications using bibliometric methods. Our work has two parts: 1) publication and citation statistics in terms of annual distributions, citing sources, prolific countries/regions and institutes, and highly cited papers, 2) network and science mapping analyses in terms of co-authorship network, co-citation network and thematic evolution. Two bibliometric software, VOSviewer and SciMAT, are used to help us carry out the analyses. The results suggest that Automation in Construction has obtained increasing influence and reputation from scientific community over the past decades. It is expected that our study has guiding significance for editors and readers of this journal through providing key insights about the evolution over time.

Keywords:

Automation in Construction, bibliometric, publications and citations, science mapping analyses, thematic evolution

Reference:

TANG, M.; LIAO, H.; YEPES, V.; LAURINAVICIUS, A.; TUPENAITE, L. (2021). Quantifiying and mapping the evolution of a leader journal in the field of civil engineering. Journal of Civil Engineering and Management, 27(2):100-116. DOI:10.3846/jcem.2021.14365

Descargar (PDF, 3.47MB)

 

Plataformas flotantes de carácter lúdico en las playas

¿Cabe hablar de ingeniería turística? En esta entrada os doy detalles de una actuación singular desarrollada en las playas turísticas. Se trata de la instalación y explotación integral de unas plataformas flotantes de carácter lúdico situadas en lugares de comportamiento tan complejo y dinámico como la proximidad de las rompientes de olas. Os explico brevemente cómo se desarrollan todas las tareas realizadas desde el momento en que surgió la idea, hasta los detalles de instalación, mantenimiento, seguridad, etc. que garantizaron una explotación integral de las mismas.

 

El problema más importante que hay que resolver es el medio hostil que es el litoral marítimo, y especialmente en una zona de disipación de energía como es la rompiente de las olas.  A este respecto señalar que uno de los condicionantes básicos en la ubicación de las plataformas es que estas no se deben instalaran a más de 200 m de la línea de playa, pues a partir de este límite, podrían interferir a la seguridad del tráfico marítimo. Este factor es altamente restrictivo en la elección de la ubicación, ya que, para el correcto funcionamiento de la plataforma, necesita de al menos 2,5 m. de profundidad, haciendo prácticamente imposible encontrar, en algunas playas de máximo interés turístico, puntos donde converjan la batimetría óptima con la profundidad idónea, la distancia máxima a la línea de playa y la orientación correcta en cuanto a mareas y vientos predominantes se refiere.

A continuación os dejo un vídeo explicativo sobre las plataformas flotantes de carácter lúdico en las playas.

Aquí os dejo un vídeo sobre el montaje de este tipo de plataformas.

Referencia:

YEPES, V.; NÚÑEZ, F. (1994). Plataformas flotantes de carácter lúdico en las costas de la Comunidad Valenciana. Un ejemplo de ingeniería turística. Revista de Obras Públicas, 3335: 51-59.

Ranking de investigadores en ingeniería civil 2021

https://es.wikipedia.org/wiki/%C3%8Dndice_h

Hoy día se hacen listas de todo tipo, especialmente en las redes sociales. Se catalogan a las universidades, a las empresas, a las personas. También se hace lo mismo con los investigadores. Son listas en las que los criterios de evaluación son a veces discutibles, especialmente en el ámbito científico.

En un artículo anterior discutí brevemente el índice h como indicador de la calidad investigadora de un científico. Basándose en este índice, viene siendo habitual que a principios de cada año se publiquen listados sobre los “influencers” en investigación científica en España. Una de las páginas más famosas es http://indice-h.webcindario.com/indice.html

Lo interesante de esta página es su metodología de evaluación, que se puede consultar aquí:  http://indice-h.webcindario.com/P+F.html. Se trata de una página elaborada por el Grupo para la Difusión del Índice h (DIH), que intenta dar a conocer a los científicos con mayor índice h de entre los que trabajan en España. Según sus autores, este índice aumenta con la calidad de la investigación que se publica y, por tanto, permite establecer rankings de los mejores investigadores. La información la elaboran de una base de datos de gran prestigio (ISI Web of Knowledge).

Pues bien, en el ámbito de la ingeniería civil, los investigadores con mayor índice h en España, a fecha de hoy, son los siguientes (se limita el número de investigadores a aquellos que tengan un valor mínimo de h que sea la mitad del que encabeza la lista):

 

 

Método vibroalas para mejora de suelos no cohesivos

El método vibroalas, “Vibro-Wing” en inglés, constituye un procedimiento de mejora de suelos granulares mediante compactación por vibración desarrollado en Suecia. La sonda consiste en una varilla de acero de hasta 15 m de longitud con unas placas radiales soldadas, a modo de alas, de 0,80 a 1,00 m de largo, separadas unos 0,50 m entre sí. El vibrador de la varilla se opera desde el exterior con maquinaria convencional. Se obtiene una alta densidad relativa en arenas medias y finas. El método se emplea en cimentaciones, puertos, rellenos hidráulicos, presas, cimentación de maquinaria y de estructuras especiales.

Figura 1. Varilla vibrante con alas. https://www.fellenius.net/

La sonda se introduce en el terreno con un vibrador de alta capacidad y luego se retira lentamente con una vibración continua. El vibrador pesa unas 7 t y vibra a una frecuencia aproximada de 20 Hz. Se tarda aproximadamente 1 minuto en la hinca y 5 minutos en la extracción. El terreno granular, normalmente arenas, se compacta tanto durante la hinca como en la extracción de la sonda. Por tanto, el rendimiento supera a la compactación dinámica o la vibrocompactación. Una limitación del Vibro-Wing es la dificultad de extraer la sonda en suelos bien compactados.

El tratamiento se realiza en puntos espaciados entre 1,50 a 5,00 m de una malla triangular. La capa superior del terreno, entre 1,00 y 1,50 m, no alcanza la densidad requerida, por lo que se utiliza un compactador vibratorio de 8 a 10 toneladas para terminar la mejora. No obstante, la duración y el espaciamiento de los puntos de compactación se suelen determinar mediante ensayos de campo. Durante la vibración, la presión intersticial entre los poros de las partículas aumenta, lo cual mejora la densificación. Esta presión puede llegar incluso a la licuación del terreno alrededor de la sonda.

Figura 2. Esquema de maquinaria empleada y de las vibroalas

La mayor ventaja del Vibro-Wing es su rendimiento y bajo coste en comparación con otros métodos de compactación profunda. Sin embargo, no es aplicable si el contenido de finos supera el 5-10% en terrenos con arenas gruesas o gravas. Este método no es eficiente en limos o arcillas debido a que requiere un tiempo excesivo para la consolidación del terreno.

Por otra parte, aunque se podrían compactar arenas finas hasta una profundidad de 40 m, solo sería necesario compactar hasta unos 20-25 m. En efecto, la compresibilidad de los suelos no cohesivos disminuye con la profundidad, siendo el asiento insignificante por debajo de esta distancia para la mayoría de las estructuras convencionales. Además, el riesgo de licuación debido a un sismo se reduce con la profundidad. Por tanto, normalmente no es necesario sobrepasar los 15 m de compactación, incluso con suelos con densidades relativas bajas.

Os dejo a continuación un artículo de Broms y Hansson sobre este método.

Descargar (PDF, 3.61MB)

Referencias:

BROMS, B.B. (1991)- Deep Compaction of Granular Soils. In: Fang HY. (eds) Foundation Engineering Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5271-7_23

MASSARCH, K.R.; FELLENIUS, B.H. (2005). Deep vibratory compaction of granular soils. Chapter 19 in Ground Improvement-Case Histories, Elsevier publishers, B. Indranatna and C. Jian, Editors, pp. 633 – 658.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844.

ORTUÑO, L. (2003). Vibroflotación. Columnas de grava. Jornada sobre mejora del terreno de cimentación, Madrid, diciembre de 2003.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.