Procedimientos de construcción de cimentaciones y estructuras de contención. Segunda edición ampliada

Os presento la segunda edición ampliada del libro que he publicado sobre procedimientos de construcción de cimentaciones y estructuras de contención. El libro trata de los aspectos relacionados con los procedimientos constructivos, maquinaria y equipos auxiliares empleados en la construcción de cimentaciones superficiales, cimentaciones profundas, pilotes, cajones, estructuras de contención de tierras, muros, pantallas de hormigón, anclajes, entibaciones y tablestacas. Pero se ha ampliado esta edición con tres capítulos nuevos dedicados a los procedimientos de contención y control de las aguas subterráneas. Además, de incluir la bibliografía para ampliar conocimientos, se incluyen cuestiones de autoevaluación con respuestas y un tesauro para el aprendizaje de los conceptos más importantes de estos temas. Este texto tiene como objetivo apoyar los contenidos lectivos de los programas de los estudios de grado relacionados con la ingeniería civil, la edificación y las obras públicas.

Este libro lo podéis conseguir en la propia Universitat Politècnica de València o bien directamente por internet en esta dirección: https://www.lalibreria.upv.es/portalEd/UpvGEStore/products/p_328-9-2

El libro tiene 480 páginas, 439 figuras y fotografías, así como 430 cuestiones de autoevaluación resueltas. Los contenidos de esta publicación han sido evaluados mediante el sistema doble ciego, siguiendo el procedimiento que se recoge en: http://www.upv.es/entidades/AEUPV/info/891747normalc.html

Sobre el autor: Víctor Yepes Piqueras. Doctor Ingeniero de Caminos, Canales y Puertos. Catedrático de Universidad del Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil de la Universitat Politècnica de València. Número 1 de su promoción, ha desarrollado su vida profesional en empresas constructoras, en el sector público y en el ámbito universitario. Es director académico del Máster Universitario en Ingeniería del Hormigón (acreditado con el sello EUR-ACE®), investigador del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y profesor visitante en la Pontificia Universidad Católica de Chile. Imparte docencia en asignaturas de grado y posgrado relacionadas con procedimientos de construcción y gestión de obras, calidad e innovación, modelos predictivos y optimización en la ingeniería. Sus líneas de investigación actuales se centran en la optimización multiobjetivo, la sostenibilidad y el análisis de ciclo de vida de puentes y estructuras de hormigón.

Referencia:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

A continuación os paso las primeras páginas del libro, con el índice, para hacerse una idea del contenido desarrollado.

https://gdocu.upv.es/alfresco/service/api/node/content/workspace/SpacesStore/31b0d684-f0a7-4ee7-b8f4-73694e138d5e/TOC_0328_09_02.pdf?guest=true

Descargar (PDF, 476KB)

 

 

¿Siempre es válida la ley de Darcy?

Figura 1. Esquema de la ley de Darcy

En un artículo anterior, dentro de los conceptos básicos del agua en medio poroso, se definió la ley de Darcy como una ley experimental que define el movimiento de filtración en un medio poroso saturado. Dicha ley dice que la velocidad del fluido en medio poroso es proporcional al gradiente hidráulico a través del coeficiente de permeabilidad.

Dicho coeficiente no es una propiedad intrínseca del suelo y tiene unidades de velocidad. Aquí se ha supuesto un flujo laminar en medio poroso y una velocidad media a través de una sección “macroscópica” de suelo, es decir, la velocidad aparente a lo largo de las líneas de flujo. A esa velocidad se llama velocidad del flujo o velocidad de Darcy.

Sin embargo, ¿estamos seguros de que se cumplen siempre estas condiciones? ¿Cuáles son los límites de validez de la ley de Darcy?

Se ha supuesto que el movimiento del agua a través de los huecos del suelo es un flujo laminar, es decir, un movimiento ordenado, estratificado o suave. En estas condiciones, el fluido se mueve en láminas paralelas que no se entremezclan y cada partícula de fluido sigue una trayectoria suave, denominada línea de corriente. Esto es así al cumplirse las condiciones de pequeño diámetro de los huecos de la red intersticial y la pequeña velocidad del flujo, que conducen a un número de Reynolds notablemente inferior al crítico. Este número es adimensional, siendo pequeño para flujos laminares y alto para flujos turbulentos. Así, para gradientes hidráulicos elevados, la ley de Darcy no es aplicable, pues la pérdida de carga hidráulica aumenta más rápido que el caudal debido a que el flujo en los huecos pasa de laminar a turbulento.

A partir de numerosos ensayos y por analogía con la hidráulica (Iglesias, 1997), aquí podemos definir el número de Reynolds, R, de la siguiente forma:

donde v es la velocidad del flujo, d es el diámetro medio de los granos, η es el coeficiente de viscosidad del agua y ρ es la densidad del agua.

La linealidad de la ley de Darcy se cumple para R<10. No obstante, la validez de la ley de Darcy es muy habitual en los casos reales, salvo en suelos muy permeables y en las proximidades de algunas captaciones bombeando caudales elevados. Un ejemplo donde no se sigue la ley de Darcy son en las formaciones kársticas. No obstante, con velocidad de flujo muy pequeña, existe un efecto de inercia que limita el flujo laminar que modifican los resultados obtenidos por la ley de Darcy. Sería el caso de la absorción de moléculas de agua que no pueden ser arrastradas por la pequeña velocidad del flujo. Este efecto es más acusado en suelos cohesivos, debido a la presencia de la doble capa alrededor de las partículas del suelo.

Referencias:

IGLESIAS, C. (1997). Mecánica del suelo. Editorial Síntesis, Madrid, 590 pp.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La excavación por bataches

Figura 1. Excavación por bataches (Cano et al., 2020). Aunque es posible hacerlo en módulo de dos, es preferible hacerlos en módulo de tres, según Figura 4.

Cuando se está realizando una excavación para el vaciado, por ejemplo, de unos sótanos de un edificio, lo primero que se plantea es si es necesario algún sistema de contención provisional (muros pantalla, muro berlinés, tablestacas, suelo armado o apuntalamiento provisional) hasta que se permita construir unos muros o estructuras de contención definitiva de las tierras. Sin embargo, a veces no se precisa de una estructura de contención provisional, pues se puede ejecutar, bajo determinadas condiciones, el vaciado mediante una excavación vertical o en talud, mediante bermas o bien mediante bataches. Este artículo explica la excavación por bataches.

La primera consideración a tener en cuenta es que solo se podrán acometer excavaciones sin una contención provisional en el caso de que no se vea perjudicada por las aguas subterráneas o cuando no exista afección sobre estructuras vecinas o servicios públicos. Por tanto, la excavación por bataches solo será aplicable en el caso de que el vaciado se encuentre por encima del nivel freático, no existan cimentaciones próximas y se puedan mantener los taludes estables o se puedan apuntalar. En este caso, la excavación por bataches permite el vaciado mediante etapas. El sistema se basa en la excavación alterna de tramos del frente de una berma perimetral previamente ejecutada. En el caso de edificaciones, la excavación por bataches es habitual para un solo sótano, aunque se podrían excavar dos o tres sótanos con un sistema más complejo basado en la creación de anillos descendentes, normalmente anclados.

Tal y como se muestra en la Figura 2, el batache es la excavación que queda vertical entre dos espaldones, que actúan a modo de contrafuerte de terreno. Según la norma NTE-ADZ, el ancho E del batache no podrá superar los 2 m, ni tampoco podrá superar la altura vertical del espaldón HE, los 3 m (caso de realizar la excavación con maquinaria). En caso de que alguno de estos dos parámetros se incumpla, deberá procederse al entibado.

Con todo, hay que tener presente que en España las antiguas Normas Tecnológicas de la Edificación, NTE, del Ministerio de la Vivienda, se encuentran en desuso, haciendo referencia de forma genérica al ancho de excavación, sin tener en cuenta los parámetros geotécnicos del terreno. Por tanto, estas dimensiones límite de las NTE deben ser indicativas, pues se debería efectuar un estudio en mayor profundidad con datos reales para ajustar los límites en casos complejos. Por ejemplo, los anchos de los bataches podrían llegar incluso a 3-5 m en algunos casos concretos que requerirían un estudio en detalle, incluso la entibación.

Además, la norma NTE-CCT impone otra serie de restricciones a la hora de ejecutar un batache. Así, la berma superior del espaldón B deberá ser mayor a la mitad de la anchura E del batache; la distancia de la parte inferior del espaldón al paramento vertical A deberá ser mayor que su altura HE; además, la anchura del espaldón NE, deberá ser mayor a A.

Figura 2. Esquema de batache, con las condiciones impuestas por NTE-CCT

Un aspecto de obra de gran interés es hacer coincidir el ancho E del batache con las dimensiones de las placas de encofrado. Sin embargo, la excavación deberá ser algo superior a la dimensión del elemento hormigonado, pues se debe permitir la presencia de las esperas de las armaduras horizontales. El exceso puede estimarse en unos 60 cm en cada lado, con un mínimo de 20-30 cm si se opta por doblar las armaduras. Por tanto, un batache de 2 m puede irse a unos 3 m, lo cual puede poner en riesgo la estabilidad de un terreno de baja cohesión durante la construcción (Cano et al., 2020).

El aspecto más importante de la excavación por bataches es el orden de ejecución, puesto que la excavación se realiza por tramos alternados para que el sostenimiento sea viable, buscando el efecto arco del terreno entre los espaldones para evitar el derrumbe. Hay que tener en cuenta que, una vez descubiertos los bataches, deben cubrirse por los muros lo más rápidamente posible, como mucho al día siguiente del descubrimiento del batache. Un posible orden de ejecución de los tramos podría ser el descrito en las Figuras 3 y 4. En primer lugar, se excavaría el batache A, ejecutándose dicho tramo de muro. A continuación se procede de la misma forma con el tramo B, y por último, con el C. Hay que tener en cuenta que la excavación mediante bataches normalmente se encofra a una sola cara el muro, dejando la otra sobre el terreno.

Figura 3. El proceso de ejecución de los muros que sostienen un vaciado empieza con el replanteo de los bataches A, B y C.

 

Figura 4. Posteriormente, empieza la excavación con los bataches A, debiéndose terminar completamente el muro de dicho tramo. Luego siguen los bataches B y C.

En la Figura 5 se observa el encofrado a una cara del muro de sótano y el ferrallado de un batache. Corresponde a la ejecución de un aparcamiento subterráneo.

Figura 5. Ferrallado de un batache en aparcamiento. http://www.parkingvejer.com/index.php?page=hitos.php&lang=#prettyPhoto/62/

Os dejo un vídeo que explica el procedimiento constructivo de muros mediante excavación por bataches. Espero que os sea útil.

En este otro vídeo, de Marcelo Pardo, también se explica el procedimiento constructivo de un muro de contención por la técnica de bataches.

A continuación os dejo las normas NTE-ADZ y NTE-CCT para su consulta.

Descargar (PDF, 1.14MB)

Descargar (PDF, 199KB)

Comparto este interesante trabajo de la universidad de Alicante en el que se estima la longitud máxima de los bataches para construir un muro de contención:

Descargar (PDF, 2.92MB)

Referencias:

CANO, M.; PASTOR, J.L.; MIRANDA, T.; TOMÁS, R. (2020). Procedimiento constructivo de muros de sótano mediante bataches con juntas de conexión. Estudio del ancho óptimo de excavación en suelos mixtos. Informes de la Construcción, 72:558. http://informesdelaconstruccion.revistas.csic.es/index.php/informesdelaconstruccion/article/view/6008/7299

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Drenes verticales como técnica de mejora de terrenos

Figura 1. Drenes verticales o drenes mecha. https://www.keller.com.es/

Hoy día existen técnicas de mejora que permiten acelerar el proceso de consolidación de un terreno blando (en general, limos y arcillas poco permeables) provocado por una precarga.  Se puede utilizar tanto unas inclusiones verticales por columnas de grava, como la instalación de drenes verticales. Estas inclusiones se disponen en patrones de distribución uniforme, al tresbolillo o en forma de cuadrícula, uno cada 1,5-2,5 m2. La profundidad eficaz del tratamiento puede llegar hasta varias decenas de metros.

Este artículo se va a centrar en la técnica de drenes verticales. Los fines buscados con este método son alcanzar un grado de consolidación suficiente dentro de un plazo aceptable en el proyecto, modificando las variables de consolidación y tiempo. Con ello se aceleran los asientos por el drenaje, con asientos insignificantes tras la construcción. A diferencia de las columnas de grava, los drenes verticales no cumplen ningún tipo de función estructural, excepto la posible reducción del potencial de licuación en algunos suelos.

Los drenes verticales son columnas de material permeable instalados en suelos arcillosos compresibles para drenarlos, recogiendo y evacuando el agua expulsada durante la consolidación. Estos drenes acortan el recorrido de agua, pues al drenaje vertical existente se le suma el drenaje horizontal o radial que crea el dren vertical (Figura 2). Entre los drenes y la precarga se instalan geotextiles o bien una capa de arena para que los drenes estén en contacto con la atmósfera, a presión “cero” en su parte superior (Oteo et al., 2012).

Figura 2. Esquemas del drenaje. https://www.terratest.cl/tecnologia-mechas-drenantes.html

El drenaje vertical es habitual en suelos blandos con estratos delgados o no muy profundos, suelos blandos con cargas moderadas, suelos blandos con cargas superficiales o construcciones donde es necesario reducir el asentamiento diferencial. Por tanto, son técnicas frecuentes en obras viales (carreteras o ferrocarriles), en explanaciones (aeropuertos, naves industriales, silos, depósitos), en obras hidráulicas (costas, puertos, presas) o en depósitos naturales (terraplenes y rellenos, vertederos).

Los drenes verticales pueden ser:

  • De arena ejecutados “in situ”
  • Prefabricados de arena
  • Drenes de mecha

Los drenes prefabricados de arena van empacados en una camisa filtrante. Los drenes de mecha o simplemente mechas son los más utilizados. Las mechas pueden ser tubos de plástico corrugado flexible, en cuyo interior hay un filtro cubierto. Los más comunes son los drenes de banda, por lo general de unos 100 mm de ancho (Figura 3).

Figura 3. Mandriles para drenes de banda (Bielza, 1999)

La maquinaria empleada en la instalación de las mechas drenantes suele ser de gran tamaño, pero se consigue que no produzca perturbación en las distintas capas del terreno, siendo un sistema limpio que no genera residuos en el suelo. Con esta técnica se pueden llegar a 70 m de profundidad en caso necesario.

Las etapas del procedimiento constructivo son las siguientes:

  1. Se sitúa la máquina en el emplazamiento. Las características de la mecha y el vástago deben combinar bien con el tipo de suelo a tratar
  2. Se introduce el vástago junto a la mecha hasta la profundidad requerida. Se debe controlar la verticalidad del vástago y la colocación recta y estirada de la mecha.
  3. Se extrae el vástago, dejando la mecha en el terreno.
  4. Una vez extraído el vástago, se corta la mecha unos 30 cm por encima de la superficie el terreno
Figura 4. Ejecución de mechas (Oteo et al., 2012)

El Ministerio de Fomento (2002) recomienda una separación de prediseño para las mechas drenantes en función del tipo de suelo. Estando dispuestas en tresbolillo, la distancia será de 1,00 m en suelos arcillosos de elevada plasticidad; de 1,50 m en limos o arcillas de baja plasticidad; y de 2,00 m en arcillas donde se intercalen horizontalmente suelos más permeables como limos o arenas. Se debe fijar el tiempo de espera para determinado grado de consolidación, asiento o presiones intersticiales. Además, los aspectos que se deben controlar son la longitud hincada y los espaciamientos, la longitud externa de las mechas, el espesor y la granulometría de la capa drenante.

Entre las ventajas de los drenes prefabricados se encuentra su bajo coste, la mayor capacidad de drenaje, una instalación rápida, el uso de equipos ligeros y sencillos, proceso mecanizado, la continuidad del dren, la calidad constante y garantizada, la limpieza del emplazamiento, la alteración mínima del terreno y un transporte y acopio poco significativo.

Figura 5. Ejecución de mechas. Cortesía de Terratest.

Una técnica con una finalidad similar a los drenes verticales consiste en la utilización de drenes que disminuyen la presión hidrostática en taludes, consiguiéndose una mayor estabilidad de éstos. Se les denomina drenes californianos, y son tubos de PVC perforados (diámetro 65 mm) cubiertos con geotextil para filtrar el arrastre de sedimentos.

Os paso un vídeo explicativo que os resume brevemente las características principales de esta técnica de mejora del terreno.

En los vídeos que podéis ver a continuación se describen los trabajos de instalación de los drenes verticales. Espero que os sean de interés.

https://www.youtube.com/watch?v=TLLVOUtA1IU

Os dejo a continuación una pequeña descripción de la técnica de drenes verticales, cortesía de la empresa Menard.

Descargar (PDF, 5.44MB)

REFERENCIAS:

  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Ed. Carlos López Jimeno. Madrid, 432 pp.
  • GARCÍA VALCARCE, A. (dir.) (2003). Manual de edificación: mecánica de los terrenos y cimientos. CIE Inversiones Editoriales Dossat-2000 S.L. Madrid, 716 pp.
  • MINISTERIO DE FOMENTO (2002). Guía de Cimentaciones. Dirección General de Carreteras.
  • MITCHELL, J.K. (1981). Soil improvement: state-of-the-art report. 10th International Conference on Soil Mechanics and Foundation Engineering. Stockholm, 509-565.
  • OTEO, C.; OTEO, J. (2012). Innovaciones recientes en el campo de la mejora y refuerzo del terreno. Revista de Obras Públicas, 3534, 19-32.
  • VAN IMPE, W.F. (1989). Soil improvement techniques and their evolution. A.A. Balkema, Rotterdam, 77-88.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Procedimientos empleados en la inyección de terrenos

Figura 1. Inyección de una perforación por tramos (Cambefort, 1968)

En artículos anteriores se habló de los materiales empleados en la inyección de terrenos, de las técnicas de inyección del terreno y de los tipos de lechadas y aplicabilidad de los materiales de inyección de terrenos. Como decíamos, esta técnica consiste en introducir en el medio una mezcla fluida que reacciona con las partículas de suelo mediante una reacción hidráulica o química. De esta forma se conforma una masa de mayor resistencia mecánica y permeabilidad, así como menor deformabilidad, pues se consigue aumentar la compacidad, disminuyendo el índice de huecos. En este artículo nos centraremos en los procedimientos empleados en la inyección del terreno.

Un tubo facilita la inyección y evita que la lechada escape al exterior del taladro por el camino más fácil, que suele ser el contacto entre el terreno y el tubo de revestimiento o bien entre el obturador y el exterior del tubo de inyección. La inyección se puede realizar mediante los siguientes procedimientos:

  • Inyección desde la boca de la perforación: se vierte la lechada por gravedad desde la boca del sondeo, obturando en la parte superior. Se utiliza la técnica en rocas con grandes huecos.
  • Inyección ascendente: primero se hinca un tubo y se inyecta a medida que se extrae por tramos de 30 cm. La inyección se realiza por tramos sucesivos, empezando desde la parte inferior del terreno a inyectar hasta la zona superior. Se obtura a distintas profundidades y se aplican presiones de inyección decrecientes. Es una técnica más rápida y barata que la inyección por fases decrecientes, permitiendo independizar la perforación de la inyección.
  • Inyección al avance o por fases descendentes: se perfora un tramo, se retira el varillaje y se inyecta. Tras el fraguado ligero de la lechada, se perfora el tramo inyectado y un tramo nuevo, continuando el proceso. La idea es ir creando techos sucesivos que permitan ir aumentando la presión de inyección. Es una técnica cara, que debe evaluarse bien antes de su uso.
  • Inyección por fases repetitivas mediante tubos-manguito: se perfora y se introduce un tubo ranurado de 50-60 mm de diámetro, sin reperforación, cuyos orificios exteriores se cierran con manguitos de goma que actúan como válvulas anti-retorno, por los que sale la lechada. Se puede inyectar a cualquier nivel y orden o reinyectar mediante un doble obturador. Si se conoce la granulometría de cada capa, se puede ajustar la mezcla de inyección. La lechada de sellado debe ser de baja resistencia (0,3-0,5 MPa) y frágil. Para disminuir la resistencia se puede añadir un 3-4% de bentonita.

A continuación se describe el uso de cada una de estas técnicas en función si la inyección se realiza en terrenos rocosos o bien en terrenos sueltos.

  • Inyección en terrenos rocosos: Lo más habitual es utilizar la inyección por etapas descendentes y la inyección por etapas ascendentes. En macizos de calidad baja se emplea la inyección por etapas descendentes; aquí no tenemos la seguridad de que las paredes de la perforación se sostengan, no van a poder aguantar la presión de inyección, o la estructura geológica puentee la lechada, cementándose los obturadores, con la consiguiente pérdida de obturadores y taladro. En rocas de calidad media o alta se usa la inyección per etapas ascendentes.
  • Inyección en terrenos sueltos: Se utilizan las inyecciones descendentes, las inyecciones armadas, la inyección con puntaza perdida y el jet grouting. En las inyecciones descendentes se procede como en roca, pero la perforación se realiza a rotación con corona del mismo diámetro que la varilla y la inyección se realiza a través del varillaje de perforación. En las inyecciones armadas se introduce un tubo de paredes lisas dentro del taladro, perforando cada cierta distancia de modo que estas perforaciones se cubren con un manguito de caucho que sirve como válvula anti retorno; el espacio anular entre el tubo y las paredes de la perforación se rellena con una mezcla bentonita-cemento, de poca resistencia, que hace de obturador longitudinal y evita que la lechada fluya por la corona anular del taladro pero que se rompe al inyectar; la inyección se hace situando un obturador doble a nivel del manquito que se quiera inyectar. En la inyección con puntaza perdida se perfora con una puntaza de diámetro mayor que la varilla, inyectándose conforme se retira el varillaje; es un método barato con ciertas limitaciones. Con el jet grouting se realizan inyecciones a muy altas presiones, siendo procedimiento que se verá en detalle en una lección posterior.

El procedimiento más habitual es la inyección ascendente, con unas presiones normales de 1 a 3 MPa, aunque este rango se puede ampliar desde los 0,5 a los 8 MPa. Los taladros se separan entre 1 y 4 m. La relación entre el volumen inyectado y el de huecos del terreno es muy variable, entre el 40% en el caso de gravas abiertas o rellenos flojos mal compactados, al 10-20% para terrenos arenosos relativamente compactos. En la inyección de suelos, la técnica más común es la de tubo-manguito.

La longitud máxima de cada tramo de tratamiento varía entre 5 y 10 m. En suelos, la longitud tratada no suele superar el metro de longitud. Los taladros se separan según el tipo de terreno y las presiones que puedan aplicarse. En la Tabla 1 se indica la separación recomendada entre taladros de inyección, para algunas de las aplicaciones habituales:

De todas formas, es importante controlar la presión de la inyección, pues una presión nula puede indicar una pérdida de inyección, una presión excesiva puede dar lugar a levantamientos o giros en el caso de estructuras próximas. Siempre que sea posible se debe realizar un control informatizado de la perforación, así como medir y controlar la presión, el caudal y el volumen de las inyecciones en cada punto.

Por último, hay que tener presente que la inyección del terreno es una operación “ciega”, en el sentido que no se conoce realmente por dónde fluye la mezcla, por ejemplo, por desconocer la red de fracturación. Por tanto, se suelen extraer testigos después de las inyecciones para comprobar los resultados.

Referencias:

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Tipos de lechadas y aplicabilidad de los materiales de inyección de terrenos

Figura 1. Inyección de suelos. https://www.keller.com.es/experiencia/tecnicas/inyeccion-de-macizos-rocosos-suelos

En artículos anteriores se habló de los materiales empleados en la inyección de terrenos y de las técnicas de inyección del terreno. Como decíamos, esta técnica consiste en introducir en el medio una mezcla fluida que reacciona con las partículas de suelo mediante una reacción hidráulica o química. De esta forma se conforma una masa de mayor resistencia mecánica y permeabilidad, así como menor deformabilidad, pues se consigue aumentar la compacidad, disminuyendo el índice de huecos. En este artículo nos centraremos en los tipos de lechadas y la aplicabilidad de los materiales empleados en la inyección del terreno.

Se pueden distinguir tres tipos de lechadas:

  • Suspensiones inestables: Normalmente son mezclas de cemento diluido con agua en exceso en proporciones variables, no homogéneas, que sedimentan cuando cesa la agitación. Se emplean en rocas o materiales granulares gruesos.
  • Suspensiones estables: Se obtienen por disolución de arcilla y cemento en agua. Con la dosificación adecuada, con una fuerte agitación y con aditivos estabilizadores, se consigue que no se produzca la sedimentación durante la inyección.
  • Líquidos o disoluciones: No contienen partículas sólidas en suspensión, encontrándose en solución o en emulsión los componentes químicos en el agua. Están constituidos por productos químicos como silicatos, resinas orgánicas y productos hidrocarbonados puros. Mantienen constante su viscosidad, hasta el momento de la solidificación.

El sistema de inyección utilizado en cada caso depende de numerosos parámetros como la granulometría, la porosidad, la porosidad, la permeabilidad y las condiciones del agua subterránea, especialmente su composición química y velocidad de circulación. Además, existen numerosos productos en el mercado que se pueden adecuar en mayor o menor medida a las características específicas del terreno, por lo que suele ser habitual consultar a empresas especializadas.

En la Figura 2 se puede ver la aplicabilidad de distintos tipos de inyecciones atendiendo al tamaño de las partículas del suelo a inyectar. Se aprecia que el jet grouting se aplica, en general, a todo tipo de tamaño de partículas, excluyendo los bolos.

Figura 2. Aplicabilidad de distintos materiales de inyección según el tamaño de partículas del suelo (Kutzner, 1996)

Referencias:

  • BELL, F.G. (1993). Engineering treatment of soils. E & F Spon, Londres.
  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Carlos López Jimeno, Madrid, 432 pp.
  • CAMBEFORT, H. (1968). Inyección de suelos. Omega, Barcelona.
  • KUTZNER, C. (1996). Grouting of rock and soil. A.A. Balkema, Rotterdam.
  • MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. 2004.844. Valencia.
  • MINISTERIO DE FOMENTO (2005). Recomendaciones Geotécnicas para Obras Marítimas y Portuarias. ROM 0.5-05. Puertos del Estado, Madrid.
  • SANZ, J.M. (1981). Procedimientos generales de construcción. Sondeos y perforaciones, inyecciones, pilotes, pantallas continuas. E.T.S. Ingenieros de Caminos, Madrid.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Técnicas de inyección del terreno

Figura 1. Tipos principales de inyección del terreno

En un artículo anterior se habló de los materiales empleados en la inyección de terrenos. Como decíamos, esta técnica consiste en introducir en el medio una mezcla fluida que reacciona con las partículas de suelo mediante una reacción hidráulica o química. De esta forma se conforma una masa de mayor resistencia mecánica y permeabilidad, así como menor deformabilidad, pues se consigue aumentar la compacidad, disminuyendo el índice de huecos. En este artículo nos centraremos en las técnicas de inyección del terreno.

Todo proceso de inyección presenta dos facetas características (Sanz, 1981):

  1. Introducción y distribución en el medio de la mezcla de inyección. Para que ello sea posible debe adecuarse, de acuerdo con la morfología de los huecos del terreno, de una red de perforación auxiliar y de unas presiones de inyección adecuadas.
  2. Transformación de la mezcla, que endurece según un proceso químico que puede ser desde el fraguado en el caso del cemento, a la transformación sol-gel, en el caso de inyecciones químicas.

Las técnicas de inyección se pueden dividir en los siguientes grupos (Figura 1):

  • Rellenos de huecos y fisuras: Se inyecta lechada en las fracturas, diaclasas o discontinuidades de las rocas; o se rellenan los huecos con una lechada con un alto contenido de partículas. En este caso, el producto se introduce básicamente por gravedad hasta colmatar los huecos. Con grandes huecos, conviene introducir en las lechadas áridos o productos de alto rendimiento volumétrico.
  • Inyecciones de impregnación: No existe rotura del terreno. Se emplean mezclas muy penetrantes, cuyo objetivo principal es disminuir la permeabilidad del terreno rellenando poros y fisuras. Se sustituye el agua o el gas intersticial con una lechada inyectada a baja presión para no producir desplazamientos de terreno.
  • Inyecciones de compactación o de desplazamiento: Se introducen morteros de alta fricción interna que comprimen el terreno flojo y lo desplaza lateralmente de forma controlada, sin que el material inyectado se mezcle con él.
  • Inyecciones de fracturación hidráulica o por tubos manquito: Se fractura el terreno mediante la inyección de la lechada a una presión que supere su resistencia a tracción y su presión de confinamiento. La lechada no penetra en los poros, sino que se introduce en las fisuras creadas por la presión utilizada, formándose lentejones que recomprimen el terreno. Esta técnica también se llama hidrofracturación, hidrofisuración, “hidrojacking” o “claquage”. Son útiles en inyecciones de consolidación, de compensación de asientos, e inyecciones armadas. Para ello se suelen realizar con tubos manguito.
  • Inyección de alta presión: Se excava y mezcla el terreno con un chorro de lechada a alta velocidad (jet-grouting).

Las propiedades más importantes de las mezclas de inyección son las siguientes (Muzas, 2007):

  • Estabilidad y posibilidad de segregación: una velocidad pequeña del fluido puede sedimentar la mezcla y paralizar la inyección.
  • Viscosidad del producto: determina la presión y la velocidad de inyección.
  • Propiedades reológicas: comportamiento de la lechada a lo largo del tiempo.
  • Tiempo de fraguado: limita el plazo de utilización del producto en la inyección.
  • Volumen del producto fraguado: en las mezclas con agua, puede haber decantación o pérdida de agua al terreno contiguo, con disminución del volumen final.
  • Resistencia del producto fraguado.
  • Durabilidad: permanencia del producto fraguado a largo plazo.

En cuanto a los parámetros de la inyección, los más importantes son la velocidad de la inyección, el volumen de inyección, y la presión de inyección. La presión está muy relacionada con el tipo de terreno y con la viscosidad del producto, aconsejándose un valor límite.

Figura 2. Esquemas de algunas técnicas de inyecciones (ROM 5.05)

He preparado un pequeño vídeo donde os explico brevemente estas técnicas de inyección de terrenos.

Os dejo un vídeo donde vemos la instalación de tubos-manguito para trabajos de inyección de compensación.

Referencias:

  • BELL, F.G. (1993). Engineering treatment of soils. E & F Spon, Londres.
  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Carlos López Jimeno, Madrid, 432 pp.
  • CAMBEFORT, H. (1968). Inyección de suelos. Omega, Barcelona.
  • KUTZNER, C. (1996). Grouting of rock and soil. A.A. Balkema, Rotterdam.
  • MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. 2004.844. Valencia.
  • MINISTERIO DE FOMENTO (2005). Recomendaciones Geotécnicas para Obras Marítimas y Portuarias. ROM 0.5-05. Puertos del Estado, Madrid.
  • SANZ, J.M. (1981). Procedimientos generales de construcción. Sondeos y perforaciones, inyecciones, pilotes, pantallas continuas. E.T.S. Ingenieros de Caminos, Madrid.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Materiales empleados en la inyección de terrenos

Figura 1. Proceso de colmatación de los huecos mediante inyección del terreno

La presencia de suelos con permeabilidad muy alta o macizos rocosos muy fracturados pueden hacer que los bombeos sean excesivamente costosos y se precisen otro tipo de técnicas para controlar el nivel freático. Una forma de cambiar la permeabilidad de un terreno, y por tanto, contener mediante barrera el agua subterránea, es mediante la inyección del terreno. La técnica, muy utilizada también como mejora del terreno, consiste en introducir en el medio una mezcla fluida que reacciona con las partículas de suelo mediante una reacción hidráulica o química. De esta forma se conforma una masa de mayor resistencia mecánica y permeabilidad, así como menor deformabilidad, pues se consigue aumentar la compacidad, disminuyendo el índice de huecos (Figura 1).

El tratamiento del terreno con inyecciones depende tanto de las peculiaridades del medio a tratar como de las características del producto de inyección, así como de la forma en la que este producto se introduce en el medio.

Este procedimiento constructivo se inició en Francia, siendo su inventor Charles Bérigny en 1802, quien inyectó morteros de cemento, alguna vez asociados con puzolanas. Si bien al principio solo se pretendían rellenar huecos colocando el mortero líquido por gravedad, poco a poco se perfeccionaron las inyecciones, a partir de 1920-1930, donde la construcción de ferrocarriles abrió paso a las grandes obras hidráulicas.

Las aplicaciones más frecuentes de la inyección del terreno son los tratamientos de las cimentaciones de presas, el refuerzo de cimentaciones o recalce de edificios, así como la construcción de túneles. Sin embargo, hay que ser prudentes con estos procedimientos, pues la inyección de grandes volúmenes de material en el terreno puede causar desplazamientos. Además, el material inyectado tiende a moverse a través de las capas más permeables o a través de grietas débiles, surgiendo a menudo a distancias considerables del punto de inyección.

En el caso de las inyecciones de impermeabilización, el objetivo fundamental es reducir la permeabilidad del terreno. Son tratamientos muy habituales en presas, en túneles y en excavaciones en general, cuando se realizan trabajos bajo nivel freático. Se emplean como mezclas de inyección lechadas y productos químicos como los geles de silicato, aunque también es posible realizar inyecciones de colmatación de huecos mediante arenas sin cemento con objeto de disminuir la permeabilidad, permitiendo el drenaje. A medida que la permeabilidad del medio disminuye, se deben emplear fluidos de menor viscosidad para conseguir la suficiente penetración en el terreno.

Al fluido inyectado se le conoce como mortero de inyección, los cuales pueden ser conglomerados hidráulicos, materiales arcillosos, arenas y filleres, agua y productos químicos. El componente más habitual en las inyecciones es el cemento, el cual puede ir acompañado por distintos productos. Los materiales utilizados en la inyección son los siguientes:

  • Conglomerantes hidráulicos: Incluyen los cementos y productos similares empleados en suspensión cuando se preparan las lechadas. La granulometría del conglomerante hidráulico de la lechada es un factor importante, pues guarda relación con las dimensiones de los huecos o fisuras o huecos existentes.
  • Materiales arcillosos: Las arcillas naturales, de tipo bentonítico, activadas o modificadas, se utilizan en las lechadas elaboradas con cemento, pues reducen la sedimentación y varían la viscosidad y la cohesión de la lechada, mejorando la bombeabilidad.
  • Arena y filleres: Se adicionan a las lechadas de cemento y a las suspensiones de arcilla para variar su consistencia, mejorando de esta forma su comportamiento frente a la acción del agua, su resistencia mecánica y su deformabilidad. Generalmente se utilizan arenas naturales o gravas, filleres calcáreos o silíceos, puzolanas y cenizas volantes, exentos de elementos perjudiciales.
  • Agua
  • Productos químicos: Se utilizan silicatos y sus reactivos, resinas acrílicas y epoxi, materiales procedentes de lignina y poliuretanos, siempre que cumplan la legislación ambiental vigente. Los aditivos son productos orgánicos e inorgánicos que se añaden, en general en cantidades reducidas, a la lechada para modificar sus propiedades y controlar la viscosidad, el tiempo de fraguado y la estabilidad, durante la inyección, además de la resistencia, cohesión y permeabilidad una vez colocada la lechada. Como aditivos se utilizan, entre otros, superplastificantes, productos para retener agua y productos para arrastrar aire.

En la Tabla 1 se relacionan los distintos tipos de productos:

Os paso a continuación un vídeo explicativo de los materiales empleados en la inyección de terrenos.

Referencias:

  • BELL, F.G. (1993). Engineering treatment of soils. E & F Spon, Londres.
  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Carlos López Jimeno, Madrid, 432 pp.
  • CAMBEFORT, H. (1968). Inyección de suelos. Omega, Barcelona.
  • KUTZNER, C. (1996). Grouting of rock and soil. A.A. Balkema, Rotterdam.
  • MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. 2004.844. Valencia.
  • SANZ, J.M. (1981). Procedimientos generales de construcción. Sondeos y perforaciones, inyecciones, pilotes, pantallas continuas. E.T.S. Ingenieros de Caminos, Madrid.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Optimización de muros de contrafuertes mediante algoritmo híbrido de enjambre de partículas y clustering

Acaban de publicarnos un artículo en la revista Mathematics,  revista indexada en el primer cuartil del JCR. En este artículo se presenta un algoritmo híbrido de enjambre de partículas y clustering para optimizar el coste y las emisiones de CO2 de un muro de contrafuertes. El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El diseño de los muros de contrafuertes es un problema de optimización combinatoria de interés debido a las aplicaciones prácticas relativas al ahorro de costos que implica el diseño y la optimización en la cantidad de emisiones de CO2 generadas en su construcción. Por otro lado, este problema presenta importantes retos en cuanto a complejidad computacional, pues involucra 32 variables de diseño, por lo que tenemos en el orden de 10^20 combinaciones posibles. En este artículo proponemos un algoritmo híbrido en el que se integra el método de optimización del enjambre de partículas que resuelve los problemas de optimización en espacios continuos con la técnica de clustering db-scan. Este algoritmo optimiza dos funciones objetivo: las emisiones de carbono y el costo económico de los muros de hormigón armado. Para evaluar la contribución del operador del db-scan en el proceso de optimización, se diseñó un operador aleatorio. Se comparan las mejores soluciones, los promedios y los rangos intercuartílicos de las distribuciones obtenidas. A continuación se comparó el algoritmo db-scan con una versión híbrida que utiliza k-means como método de discretización y con una implementación discreta del algoritmo de búsqueda de armonía. Los resultados indican que el operador db-scan mejora significativamente la calidad de las soluciones y que la metaheurística propuesta muestra resultados competitivos con respecto al algoritmo de búsqueda de armonía.

Abstract:

The design of reinforced earth retaining walls is a combinatorial optimization problem of interest due to practical applications regarding the cost savings involved in the design and the optimization in the amount of CO2 emissions generated in its construction. On the other hand, this problem presents important challenges in computational complexity since it involves 32 design variables; therefore we have in the order of 10^20 possible combinations. In this article, we propose a hybrid algorithm in which the particle swarm optimization method is integrated that solves optimization problems in continuous spaces with the db-scan clustering technique, with the aim of addressing the combinatorial problem of the design of reinforced earth retaining walls. This algorithm optimizes two objective functions: the carbon emissions embedded and the economic cost of reinforced concrete walls. To assess the contribution of the db-scan operator in the optimization process, a random operator was designed. The best solutions, the averages, and the interquartile ranges of the obtained distributions are compared. The db-scan algorithm was then compared with a hybrid version that uses k-means as the discretization method and with a discrete implementation of the harmony search algorithm. The results indicate that the db-scan operator significantly improves the quality of the solutions and that the proposed metaheuristic shows competitive results with respect to the harmony search algorithm.

Keywords:

CO2 emission; earth-retaining walls; optimization; db-scan; particle swarm optimization

Reference:

GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2020). The buttressed  walls problem: An application of a hybrid clustering particle swarm optimization algorithm. Mathematics, 8(6):862. https://doi.org/10.3390/math8060862

Descargar (PDF, 847KB)

Contención del agua mediante escudos de aire comprimido

Figura 1. Distribución de presiones en el frente del escudo

La necesidad de equilibrar suelos inestables que además se encuentran bajo el nivel freático, ha desarrollado un conjunto de escudos con diversas tecnologías que estabilizan el frente empleando aire comprimido, lodos o las propias tierras extraídas en la excavación.

El aire comprimido es el sistema más antiguo empleado como medio de estabilización en la excavación de túneles. En 1874, James H. Greathead plantea el primer escudo que utiliza aire comprimido, aunque no se llegó a emplear. En 1879, De Witts Haskins maneja por primera vez la presurización a 0,24 MPa en la construcción del túnel en Nueva York, bajo el río Hudson, y del túnel Antwerp Docks recurriendo a dovelas de fundición.

En sus primeras aplicaciones se utilizaron escudos abiertos con una presurización integral del túnel, para construir túneles bajo niveles freáticos poco importantes (0,1 a 0,2 MPa), entre el frente y la esclusa inicial de entrada. En el frente bastaban simples escudos de entibación u otros con rueda abierta, pues el único condicionante era disponer un frente con un coeficiente de permeabilidad al aire bajo, compuesto en su mayoría por arenas finas, arcillas y limos. Estos escudos tenían acceso al frente de excavación por medio de dos sistemas de esclusas de cierre hermético: una para la entrada y salida del personal, y otra para la evacuación del escombro.

Sin embargo, es a partir de los años 1950-60 cuando se reconocen los problemas que plantea el trabajo prolongado en condiciones hiperbáricas. En efecto, cualquier pérdida de aire podría implicar un desastre de enormes proporciones.

En terrenos con frentes con suelos granulares no cohesivos, el riesgo es alto de accidentes debido a la inestabilidad del frente por su rotura. Además, los rendimientos son muy bajos, pues la entrada al túnel del personal y la maquinaria se hace a través de esclusas para mantener la presión. Incluso trabajando por debajo de los 0,3 MPa, se exigen tiempos de descompresión cercanos a las 4 horas, por lo que solo son útiles de 2 a 3 horas por turno, lo cual dispara los costes.

Los inconvenientes de esta forma de trabajo, especialmente por razones de seguridad y salud para los operarios, han eliminado por completo la presurización integral del túnel. Sin embargo en escudos cerrados, el aire comprimido cuando el terreno reúne las condiciones necesarias, puede ser un medio de estabilización eficaz, aplicable en combinación con otros medios de sustentación. Por tanto, se presuriza exclusivamente el terreno del frente, es decir, el espacio comprendido entre la rueda de corte y un mamparo, que es lo que se denomina “cámara de tierras”. De esta forma, se aísla la presión del resto de la máquina, pudiendo los operarios trabajar a presión atmosférica. Hoy día solo se entra en la cámara presurizada para la revisión de la rueda de corte y la reposición de herramientas, siempre con la máquina parada. De todas formas, los escudos de aire comprimido apenas se utilizan hoy en día, pues el aire comprimido complica mucho la organización de la obra. Solo se emplean en labores complementarias o túneles muy cortos y siempre con presiones inferiores a unos 0,3 MPa.

El reparto desigual de presiones sobre el frente de excavación, puede ser un inconveniente tanto más importante cuanto mayor sea la altura del escudo según se aprecia en el esquema siguiente: en escudos de grandes dimensiones la diferencia de cota entre la solera y la clave del túnel, puede llegar a establecer importantes diferencias de presión. Para una diferencia h2 – h1 » 10 m la sobrepresión en clave sería del orden de una atmósfera.

Por otra parte, para que el aire comprimido sea un medio efectivo de sostenimiento arenas o gravas, es necesario que el suelo contenga una proporción mínima (>10 %) de finos, es decir, son necesarios terrenos muy homogéneos. En el caso de materiales no cohesivos con riesgo de roturas del frente, se prefieren otro tipo de escudos, tal y como se describirá en lecciones posteriores.

Los principales componentes de un escudo de aire comprimido son los siguientes:

  • Cabeza de corte, formada por cuchillas y dientes
  • El escudo cilíndrico de protección. Su parte frontal está cerrada por un mamparo que separa la cámara presurizada donde está la cabeza de corte, del resto
  • Gatos hidráulicos de empuje horizontal

En estos escudos la extracción del escombro se realiza hasta la zona despresurizada a través de un tornillo sinfín, que puede descargar en una válvula esférica rotativa. Cuando existen dificultades, se pueden adicionar espumas o polímeros para conformar un gel viscoso manejable.

Existe un tipo especial de tuneladora denominada escudo abierto de aire comprimido, donde la excavación se realiza con un minador puntual o rozadora, mientras que el frente se sostenien con aire comprimido.

La realidad, la presurización neumática actual de la cámara frontal del escudo queda reducida a situaciones de emergencia en escudos de presión de lodos o de tierras para, mediante una esclusa situada en la cabeza de la máquina, permitir el acceso para la sustitución de picas, reparar o solucionar alguna situación inesperada.

Referencias:

  • GALLO, J.; PÉREZ, H.; GARCÍA, D. (2016). Excavación, sostenimiento y técnicas de corrección de túneles, obras subterráneas y labores mineras. Universidad del País Vasco, Bilbao, 277 pp.
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.
  • MENDAÑA, F.; FERNÁNDEZ, R. (2011). Hidroescudos y tuneladoras E.P.B. Campos de utilización. Revista de Obras Públicas, 3525:67-86
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.