Dosificación de los áridos en la fabricación del hormigón

La dosificación de los áridos es un proceso más complejo que la dosificación del cemento, pues se debe considerar el agua contenida en estos componentes. Esta agua puede estar presente en la superficie de los áridos, entre sus partículas e incluso en su interior, como ocurre con los áridos ligeros. Para lograr dosificaciones precisas, es fundamental tener un conocimiento constante de las cantidades variables de agua. La dosificación de áridos puede realizarse de manera ponderal o volumétrica.

Dosificación por volumen

Un dosificador de áridos por volumen consta de una cinta transportadora, ubicada debajo de la tolva de almacenamiento, que se mueve a velocidad constante, y de un registro vertical que regula la altura del material extraído sobre la banda (Figuras 1 y 2). El volumen distribuido es proporcional al tiempo de descarga, el cual se controla mediante temporizadores.

Figura 1. Dosificador volumétrico de áridos

Este procedimiento no se ve afectado por la humedad de los materiales, lo que lo hace especialmente adecuado para áridos ligeros, cuya densidad puede variar significativamente según su contenido de agua. Sin embargo, el peso del material extraído puede verse influenciado por el grado de compactación del material sobre el dosificador, es decir, por la altura de carga en las tolvas de almacenamiento.

Figura 2. Detalle del dosificador volumétrico de áridos

La dosificación en volumen es más complicada que la dosificación en peso. En las instalaciones muy pequeñas, donde se realiza la dosificación directamente en el skip o en un dispositivo similar, los áridos deben verterse hasta alcanzar niveles de referencia preestablecidos. Este procedimiento repetitivo no solo consume mucho tiempo, sino que también genera una mayor probabilidad de errores.

Cuando la alimentación se efectúa a través de una cinta transportadora, el control de los volúmenes transportados se vuelve más sencillo. Conociendo el ancho de la cinta, solo es necesario instalar un gálibo sobre la cinta, que debe operar a una velocidad constante. Conociendo esta velocidad, se puede determinar el tiempo de funcionamiento necesario para alimentar una amasada. Los dosificadores volumétricos se instalan generalmente justo debajo del silo o la tolva. El material a dosificar se carga directamente en una pequeña cinta llamada extractora.

Este procedimiento presenta varias ventajas, como un bajo coste, una gran simplicidad, poco mantenimiento y un reducido espacio de ocupación. Sin embargo, también presenta inconvenientes, como la imprecisión causada por los esponjamientos variables de las arenas, la irregularidad en los caudales sobre la cinta y las posibles inconsistencias en la caída del material a través de las trampillas. Según los fabricantes, los errores de medida entre las cantidades programadas y las obtenidas son inferiores al ±2 %.

Dosificación por peso

La dosificación ponderal se ha convertido en el método preferido tanto para cementos como para áridos, gracias a su mayor precisión y facilidad de implementación en comparación con la dosificación volumétrica. Existen varias opciones para realizar este proceso cuando las tolvas se encuentran en línea. Se pueden utilizar básculas individuales que alimentan el material mediante una cinta transportadora (Figura 3) o una báscula móvil que se traslada entre diferentes tolvas (Figura 4). Otra alternativa es una báscula con cinta extractora que utiliza una única tolva pesadora larga y estrecha que se vacía al activar una cinta transportadora ubicada en el fondo (Figura 5). Para los compartimentos correspondientes, las compuertas de sector son las más comúnmente utilizadas y pueden accionarse de forma manual, eléctrica, neumática o hidráulica. En algunos casos, las compuertas se reemplazan por alimentadores electromagnéticos o alimentadores de cinta transportadora.

Básculas independientes: Se trata de un pesaje simultáneo, en el que cada componente o árido dispone de su propia báscula y todas ellas descargan el material en una cinta transportadora que lo lleva al skip de la mezcladora. Este método proporciona una alta precisión y productividad.

Figura 3. Básculas independientes bajo tolvas en línea

Báscula móvil: Se trata de un procedimiento más lento que el de las básculas independientes. La báscula se desplaza de una tolva a la siguiente. Se realiza un pesaje acumulativo o por adición, en el que los componentes se pesan secuencialmente en la misma báscula. Cuando la aguja del dial alcanza la cantidad requerida para el primer árido, se cierra su compuerta y se abre la del siguiente, lo que permite ahorrar espacio y reducir los costes de instalación e inversión. Estos sistemas suelen ser menos precisos que las básculas independientes, especialmente cuando se pesa el cemento al final del proceso.

Figura 4. Báscula móvil bajo tolvas en línea

Báscula con cinta pesadora: También existen sistemas de pesaje continuo para áridos, como las cintas pesadoras, que actúan como medidores de caudal. Una cinta pesadora consta de una báscula que mide el peso de un elemento de la cinta (por ejemplo, la reacción de un rodillo), un indicador de esfera y un totalizador, generalmente digital. Este totalizador se acciona mediante un motor cuya tensión de alimentación depende de la velocidad de la cinta y de la carga indicada por el dispositivo de pesaje. Estos sistemas, conocidos también como básculas o rodillos integradores, permiten reducir la altura de las plantas de producción, aunque su precisión varía entre el 0,5 % y el 1 %. Este tipo de báscula permite una dosificación más rápida y es especialmente útil en instalaciones de prefabricados, donde se manejan muchos tipos de áridos, así como en centrales de dosificación para hormigoneras sobre camión.

Figura 5. Báscula con cinta pesadora

Cuando las tolvas verticales descargan sobre una misma báscula, puede haber un sistema de pesaje aditivo, tal y como se ha descrito con la báscula móvil y sistemas de pesaje sustractivo. En este último caso, se llena la báscula y se determina el peso total; luego, se abre y se cierra la compuerta hasta que la aguja marque la diferencia deseada. Este método simplifica la instalación, ya que no requiere una tolva superior ni dosificación por compuertas.

La báscula más aceptada es la de sistema de suspensión en cuatro puntos, que evita errores de peso causados por el descentrado de la carga en el recipiente. Aunque la báscula romana de cursor es económica y precisa, la balanza de resorte con índice se ha vuelto más común para áridos y cemento, ya que permite realizar múltiples pesadas aditivas y llevar a cabo un control adecuado en vacío, lo cual es especialmente importante en el caso del cemento. Además, algunos fabricantes utilizan básculas medidoras de presión, que determinan el peso de manera eléctrica en lugar de recurrir a básculas mecánicas.

En las instalaciones con skip pesador, los áridos no se descargan en una tolva pesadora fija, sino directamente en la cubeta del skip de la mezcladora. Este sistema se emplea principalmente para reducir la altura del equipo de pesaje y para eliminar o minimizar la necesidad de una fosa en el muro de almacenamiento. El principal inconveniente es que no se puede comenzar a dosificar los áridos hasta que el skip esté apoyado en la báscula, lo que generalmente afecta al ciclo de la hormigonera y reduce el número de amasadas por hora, disminuyendo así la producción.

Figura 6. Skip pesador de áridos

Os dejo un vídeo ilustrativo sobre este tema.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J.et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

CORMON, P. (1979). Fabricación del hormigón. Editores Técnicos Asociados, Barcelona, 232 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

MONTERO, E. (2006). Puesta en obra del hormigón. Exigencias básicas. Consejo General de la Arquitectura Técnica de España, Madrid, 750 pp.

MORILLA, I. (1992). Plantas de fabricación de hormigón y grava-cemento. Monografías de maquinaria. Asociación Española de la Carretera, Madrid.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Precauciones que deben tomarse en las centrales de hormigonado

Figura 1. Central de fabricación de hormigón. https://www.anefhop.com/las-centrales-de-fabricacion-de-hormigon-ya-disponen-de-una-primera-acreditacion-para-la-inspeccion-del-control-de-produccion/

Los acopios de materiales deben realizarse sobre superficies que eviten su contaminación con el suelo. Especialmente si este contiene tierra vegetal o arcillas, es fundamental acondicionar la superficie mediante una solera compactada, una solera de hormigón o un revestimiento de aglomerado asfáltico. Este tratamiento no solo preserva la calidad de los áridos, sino que también genera un ahorro económico significativo, lo que justifica el coste de acondicionamiento y permite una gestión más eficiente del manejo de los materiales.

Es esencial almacenar cada tamaño de árido por separado y cerca de los otros. Esta disposición asegura que no se produzcan mezclas entre ellos, lo que es crucial para evitar la contaminación cruzada que podría alterar la curva granulométrica de los materiales. Mantener la integridad de la curva granulométrica es relevante para garantizar la calidad de la mezcla final del hormigón. Para evitar la mezcla de apilamientos de distintas fracciones granulométricas, se deben emplear tabiques separadores o dejar amplios espacios entre ellos. Asimismo, es esencial establecer acopios separados e identificados para los áridos reciclados y los áridos naturales. Además, se deben tomar las precauciones necesarias para prevenir la segregación, tanto durante el almacenamiento como en el transporte, desde el lugar de acopio hasta las tolvas de dosificación.

Los acopios de materias primas, ya sean silos, tolvas, depósitos o áreas abiertas, deberán estar claramente señalizados con el tipo de material que contienen. Además, deberán cumplir con las condiciones necesarias para prevenir cualquier tipo de contaminación ambiental.

Durante las operaciones de descarga de los camiones y de carga con palas, es importante extremar las precauciones para preservar la integridad de los áridos. Esto permite mantener las características iniciales de los materiales en las condiciones en que fueron recibidos, asegurando así que se cumplan los estándares de calidad en la producción de hormigón.

La relación agua/cemento es un factor determinante para la resistencia del hormigón. Para garantizar que esta relación se mantenga constante, es necesario que los áridos conserven un nivel de humedad uniforme. Proteger los áridos, en especial los de tamaño fino, de los agentes atmosféricos es fundamental para evitar variaciones en la mezcla.

Figura 2. Planta de hormigón. https://aimixgrupo.com/planta-de-hormigon-en-venta/

Queda prohibido almacenar y mezclar cementos de diferentes tipos, clases de resistencia o fabricantes en un mismo silo durante la elaboración del hormigón, ya que ello afectaría negativamente a la trazabilidad y las garantías del producto. Si es necesario cambiar el tipo de cemento en alguno de los silos, se deberá proceder a su limpieza exhaustiva para evitar cualquier riesgo de mezcla.

Al recibir un contenedor de cemento a granel en la planta, es crucial asegurarse de que los terminales de conexión rápida a los silos estén libres de materiales extraños y de humedad. Esto previene la incorporación de contaminantes al cemento almacenado, lo que podría comprometer su calidad y afectar directamente a la resistencia final del hormigón.

El proceso de trasvase de cemento normalmente utiliza un sistema neumático que expulsa el aire al exterior una vez que el cemento ha llegado al silo. Si no se instala un filtro adecuado, el aire liberará partículas de cemento al ambiente, lo que generará contaminación y pérdidas de material en suspensión, lo que subraya la importancia de un mantenimiento regular del sistema de filtrado.

Es necesario realizar un mantenimiento del filtro para que funcione correctamente. Debe seguirse las instrucciones del fabricante, ya que, de lo contrario, el filtro puede volverse ineficaz e incluso perjudicial para el proceso. Este aspecto es fundamental para garantizar que el cemento llegue a los silos en condiciones óptimas.

Si no se puede garantizar que la temperatura del cemento recibido sea inferior a 35 °C, es necesario contar con dos silos de capacidad para la mitad del volumen requerido. De esta manera, se permite que el cemento se enfríe adecuadamente antes de su uso, lo que garantiza el cumplimiento de los requisitos de calidad para el hormigón.

Cuando los silos metálicos tienen una gran capacidad de almacenamiento y el cemento permanece en ellos durante varios días, es esencial instalar equipos de fluidificación. Estos equipos airean el material, lo que permite que el cemento fluya libremente y se comporte prácticamente como un líquido en los equipos de extracción, con lo que se facilita su manejo posterior.

A pesar de contar con sistemas de transporte de cemento bien dimensionados, es habitual no alcanzar los rendimientos programados si no se toman las precauciones adecuadas. Por lo tanto, es crucial implementar medidas preventivas que garanticen la eficacia del sistema en su totalidad.

Además, es fundamental instalar protecciones en las compuertas de guillotina ubicadas cerca de la descarga hacia los tornillos sinfín. Estas protecciones evitan la entrada de agua de lluvia, que puede causar fraguados parciales del cemento y obstrucciones en el paso hacia el sinfín, lo que a su vez puede afectar a la eficiencia del sistema de transporte.

El cemento suele recibirse a granel y ser bombeado directamente a los silos de la planta por parte de los equipos del proveedor. Sin embargo, en ocasiones, debido a dificultades o inseguridades en el suministro, es necesario contar con almacenamiento adicional, lo que conlleva la implementación de un sistema eficiente para gestionar estos volúmenes.

En situaciones que requieran un transporte intermedio, este debe realizarse mediante impulsión neumática. Las distancias y la disposición en planta pueden ser considerables y requerir cambios de alineación, por lo que un sistema eficiente es indispensable para evitar problemas operativos en el proceso de almacenamiento.

El uso de tornillos sinfín en este transporte podría complicar el sistema, ya que el fallo de un único elemento en la cadena podría dar lugar a la paralización total del equipo. Por ello, es fundamental diseñar un sistema que minimice el riesgo de fallos y asegure un flujo continuo del cemento a lo largo del proceso.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J.et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

CORMON, P. (1979). Fabricación del hormigón. Editores Técnicos Asociados, Barcelona, 232 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

MONTERO, E. (2006). Puesta en obra del hormigón. Exigencias básicas. Consejo General de la Arquitectura Técnica de España, Madrid, 750 pp.

MORILLA, I. (1992). Plantas de fabricación de hormigón y grava-cemento. Monografías de maquinaria. Asociación Española de la Carretera, Madrid.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Fabricación y puesta en obra de hormigones pesados

Figura 1. Colocación de hormigón de alta densidad. https://www.lkabminerals.com/product-application/high-density-concrete/

El hormigón pesado se elabora con áridos que tienen una densidad superior a 3,0 kg/dm³, lo que permite que su peso específico supere los 2,8 kg/dm³. Esta elevada densidad proporciona un peso considerable en un volumen reducido, convirtiéndolo en un material altamente eficaz para la protección contra radiaciones. Su principal característica es ofrecer un mayor peso en el mismo volumen, lo que lo hace adecuado para diversas aplicaciones, como contrapesos en estructuras y en áreas que requieren protección frente a radiaciones.

El uso principal del hormigón pesado ha sido como escudo protector contra las radiaciones generadas por la energía nuclear. La capacidad de este material para bloquear radiaciones depende del tipo de emisión. En el caso de las ondas de corta longitud, como los rayos X y los rayos gamma, es necesario interponer un elemento de la mayor densidad posible. En este contexto, los hormigones pesados, independientemente de su tipo, ofrecen una solución económica, ya que permiten reducir el espesor de la pantalla de protección.

Por otro lado, para protegerse de partículas atómicas, como los neutrones, es fundamental que la pantalla contenga una gran cantidad de átomos de hidrógeno. Esta condición se cumple adecuadamente en los hormigones pesados elaborados con áridos de minerales de hierro hidratado, que poseen un elevado nivel de agua de cristalización, así como en aquellos preparados con la mayor cantidad posible de agua. Además, estos hormigones se utilizan en los cimientos de estructuras con gran esbeltez para evitar el pandeo y como base de almacenamiento para materiales de gran peso.

Figura 2. Uso de hormigones de alta densidad en planta nuclear. https://theconstructor.org/concrete/high-density-concrete-radiation-shielding-applications/16720/#google_vignette

Composición del hormigón de alta densidad

El hormigón de alta densidad se elabora utilizando áridos pesados que incluyen minerales de hierro, como la magnetita y la limonita, así como rocas de cantera, como la barita, virutas de acero y materiales sintéticos como los ferrofosforosos. También se pueden obtener a partir de fragmentos de barras de acero redondo, recortes de planchas de acero o granalla. Su peso específico es similar al del hierro, oscilando entre 7,5 y 7,8 kg/dm³. Estos materiales deben cumplir, en términos generales, con las mismas condiciones establecidas para los áridos convencionales. Sin embargo, es importante tener en cuenta que los áridos provenientes de minerales de hierro son altamente fracturables debido a su estructura interna, lo que los hace susceptibles a cambios en sus características durante su uso en obra, especialmente en cuanto a granulometría y contenido de finos. Por otro lado, los áridos obtenidos a partir de desechos metálicos presentan características de heterogeneidad, principalmente relacionadas con el estado de su superficie, la cual debe mostrar cierto grado de oxidación incipiente para mejorar la adherencia.

Dosificación y proceso de fabricación

Estos áridos suelen ser más costosos y requieren tratamientos específicos tanto en su dosificación como en su aplicación en obra. Además, tienden a segregarse en la pasta de cemento, lo que hace necesario emplear un tamaño de grano más fino que el habitual. No obstante, las granulometrías de los áridos pueden mantenerse dentro de los estándares convencionales. La arena no necesita ser especial, siempre que cumpla con los requisitos de peso unitario; debe ser limpia, angular, bien graduada y estar libre de limo, arcilla o materiales orgánicos. Para mezclas especiales, como los hormigones de agregado grueso reducido, es posible especificar la gravedad específica o el módulo de finura.

A diferencia de los hormigones convencionales, los hormigones de alta densidad se distinguen principalmente por la densidad de los áridos utilizados y por la precisión requerida en su dosificación, fabricación, transporte y colocación en obra. Su bombeo en zonas de difícil acceso y su proceso de aplicación son similares a los del hormigón convencional y requieren vibrado, tratamiento y curado de manera equivalente.

Consideraciones en la colocación y vertido

Una mejor composición del hormigón se traduce en una mayor homogeneidad, compacidad y densidad, así como en una menor probabilidad de formación de poros. Esto permite alcanzar espesores y pesos reducidos. Generalmente, se emplean dosificaciones de cemento de aproximadamente 350 kg/m³. Para evitar segregaciones, se recomienda utilizar relaciones agua/cemento de entre 0,35 y 0,40, así como incorporar superplastificantes que faciliten la obtención de hormigones más dóciles.

Es importante tener en cuenta que los áridos pesados no siempre presentan una granulometría adecuada. En tales casos, se pueden añadir correctores con diferentes densidades. Al mezclar áridos de distintas características, es conveniente expresar la granulometría y el módulo de finura en porcentajes del volumen absoluto.

La forma de los granos de ciertos áridos puede comprometer la trabajabilidad del hormigón, especialmente cuando se utilizan discos y perdigones de acero. En estas situaciones, incrementar la dosificación de cemento, añadir minerales o incorporar aire ocluido puede mejorar la trabajabilidad del hormigón, aunque esto podría conllevar una reducción de su densidad. No obstante, esta disminución en la densidad tiene la ventaja de que los hormigones más dóciles tienden a ser más compactos, lo que les proporciona una mayor capacidad de protección.

El equipo utilizado para mezclar hormigones convencionales también se empleará para fabricar hormigón pesado, por lo que se debe tener especial cuidado para evitar sobrecargar los equipos. Al verter el hormigón y realizar su colocación, se debe prestar atención a la disposición adecuada de los travesaños y apuntalamientos necesarios para garantizar que los encofrados resistan los empujes del hormigón fresco. En el caso del hormigón de alta densidad, estos empujes serán mayores.

La combinación de áridos de acero y magnetita puede dar lugar a fenómenos magnéticos que afectan negativamente a la adherencia de los áridos a la pasta de cemento. Para mitigar este inconveniente, se recomienda amasar primero el árido grueso de acero con una porción de cemento y agua. Una vez realizada esta mezcla, se debe añadir la magnetita junto con el resto del cemento y el agua.

El amasado de hormigones con áridos pesados no siempre es la mejor opción; el método más eficaz consiste en colocar los áridos directamente en los moldes y luego inyectar la pasta o el mortero de cemento. Este enfoque previene la segregación, un fenómeno que es especialmente problemático cuando se utilizan áridos de acero.

Para la fabricación de hormigones pesados, se recomienda utilizar hormigoneras de eje vertical, ya que garantizan una mezcla más eficiente. Por el contrario, las hormigoneras basculantes generan grandes esfuerzos sobre el eje. El tiempo de amasado es similar al de los hormigones convencionales, y es fundamental llevar a cabo la descarga del hormigón con sumo cuidado para evitar la segregación.

El hormigón de alta densidad es muy propenso a segregarse durante su colocación, lo que no solo disminuye su resistencia, sino que también provoca variaciones en su densidad que pueden afectar gravemente su manipulación. El procedimiento habitual para los hormigones convencionales es aplicable a los hormigones de alta densidad, siempre que no incluyan piezas de acero como árido grueso. Este método, conocido coloquialmente como «vertido con cubilote», consiste en mezclar áridos, cemento y agua antes de verter la mezcla en los moldes.

Figura 3. Tuberías submarinas recubiertas de hormigón de alta densidad. https://theconstructor.org/concrete/high-density-concrete-radiation-shielding-applications/16720/

Es importante considerar que el hormigón de alta densidad presenta un peso específico superior, lo que implica que, para un mismo volumen, su peso es mayor. Por esta razón, es fundamental tomar precauciones para evitar sobrecargar grúas, camiones grúa u otros equipos utilizados en el vertido del cubilote. Asimismo, es necesario prevenir sobrecargas en las hormigoneras para evitar la segregación de los áridos durante el amasado. Además, el hormigón fresco genera cargas y empujes significativos sobre los encofrados, por lo que estos deben ser diseñados adecuadamente para soportar dichas fuerzas.

El espesor de las capas no debe exceder los 25 cm. Otro aspecto importante a tener en cuenta es el vibrado, que debe ser enérgico y de corta duración, utilizando frecuencias cercanas a los 20 000 ciclos por minuto, ya que el tamaño máximo del árido generalmente no supera los 25 mm. En este método, la vibración durante la colocación resulta beneficiosa, pero debe aplicarse con moderación para no comprometer la integridad del hormigón.

El método de hormigonado con áridos precolocados es especialmente adecuado cuando los áridos son de acero o hierro. Este procedimiento consiste en colocar primero el árido grueso en el encofrado y luego rellenar los espacios intersticiales con una mezcla de mortero de cemento, arena y agua. Este método presenta varias ventajas en comparación con los métodos convencionales. En primer lugar, minimiza la segregación del árido grueso, especialmente cuando se utilizan trozos de acero. En segundo lugar, facilita la colocación de hormigón con densidad y composición uniformes en formas confinadas y alrededor de elementos embebidos. En tercer lugar, permite lograr una mayor densidad y homogeneidad con materiales similares. Además, posibilita el uso de combinaciones de diferentes materiales como árido grueso. Finalmente, asegura una distribución uniforme del árido pesado en el escudo protector, evitando la formación de grandes huecos de aire. Sin embargo, también existen desventajas: hay pocas empresas especializadas en este procedimiento, terminar la superficie superior de grandes áreas de hormigón es más complicado y costoso y, en general, el hormigón obtenido mediante este método tiende a ser más caro que el producido con técnicas convencionales.

El hormigón pesado se puede bombear, aunque las distancias alcanzadas suelen ser menores que las de los hormigones tradicionales, siempre que se utilice el mismo equipo. Sin embargo, a pesar de que los áridos gruesos suelen provenir de mineral triturado, que presenta formas irregulares y angulosas que dificultan el bombeo, cada vez son más los profesionales que afirman que es posible bombear hormigón de alta densidad en casi cualquier circunstancia. Durante el proceso de hormigonado, se recomienda supervisar la homogeneidad del hormigón aplicado para identificar posibles huecos. Esta verificación puede llevarse a cabo utilizando una fuente de radiación gamma de potencia adecuada.

Las resistencias mecánicas de estos hormigones no son un motivo de preocupación, dado el considerable espesor de sus paredes, que se impone por razones de protección. Sin embargo, un aspecto preocupante es la fisuración, que debe evitarse incluso a temperaturas de 300 °C, ya que muchas de las protecciones están expuestas a altas temperaturas. Es importante destacar que, cuando un hormigón se somete a temperaturas de 300 a 400 °C durante períodos prolongados, su resistencia a la compresión puede reducirse entre un 20 % y un 50 %. Además, a 400 °C, el hormigón se deshidrata, lo que reduce su capacidad de protección.

En ocasiones, se puede colocar una capa de varios centímetros de mortero entre los encofrados y, posteriormente, cubrirla con una capa de árido pesado, el cual se introduce mediante vibrado o apisonado. Este método exige una ejecución cuidadosa y controlada, pero resulta ideal para hormigones de muy alta densidad, especialmente aquellos elaborados con áridos de acero, ya que evita la necesidad de pasar todo el árido por la amasadora.

Os dejo algunos vídeos al respecto de este tipo de hormigón.

Os dejo también este texto relacionado, que espero, os sea de interés.

Descargar (PDF, 267KB)

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J.et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

CORMON, P. (1979). Fabricación del hormigón. Editores Técnicos Asociados, Barcelona, 232 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

MONTERO, E. (2006). Puesta en obra del hormigón. Exigencias básicas. Consejo General de la Arquitectura Técnica de España, Madrid, 750 pp.

MORILLA, I. (1992). Plantas de fabricación de hormigón y grava-cemento. Monografías de maquinaria. Asociación Española de la Carretera, Madrid.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Control de la temperatura del hormigón y amasado en tiempo frío

Figura 1. https://www.cdt.cl/hormigonado-en-tiempo-frio/

En tiempo frío, una de las medidas para evitar el riesgo de congelación es usar hormigón más caliente. Sin embargo, la protección contra las heladas no aumenta proporcionalmente con la temperatura del hormigón, ya que las pérdidas de calor son mayores cuanto más grande sea la diferencia térmica. Además, a mayor temperatura, se necesita más agua de amasado, lo que puede causar variaciones en la consistencia y, en ocasiones, un fraguado rápido. Las rápidas pérdidas de humedad en las superficies calientes del hormigón pueden provocar fisuras. Por lo tanto, la temperatura del hormigón fresco en el momento de su colocación debe mantenerse lo más cercana posible a los mínimos adecuados para las temperaturas ambientales previstas.

A modo de orientación, las medidas recomendables para el hormigonado en tiempo frío son las siguientes:

  • Para temperaturas ambientales entre +5 °C y 0 °C, calentar el agua de amasado y los áridos, y proteger el hormigón vertido de las heladas.
  • Para temperaturas entre 0 °C y -5 °C, se debe calentar el agua y los áridos, y proteger eficazmente el hormigón.
  • Para temperaturas inferiores a -5 °C, se debe suspender el hormigonado o realizar la fabricación y colocación dentro de un recinto que pueda calentarse.

Se puede aumentar la temperatura del hormigón calentando uno o varios de sus componentes. No se recomienda calentar el hormigón fresco durante su fabricación ni el ya fabricado. En cada caso, es necesario estudiar las medidas a adoptar, evaluando la viabilidad y la facilidad de cada opción, así como el cumplimiento de los requisitos que el hormigón final debe cumplir.

En primer lugar, se deben proteger los materiales tanto como sea posible de la temperatura ambiente, especialmente del viento y de la escarcha, mediante el uso de cubiertas o el almacenamiento en silos. También puede ser necesario aislar térmicamente los silos y las tuberías que transportan los materiales a la amasadora.

Además, es posible calentar los materiales para el hormigón. El método más sencillo es calentar el agua mediante un sistema de resistencias o con vapor de agua en un depósito antes de la amasadora. Se debe contar con un depósito aislado para mantener el agua caliente. Además, la temperatura del agua debe mantenerse constante para evitar variaciones entre cada amasada. En cualquier caso, se podría utilizar agua a temperaturas cercanas a la ebullición, aunque esto requiere un procedimiento de amasado más cuidadoso para evitar un fraguado relámpago. Aunque la cantidad de agua en el hormigón no es elevada, su calor específico es mucho mayor que el del cemento y los áridos. Si la temperatura ambiente no es demasiado baja, este sistema puede ser suficiente.

La temperatura de los aditivos tiene una influencia mínima en la del hormigón debido a su pequeña cantidad. El calentamiento del resto de los materiales debe realizarse con un sistema especial, ya que son sólidos con baja transmisión de calor. Al calentar los áridos, su temperatura en cualquier punto no debe superar los 100 °C y su temperatura media debe ser inferior a los 65 °C.

Si los áridos contienen hielo, nieve o grumos helados, deben deshacerse utilizando, por ejemplo, aire caliente insuflado desde distintos puntos, y deben almacenarse bajo lonas. Si la temperatura de los áridos es muy baja, debe iniciarse la descongelación el día anterior y mantenerse un calentamiento mínimo hasta su uso. Esto garantiza un contenido de humedad y temperatura más uniformes.

Cuando la temperatura del aire es inferior a -5 °C, suele ser necesario calentar los áridos, además del agua de amasado, para elevar la temperatura del hormigón. Los áridos no deben calentarse a más de 65 °C, ya que este valor es considerablemente superior al necesario habitualmente para alcanzar la temperatura deseada en el hormigón fresco. Si la grava está libre de hielo o grumos helados y el agua de amasado se calienta a 60 °C, se pueden lograr temperaturas adecuadas en el hormigón simplemente calentando la arena, generalmente a una temperatura no superior a 40 °C. Si también es necesario calentar la grava, basta con que alcance los 15 °C.

Durante el proceso de calentamiento, se recomienda cubrir las superficies expuestas de los áridos con lonas para asegurar una distribución uniforme del calor. Además, se debe tener cuidado al utilizar las primeras cargas de áridos calentados con vapor, ya que pueden permanecer en las tolvas durante un tiempo prolongado. Para evitar problemas, puede ser útil descargar las primeras toneladas de árido muy caliente en la parte superior de la tolva.

Por otro lado, el cemento suele llegar caliente a la planta, pues no se enfría lo suficiente en la fábrica después de su calcinación y molienda. Así pues, puede ser beneficioso aislar el silo de la planta o almacenar el cemento en un silo previo aislado para evitar que se enfríe antes de transferirlo al silo principal de la planta.

El proceso de amasado no varía respecto al realizado en condiciones normales. El calor generado en la amasadora por el rozamiento del hormigón con la cuba y las palas, junto con el breve tiempo de permanencia en ella, evita que el agua de amasado se congele. Por esta razón, la amasadora no requiere un aislamiento específico. Sin embargo, es recomendable que la amasadora esté adecuadamente aislada, para lo que se pueden utilizar materiales como espuma de poliestireno o fibra de vidrio para su recubrimiento externo.

La temperatura recomendada del hormigón durante el amasado debe ser de 3 a 4 °C superior a la necesaria en la obra, para compensar la pérdida de calor durante el transporte.

Es fundamental amasar los materiales durante un período prolongado y con suficiente energía para lograr una mezcla con temperatura uniforme. También es esencial asegurarse de que ninguno de los componentes esté congelado y de que las temperaturas se mantengan constantes entre amasadas. Esto evita variaciones en la demanda de agua, aire ocluido, velocidad de fraguado y asentamiento del hormigón. Si el tamaño del árido es muy grande (63 mm o superior), la masa de hormigón puede tardar hasta 20 minutos en alcanzar una temperatura uniforme.

Además, el uso de agua caliente puede reducir la efectividad de los aditivos, especialmente del aireante. Por ello, se recomienda añadir los aditivos al final del proceso, cuando la temperatura del agua haya disminuido tras mezclarse con el resto de los materiales.

Si se utiliza una relación agua/cemento muy baja, es necesario controlar cuidadosamente la fluidez a la salida de la amasadora para asegurar que el hormigón llegue a la obra en condiciones óptimas para su colocación. En la Tabla 1 se pueden consultar las temperaturas mínimas recomendadas del hormigón a la salida de la amasadora, en función de la temperatura del aire y del espesor mínimo de la pieza a hormigonar.

Tabla 1. Temperaturas mínimas recomendadas en el hormigón a la salida de la amasadora

Temperatura del aire

Dimensión mínima de la sección en mm

< 300

300-900 900-1800 >1800

> -1 °C

16 °C

13 °C 10 °C 7 °C
-1 °C a -18 °C 18 °C 16 °C 13 °C

10 °C

< -18 °C 21 °C 18 °C 16 °C

13 °C

Referencias:

AA. VV. (2002). Hormigones de ejecución especial (seis tipos). Colegio de Ingenieros de Caminos, Madrid, 114 pp.

ACI COMMITTEE 306. Cold wheather concreting (ACI 306R-16). American Concrete Institute.

AENOR (2022). UNE 83151-1 IN Hormigonado en condiciones climáticas especiales. Parte 1: Hormigonado en tiempo frío. Madrid, 27 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Colocación y curado de hormigones ligeros

Figura 1. https://www.laterlite.es/productos/hormigones-estructurales-ligeros/latermix-beton-1600/

Las reglas básicas para el manejo del hormigón, ya abordadas en artículos anteriores, también se aplican al hormigón de áridos ligeros, sin especificaciones particulares adicionales. Sin embargo, es crucial tener en cuenta su mayor tendencia a la segregación. Por lo tanto, se deben extremar las precauciones en cuanto a la máxima caída libre, el uso de trompas y el hormigonado de elementos estrechos con bandas de plástico, entre otros aspectos.

La compactación del hormigón con áridos ligeros requiere una mayor energía de vibración en comparación con la de un hormigón normal. Por lo tanto, se debe reducir la separación entre los puntos de inmersión de los vibradores al 70% de la distancia utilizada para el hormigón convencional, ya que estos hormigones se dispersan menos lateralmente debido a su menor peso. Además, el radio de acción del vibrado es menor, por lo que es necesario colocar el hormigón en más puntos y distribuirlo manualmente en elementos horizontales, lo cual resulta más fácil que con los hormigones normales. El desplazamiento lateral mediante vibración es muy difícil y, además, conlleva el riesgo de segregación. Por otra parte, dado que algunos áridos ligeros tienden a flotar, es necesario tomar precauciones adicionales, como utilizar vibradores de superficie o rodillos que ayuden a introducir los áridos en el interior de la masa.

La vibración del hormigón con áridos ligeros debe realizarse con extremo cuidado para evitar la segregación y la separación de los áridos en capas de densidad variable. La compactación del hormigón ligero se realiza casi exclusivamente mediante vibradores. El menor peso de este hormigón amortigua el efecto del vibrado, ya que las ondas mecánicas se propagan mejor en materiales de mayor densidad. Además, los áridos porosos ligeros atenúan las vibraciones, reduciendo significativamente el radio efectivo del vibrador.

Como regla general, debe duplicarse el número de puntos de vibración interna o, en caso de utilizar vibradores externos, debe colocarse el doble de estos. Los vibradores internos deben introducirse al menos tres veces por metro. Debido a la limitada penetración de la vibración en este tipo de hormigón, no es necesario utilizar equipos muy potentes. Se recomienda emplear agujas vibradoras con diámetros de entre 50 y 700 mm y frecuencias de entre 150 y 200 Hz.

En elementos horizontales, es crucial evitar la segregación del hormigón. Mientras que en el hormigón normal el exceso de vibrado provoca que el mortero y la lechada migren hacia la superficie, dejando el árido grueso en el fondo, en el hormigón de áridos ligeros ocurre lo contrario: los áridos flotan y el cemento se acumula en el fondo. Por ello, se debe controlar cuidadosamente el tiempo de vibrado y aplicar la regla de vibrar en muchos puntos durante poco tiempo. Se recomienda usar hormigones con un asentamiento de cono entre 60 y 100 mm, ya que asentamientos mayores pueden causar la flotación del árido grueso y dificultar el acabado. El asentamiento del hormigón con áridos ligeros debe ser aproximadamente la mitad del recomendado para el hormigón con áridos normales, en cualquier aplicación específica.

El uso de aire ocluido y la cantidad mínima óptima de agua son esenciales para asegurar que estos hormigones ligeros tengan la trabajabilidad necesaria para un vertido y acabado adecuados, especialmente aquellos hechos con áridos triturados, angulares e intensamente vesiculares. De este modo, se minimizan el sangrado, la segregación y la flotación no deseada de las partículas de árido más grandes y menos densas hacia la superficie.

El riesgo de flotación del árido ligero aumenta con vibraciones excesivas. Para lograr un buen acabado superficial en la cara expuesta del hormigón, es fundamental utilizar herramientas adecuadas que presionen el árido ligero e integren adecuadamente en la masa, asegurando que quede recubierto por la lechada. El uso de reglas vibrantes proporciona buenos acabados superficiales, ya que hunden los áridos gruesos y cubren la superficie con una capa de pasta, lo que mejora el acabado y facilita el pulido posterior. En cambio, si se utiliza una regla normal entre los bordes del encofrado, los áridos gruesos superficiales pueden desplazarse, lo que provoca oquedades y defectos en la superficie.

En cuanto al curado, la capacidad de absorción de agua de los áridos hace que, en general, el hormigón disponga de suficiente agua para completar el proceso de hidratación sin necesidad de aporte externo, especialmente cuando se utilizan áridos saturados. Sin embargo, si se emplean áridos secos, es necesario extremar las condiciones de curado añadiendo agua para asegurar un adecuado proceso de hidratación. Además, se debe evitar la desecación superficial, al igual que en los hormigones normales, especialmente en condiciones de baja humedad relativa y altas temperaturas. Los tiempos de curado deben ser similares a los requeridos para los hormigones normales.

El curado del hormigón de áridos ligeros debe comenzar inmediatamente después de su colocación, con mayor rigor que en el caso del hormigón normal. La mayor difusión del vapor de agua provoca un secado más rápido, por lo que es fundamental extremar el curado para evitar la formación de grietas y los problemas derivados de la pérdida de agua durante la hidratación del cemento. Es necesario proteger las superficies expuestas, cubriéndolas con tejidos húmedos, láminas de plástico, añadiendo suficiente agua o utilizando membranas de curado.

Se recomienda mantener el curado durante 7 días si la temperatura supera los 10 °C.

En elementos prefabricados, también puede utilizarse el curado al vapor, aunque se deben tomar ciertas precauciones para evitar problemas derivados de una mayor absorción de agua por parte de los áridos, lo que podría calentar en exceso la masa de hormigón.

Diversos experimentos recomiendan que la temperatura en la cámara de vapor no supere los 60-65 °C. Esto implica un tiempo mínimo de espera de 3 horas antes de iniciar el tratamiento y una velocidad de calentamiento limitada a 20 °C por hora. Con estas restricciones y un tratamiento total de 12 a 18 horas, se logran las resistencias necesarias para proceder al destensado sin causar problemas posteriores.

Debido a la menor conductividad térmica de los áridos ligeros, estos hormigones tienden a liberar menos calor de hidratación. Sin embargo, dado que los áridos ligeros tienen un módulo de elasticidad menor, la microfisuración de la matriz resultante es, por lo general, menor que la de los hormigones normales.

Os dejo un vídeo ilustrativo al respecto de la puesta en obra de un hormigón ligero elaborado con arlita.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

TIKTIN, J. (1994). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Amasado y transporte del hormigón ligero

Figura 1. Panteón de Agripa, con uso de hormigón ligero (áridos de roca volcánica). https://es.wikipedia.org/

El hormigón de áridos ligeros, comúnmente conocido como «hormigón ligero», tiene numerosas aplicaciones en el campo del hormigón estructural, tanto en elementos armados como pretensados. Se utiliza en estructuras de edificios, principalmente en losas, cubiertas laminares, puentes y elementos prefabricados. Su desarrollo ha estado ligado a la capacidad de fabricar áridos ligeros y, actualmente, la gama de resistencias que puede alcanzar es similar a la de los hormigones ordinarios.

La primera utilización documentada de hormigón ligero data del siglo II a. C., durante la construcción del Panteón de Roma (Figura 1). Para cubrir la bóveda de 44 m de diámetro, los ingenieros romanos emplearon una mezcla de argamasa y piedra pómez para reducir su peso.

El Código Estructural define en su Anejo 8 el hormigón con áridos ligeros (HL) como aquel hormigón de estructura cerrada, cuya densidad aparente, medida en condición seca hasta peso constante, es inferior a 2000 kg/m³, pero superior a 1200 kg/m³, y que contiene una cierta proporción de árido ligero, tanto natural como artificial. Se excluyen los hormigones celulares, tanto de curado estándar como curados en autoclave. Es importante resaltar que la densidad aparente (o peso unitario) en el estado fresco es superior a la del hormigón con árido normal y depende del grado de saturación del árido ligero y del contenido de agua de amasado.

El hormigón ligero es más caro que el hormigón ordinario como material. Sin embargo, el coste total de la estructura o construcción se reduce al emplear un material que genera menos cargas, lo que optimiza el armado y las cimentaciones. Básicamente, los áridos ligeros utilizados en hormigones estructurales son artificiales.

Figura 2. Hormigón ligero blanco. https://www.trasbordo.es/bachillerato-ohs-hormigon-ligero-estructural-blanco/

Un problema habitual durante el amasado, el transporte y la colocación de este hormigón es la segregación negativa. En este fenómeno, los áridos de mayor tamaño y menor densidad tienden a elevarse dentro de la masa, es decir, a flotar. Este efecto se vuelve especialmente pronunciado con ciertos áridos ligeros cuando el hormigón se vierte y se vibra.

La mayoría de los hormigones ligeros experimentan una retracción significativa o cambios volumétricos al endurecerse, especialmente cuando hay variaciones en la humedad ambiental. Estas variaciones pueden causar problemas importantes. La retracción hidráulica depende en gran medida del tipo de árido y de la dosificación de la mezcla, mientras que los cambios de volumen por variación de la humedad dependen de la permeabilidad del hormigón y de los áridos utilizados. El curado con vapor a presión reduce estos cambios de manera muy efectiva.

Las instalaciones de fabricación son fundamentales para lograr las características deseadas del hormigón ligero, así como para asegurar la constancia y la homogeneidad de sus propiedades, garantizando así la seguridad y la fiabilidad que el usuario requiere. Debido a las particularidades del hormigón ligero y de algunos de sus componentes, es esencial disponer de acopios bien definidos que eviten la contaminación de los áridos y de las instalaciones. Además, es necesario contar con balsas u otros sistemas que permitan la inmersión o el riego de los áridos para su adecuada humectación.

Amasado

El amasado del hormigón puede realizarse de manera seca o húmeda, siendo esta última la más recomendable debido a la mejor regularidad que se obtiene en el producto final. Además, es importante destacar que se debe aumentar el tiempo de amasado en comparación con el hormigón normal para controlar la absorción del árido y lograr un producto homogéneo.

Para el amasado, se pueden utilizar amasadoras de caída libre o de salida forzada, siendo estas últimas más efectivas, ya que presentan menos pérdida de conglomerante por adherencia.

Las amasadoras de caída libre tienden a formar adherencias de la pasta de cemento y los finos en las paredes del tambor, debido a que el efecto desincrustante de los áridos ligeros contra las paredes durante el amasado es mucho menor que el de los áridos normales. Esto es especialmente relevante en las mezclas con poca agua y algo de cemento, habituales en estos hormigones para alcanzar elevadas resistencias.

La secuencia de carga en la amasadora es otro aspecto crucial que debe tenerse en cuenta, ya que puede variar en función de los siguientes factores:

  • La densidad del árido ligero utilizado.
  • El grado de saturación de ese árido
  • El uso de aditivos o su ausencia.

En función de estos factores, se debe decidir si cargar y amasar primero el árido y la arena con el agua para evitar variaciones en el contenido de agua de amasado y, por ende, en la relación agua/cemento. También es importante evitar la absorción de aditivos por el árido, lo que podría reducir su efectividad.

Una opción es añadir toda el agua al principio para evitar estos problemas; sin embargo, es preferible utilizar amasadoras forzadas de alto rendimiento.

El amasado debe seguir esta secuencia: incorporar los áridos ligeros, poner en marcha la hormigonera y añadir al menos dos tercios del agua de amasado. Se debe mezclar durante 30 segundos a 1 minuto, luego añadir el cemento y el agua restante. Amasar durante dos minutos con la carga total. Si la amasadora se ha parado, dar diez vueltas a la velocidad de mezclado antes de descargar para evitar la segregación.

Los aditivos en polvo se deben añadir mezclados con el cemento, mientras que los aditivos líquidos se incorporan con la segunda carga de agua de amasado. Durante la primera carga de agua, los áridos absorben parte de ella, por lo que los aditivos no deben mezclarse en esta etapa, ya que serían absorbidos por los áridos y perderían efectividad. Lo mismo ocurre si se añade el cemento en seco, pues la lechada absorbida por los áridos reduciría su contenido. Por lo tanto, los aditivos no deben incorporarse hasta que los áridos hayan sido debidamente humedecidos.

Si se utilizan áridos secos, es necesario mezclar el árido grueso y la arena con una cantidad de agua equivalente al 40 %-60 % del total antes de añadir el cemento, durante al menos un minuto. Se debe calcular la cantidad total de agua añadiendo al agua efectiva para la pasta de cemento la cantidad que absorben los áridos en 30 minutos. Si se emplean áridos secados en horno, puede ser necesario mantener la hormigonera parada durante un tiempo tras la primera incorporación de agua, para permitir así una absorción uniforme. De no hacerlo, la trabajabilidad del hormigón podría disminuir rápidamente durante el amasado.

En el caso de utilizar áridos húmedos, es crucial determinar previamente su contenido de humedad y restarlo de la cantidad de agua absorbida en 30 minutos. Es importante destacar que la correcta adición de agua tiene un impacto significativo tanto en la resistencia como en la trabajabilidad del hormigón.

En general, el tiempo de amasado necesario para los hormigones con áridos ligeros es mayor que para los hormigones con áridos normales. Este tiempo adicional se utiliza para humedecer adecuadamente los áridos antes de añadir el cemento y para homogeneizar la mezcla después de incorporar el aditivo y de añadir toda el agua de amasado. Este proceso prolongado evita que la rápida absorción de agua y aditivo por parte del árido ligero reduzca la trabajabilidad del hormigón y la eficacia del aditivo. En general, se aconseja no superar los dos minutos de amasado para evitar la trituración de los áridos ligeros. Aunque en la práctica, tiempos de hasta tres minutos no suelen causar daños apreciables, no se recomienda exceder el tiempo indicado, especialmente con áridos de baja dureza y resistencia.

Transporte

El transporte del hormigón ligero se realiza con los mismos medios que se utilizan para los hormigones convencionales. Sin embargo, es importante evitar sistemas que favorezcan la segregación, como los camiones estacionarios o las cintas. En la práctica, el uso de estos sistemas ya está muy restringido incluso para los hormigones normales.

El transporte del hormigón debe realizarse en camiones hormigonera, pues esto permite corregir la disminución de la docilidad que ocurre durante el transporte. Asimismo, evita la tendencia a la segregación del árido ligero en hormigones de alta docilidad mediante un amasado previo al vertido. Es importante destacar que la consistencia del hormigón puede reducirse durante el transporte más que en el caso de los hormigones normales. Además, existe una mayor tendencia a la segregación, especialmente en hormigones más fluidos y con áridos de menor densidad. Por lo tanto, se recomienda utilizar aditivos o adiciones que reduzcan el contenido de agua y mejoren la estabilidad del hormigón.

El transporte por camión es un método habitual, ya que facilita el control de las precauciones técnicas y del equipo necesario, como la humedad de los áridos, el orden de amasado y las hormigoneras de salida forzada en la planta. Los tiempos de transporte son comparables a los de los hormigones convencionales, aunque durante el traslado puede producirse una pérdida de consistencia debido a la absorción de agua por los áridos ligeros. Para prevenir estos problemas, es crucial humedecer adecuadamente los áridos antes de su uso. La cantidad exacta de agua de amasado debe determinarse mediante ensayos previos, considerando la humedad de los áridos, el tiempo de transporte y la consistencia requerida en la obra. Se deben seguir las pautas de amasado establecidas y ajustar la consistencia en la obra, si es necesario, añadiendo agua adicional o un aditivo fluidificante. Este ajuste no afectará a la resistencia, siempre que se realice de manera controlada para alcanzar el asentamiento de cono especificado y compensar así el agua absorbida en exceso por los áridos. Sin embargo, se recomienda probar el procedimiento mediante ensayos previos.

El mezclado exclusivo en camión presenta problemas para estos hormigones debido a la formación de grumos de pasta en las paredes del tambor y debe evitarse. Es preferible realizar el amasado por completo en la planta y luego transportar el hormigón a la velocidad de giro del camión. Antes de descargar, se recomienda girar el tambor diez veces a la velocidad de amasado. No es necesario imponer limitaciones estrictas al número total de revoluciones durante el transporte para evitar la trituración de los áridos, ya que, en la práctica, este fenómeno no se ha observado.

Cuando se transporta hormigón con áridos ligeros por tubería, es crucial tener en cuenta cómo la presión de bombeo afecta a la absorción de agua por los áridos ligeros. Una presión elevada aumenta la absorción de agua, mientras que una disminución de esta presión puede provocar un exceso de agua en relación con el cemento. En el primer caso, se puede perder trabajabilidad y complicar la operación de bombeo, por lo que es esencial presaturar los áridos. En el segundo caso, la resistencia del hormigón se verá comprometida y su estructura interna perderá compacidad. Por lo tanto, es fundamental ajustar la dosificación para prever y mitigar estas alteraciones, limitando adecuadamente las distancias y alturas de bombeo. Por ello, se recomienda realizar pruebas de bombeo para verificar que las características del hormigón fresco no se vean afectadas de forma notable.

Se adjunta el Anejo 8 del Código Estructural sobre recomendaciones para la utilización de hormigón con áridos ligeros.

Descargar (PDF, 932KB)

Os dejo algunos vídeos que espero que os interesen.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

TIKTIN, J. (1994). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Colocación del hormigón mediante bombeo

Figura 1. Bombeo de hormigón. https://www.balcellsintegralservice.com/bombeo-hormigon-barcelona-autobomba-sobre-camion.html

El bombeo del hormigón depende de la capacidad del equipo utilizado, del control y la homogeneidad de todos los ingredientes de la mezcla, de la dosificación y el mezclado, así como de los conocimientos y la experiencia del personal involucrado. La selección de equipos para el bombeo en condiciones óptimas depende de diversos factores específicos de cada obra. Para obtener información más detallada y concreta, se puede consultar la documentación técnica proporcionada por los fabricantes de bombas y las referencias bibliográficas disponibles. Se recomienda ponerse en contacto con el fabricante para determinar el tipo de bomba adecuado, pues los precios de alquiler aumentan en función de la capacidad del equipo. Es importante buscar una solución que sea razonable y eficiente.

Para que una operación de bombeo sea satisfactoria, es necesario un suministro constante de hormigón con las características adecuadas. Al igual que el hormigón convencional, requiere un buen control de calidad, una distribución homogénea de áridos, una granulometría adecuada y materiales dosificados y mezclados de manera uniforme. A continuación, se ofrecen algunas pautas generales sobre el proceso de bombeo de hormigón.

El proceso de colocación de hormigón por bombeo se basa en la bomba, la tubería y, en su caso, el sistema de distribución a la salida. La bomba debe estar diseñada para aspirar y empujar el volumen de hormigón requerido a través de la tubería hasta el punto de colocación. El tamaño máximo del árido viene determinado por los diámetros de los orificios de aspiración y de los cilindros de bombeo. Se recomienda que el diámetro del canal de aspiración sea al menos tres veces mayor que el tamaño máximo del árido.

Figura 2. Bomba de hormigón. https://ittcanarias.com/bombas-de-hormigon-putzmeister/

El tamaño máximo del árido grueso de forma angular se limita a un tercio del diámetro interior más pequeño de la tubería y, en el caso de áridos bien redondeados, debe ser inferior a dos quintos de este diámetro. El tamaño máximo del árido (TMA) influye significativamente en el volumen o cantidad de árido que puede utilizarse de manera eficiente. La cantidad de árido grueso debe reducirse considerablemente a medida que disminuye el TMA, pues la mayor superficie del árido de menor diámetro requiere más pasta para cubrir todas las superficies, lo que reduce la cantidad de pasta disponible para lubricar la línea de la tubería. Los áridos finos o arenas juegan un papel mucho más importante en la proporción de las mezclas bombeables que los áridos gruesos. Junto con el cemento y el agua, proporcionan el mortero que conduce en suspensión los sólidos o áridos gruesos, permitiendo así que una mezcla sea bombeable.

El uso de una autobomba suele estar limitado por una longitud máxima equivalente (L), calculada con la fórmula L = H + 3·V + 10·C₁ + 5·C₂, donde L debe ser menor o igual a 350 mm. En esta fórmula, H representa la distancia horizontal, V el desnivel vertical, C₁ el número de codos a 90º y C₂ el número de codos a 135º.

En el proceso de impulsión del hormigón, el parámetro principal es la máxima presión que puede generar la bomba. Generalmente, las autobombas utilizan una tubería corta que coincide con la longitud de la pluma de distribución, lo que implica que requieren una presión de bombeo menor en comparación con las bombas estacionarias. Estas últimas pueden bombear a distancias mayores con rendimientos similares. Por ejemplo, una presión de 7 MPa puede ser suficiente para las autobombas, incluso en casos de grandes caudales. Sin embargo, las bombas estacionarias necesitan alcanzar presiones de hasta 20 MPa para distancias horizontales de 1000 m o verticales de 500 m, lo que ilustra la diferencia en los requerimientos de presión entre ambos tipos de bombas.

La presión requerida para el bombeo varía en función de diversos factores, como la longitud, el diámetro y la cantidad de codos en la tubería, el caudal, la consistencia del hormigón y la altura. Los fabricantes de los equipos suelen proporcionar nomogramas que permiten estimar la presión necesaria para un caudal específico. En este enlace tenéis cómo realizar el cálculo de la presión y del caudal de bombeo.

Figura 3. Nomograma presión hormigón-rendimiento. Fuente: Bombas de hormigón estacionarias, Putzmeister

Durante el proceso de bombeo, el hormigón se transporta a través de tuberías metálicas de diversos espesores, diámetros, longitudes y sistemas de acoplamiento. Los diámetros de estas tuberías suelen oscilar entre 80 mm y 150 mm, con espesores habituales de entre 4 mm y 7 mm. La selección de estas variables está directamente relacionada con la presión de bombeo. Además, las longitudes típicas de los tramos individuales de tubería varían entre 1 m y 3 m.

La definición de los distintos aspectos geométricos de la tubería, junto con las características de su diseño en planta y alzado, es crítica para el proceso de bombeo. Además, el sentido del bombeo, ya sea ascendente o descendente, también es fundamental. Los sistemas de acoplamiento entre tramos individuales de tubería dependen de estas características geométricas del diseño.

Se recomienda ubicar la bomba lo más cerca posible de la zona de colocación del hormigón, utilizando una manguera flexible o un dispositivo articulado. En caso de emplear una tubería fija, se aconseja iniciar el hormigonado desde el punto más alejado de la bomba. Esto permite lubricar toda la tubería al principio y luego ir desmontando secciones de tubo y conectar la manguera de descarga en la parte final. Para este procedimiento, es necesario limpiar la tubería del hormigón utilizando agua o aire a presión.

Al poner en marcha los trabajos, se recomienda lubricar el interior de la tubería con una mezcla de mortero de cemento y arena. Una proporción de una parte de cemento por dos partes de arena es suficiente para lograr una consistencia fluida. Este mortero no solo lubrica la tubería, sino que también rellena posibles cavidades en las juntas del empalme. Aunque el método de lubricación con agua seguida por el paso de hormigón puede funcionar con dosificaciones especialmente diseñadas para el bombeo, existe el riesgo de obstrucciones en la tubería. En función de la naturaleza del material utilizado para la lubricación, este podrá emplearse o no en la colocación. Una vez que el flujo de hormigón comience a través de la tubería, la lubricación se mantendrá mientras el bombeo continúe con un diseño de mezcla adecuado y consistente.

Un problema habitual en el proceso de bombeo es la obstrucción del hormigón en la tubería. Por lo general, el operador de la bomba detecta la obstrucción al observar un aumento de la presión indicada. Los bloqueos pueden resolverse mediante ciclos que alteran la dirección de la presión, especialmente eficaces en conductos verticales. Sin embargo, este procedimiento no debe repetirse más de tres o cuatro veces. Si el bombeo no vuelve a la normalidad, es crucial identificar y eliminar la obstrucción en el punto donde se produjo.

Los atascos suelen ocurrir en el reductor a la salida de las válvulas y pueden detectarse cuando el manómetro registra una subida rápida de la presión. Cuando esto ocurre, es necesario desmontar y limpiar el reductor. No se debe forzar nunca la bomba y, si es preciso, se debe desmontar el tramo de conducción afectado. Si la presión no experimenta un aumento tan repentino, la obstrucción puede estar en el codo, el reductor o la manguera de descarga. Al observar la tubería e invertir la presión, se puede identificar la ubicación del atasco por las vibraciones que se producen. Normalmente, estos tapones no superan los 30 cm de longitud y se pueden desatascar desmontando un tramo de tubería.

Tabla 1. Localización de la obstrucción de una bomba

Subida de presión Localización de la obstrucción
Brusca Bomba o principio de la tubería
Lenta Más alejado de la zona anterior (en la propia tubería)

Los conductos deben limpiarse al finalizar el trabajo o si hay una interrupción importante. El tiempo de espera no debe exceder media hora en climas cálidos y 1 hora en condiciones normales. La limpieza puede realizarse drenando el hormigón con agua o aire y, a continuación, bombeando una esponja húmeda en dirección opuesta para crear un vacío. Para limpiar las tuberías, existen dispositivos de limpieza de diversas rigideces que deben utilizarse con cuidado para evitar accidentes.

Al realizar un pedido de hormigón preparado a un proveedor y solicitar que sea bombeado, se debe proporcionar la siguiente información, además de la resistencia característica o la consistencia: especificar que el hormigón debe ser apto para el bombeo y las condiciones de especificación en la puesta en obra. También se debe informar sobre la cantidad y el caudal a bombear, la distancia en horizontal y vertical, el tiempo de funcionamiento de la bomba y los posibles tiempos de espera. Además, es importante indicar si se dispondrá de personal para ayudar en las operaciones de lubricación y limpieza de las tuberías.

Aquí tenéis algún vídeo ilustrativo del bombeo del hormigón.
https://www.youtube.com/watch?v=_VGtI5yHnx8https://www.youtube.com/watch?v=P3TLyBiuzcM

Os dejo un catálogo de bombas de hormigón estacionarias de la marca Liebherr, por si os resulta de interés.

Descargar (PDF, 3.64MB)

Y otro de la casa Putzmeister.

Descargar (PDF, 1.89MB)

Referencias:

AA. VV. (2002). Hormigones de ejecución especial (seis tipos). Colegio de Ingenieros de Caminos, Madrid, 114 pp.

ACI COMMITTEE 304. Placing Concrete by Pumping Methods (ACI 304.2R-17). American Concrete Institute.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

RODRÍGUEZ-LÓPEZ, A.J. (2015). Determinación automática de la eficiencia volumétrica y otros parámetros de operación de bombas alternativas de hormigón mediante análisis de los pulsos de presión en su salida. Tesis doctoral. Universidad Politécnica de Madrid.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Maquinaria y procedimientos de construcción: Problemas resueltos

Os presento el libro que he publicado sobre maquinaria y procedimientos de construcción. Se trata de una completa colección de 300 problemas resueltos, abarcando aspectos relacionados con la maquinaria, medios auxiliares y procedimientos de construcción. Su contenido se enfoca en la mecanización de las obras, costos, disponibilidad, fiabilidad y mantenimiento de equipos, estudio del trabajo, producción de maquinaria, sondeos y perforaciones, técnicas de mejora del terreno, control y abatimiento del nivel freático, movimiento de tierras, equipos de dragado, explosivos y voladuras, excavación de túneles, instalaciones de tratamiento de áridos, compactación de suelos, ejecución de firmes, maquinaria auxiliar como bombas, compresores o ventiladores, cables y equipos de elevación, cimentaciones y vaciados, encofrados y cimbras, fabricación y puesta en obra del hormigón, organización y planificación de obras.

Es un libro, por tanto, muy enfocado a los ámbitos de la ingeniería de la construcción, tanto en el ámbito de la edificación, de la minería o de la ingeniería civil. Además, se incluyen 27 nomogramas originales y 19 apéndices para apoyar tanto a estudiantes de ingeniería o arquitectura, como a profesionales que enfrentan desafíos similares en su práctica diaria en obra o proyecto. La colección se complementa con un listado de referencias bibliográficas que respaldan los aspectos teóricos y prácticos abordados en los problemas. Estos problemas son similares a los tratados durante las clases de resolución de casos prácticos en la asignatura de Procedimientos de Construcción del Grado en Ingeniería Civil de la Universitat Politècnica de València (España). Por tanto, el libro resulta adecuado tanto para estudiantes de grado como para cursos de máster relacionados con la ingeniería civil y la edificación.

El libro tiene 562 páginas. Este libro lo podéis conseguir en la propia Universitat Politècnica de València o bien directamente por internet en esta dirección: https://www.lalibreria.upv.es/portalEd/UpvGEStore/products/p_376-7-1

Sobre el autor: Víctor Yepes Piqueras. Doctor Ingeniero de Caminos, Canales y Puertos. Catedrático de Universidad del Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil de la Universitat Politècnica de València. Número 1 de su promoción, ha desarrollado su vida profesional en empresas constructoras, en el sector público y en el ámbito universitario. Ha sido director académico del Máster Universitario en Ingeniería del Hormigón (acreditado con el sello EUR-ACE®), investigador del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y profesor visitante en la Pontificia Universidad Católica de Chile. Imparte docencia en asignaturas de grado y posgrado relacionadas con procedimientos de construcción y gestión de obras, calidad e innovación, modelos predictivos y optimización en la ingeniería. Sus líneas de investigación actuales se centran en la optimización multiobjetivo, la sostenibilidad y el análisis de ciclo de vida de puentes y estructuras de hormigón.

Referencia:

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

A continuación os paso las primeras páginas del libro, con el índice, para hacerse una idea del contenido desarrollado.

Descargar (PDF, 17.88MB)

Pilas cónicas para el almacenamiento de graneles

Figura 1. Pila cónica de almacenamiento de graneles al aire libre. https://jenike.com/services/conceptual-functional-engineering/stockpiles/

La utilización de montones o pilas permite el almacenamiento de grandes cantidades al aire libre de graneles sólidos de manera económica. Estos espacios pueden ser completamente abiertos o parcialmente cubiertos. En términos generales, estas instalaciones suelen generar emisiones difusas debido a la erosión eólica y/o a la manipulación de los materiales. Por lo tanto, el almacenamiento al aire libre de graneles es apropiado para aquellos materiales que no se verán afectados por las condiciones meteorológicas.

El montón se crea al dejar caer el material desde una altura específica sobre una superficie plana, que puede o no contar con elementos de retención, como muros o paredes. La cantidad de material que puede contener el montón está determinada por diversos factores, siendo notables el área disponible, la altura y el método de descarga, el ángulo de reposo y el peso específico del material.

Las pilas cónicas se generan al mantener un punto de caída con forma cónica y constante. El material cae libremente para dar forma a un cono, cuyo diámetro se encuentra restringido por el ángulo de reposo del material y las dimensiones del espacio disponible. Estas pilas se originan o renuevan mediante el uso de una cinta transportadora fija o móviles giratorias. Para manejar los materiales que rodean el perímetro de la pila, se requieren equipos de carga frontal. Estas pilas se utilizan para almacenar concentrados de minerales, escoria, granos y otros materiales similares. Sin embargo, es importante destacar que debido a la considerable altura de caída de los materiales almacenados en las pilas cónicas, se generan grandes cantidades de polvo si no se cubren adecuadamente.

En lo que respecta a los equipos empleados en la construcción de estas pilas, los volquetes, como camiones y vagones basculantes, son los protagonistas. Cuando se trata de regenerar estas pilas, se utilizan dispositivos de carga posterior, como palas de puente-grúa, palas laterales y palas pórticas.

Los equipos basculantes permiten verter los graneles sólidos en la pila desde uno de los lados. Según los requisitos específicos, estos vehículos pueden estar equipados con una cinta basculante o una cinta transversal. Siguiendo el mismo principio, también es posible llenar directamente la pila desde el vagón situado por encima de ella. Las cintas transportadoras de descarga arrojan el material a granel sobre la pila en este proceso.

Esta pila cónica se podría vaciar por un punto central. En este caso, existe una capacidad viva o útil, que es una fracción de la capacidad total del cono. Este valor se calcula en función de los ángulos de reposo y de descarga (ver Figura 2).

Figura 2. Volumen vivo y muerto de una pila cónica con descarga en un punto central, en función de los ángulos de reposo y descarga

A continuación se ofrece un nomograma, creado en colaboración con varios profesores, entre los que destaca Pedro Martínez Pagán. Espero que os sea de utilidad.

 

Referencias:

LÓPEZ JIMENO, C. et al. (2021). Manual de logística de sustancias minerales. Sistemas y equipos para el transporte y almacenamiento. Grupo de Proyectos de Ingeniería, E.T.S.I. Minas y Energía, Universidad Politécnica de Madrid, 537 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Cálculo de la temperatura de fabricación del hormigón en tiempo frío

Figura 1. Hormigonado en tiempo frío. https://madridsurarquiobras.es/blog/?p=199

La temperatura del hormigón es un factor crítico, especialmente en climas fríos, donde se debe evitar su congelación durante todas las etapas del proceso. La temperatura de amasado depende del grosor mínimo de las piezas que se van a hormigonar, de la temperatura del aire y de la pérdida de temperatura durante el transporte hasta el lugar de trabajo. A medida que aumenta el volumen de la sección hormigonada, la pérdida de calor se vuelve más lenta y el calor generado durante la hidratación adquiere más importancia. Por lo tanto, se recomienda una temperatura más baja para la masa de hormigón que se va a colocar y también una temperatura de salida más baja en el amasado. En el caso de estructuras de gran volumen, es crucial limitar la temperatura del hormigón para evitar problemas de fisuración.

Es importante tener en cuenta que las pérdidas de calor aumentan en proporción a la diferencia de temperaturas. Por lo tanto, elevar la temperatura del hormigón por encima de los valores recomendados no garantiza una protección proporcional contra la congelación, sino que puede generar efectos no deseados, como un mayor consumo de agua, una rápida disminución de la consistencia, un fraguado acelerado o un incremento de la retracción térmica.

También es relevante considerar que las superficies expuestas del hormigón pueden experimentar una rápida pérdida de humedad debido a que, al estar en contacto con el aire frío, calientan el aire circundante, lo que disminuye la humedad relativa y provoca la evaporación del agua superficial. Por tanto, se recomienda que la temperatura del hormigón durante su colocación sea lo más baja posible, tal y como se comentó anteriormente. A partir de la temperatura de colocación y de la pérdida de temperatura durante el transporte hasta el lugar de trabajo, se puede determinar la temperatura de amasado del hormigón.

La temperatura de amasado del hormigón se puede lograr calentando los distintos materiales que lo componen. El cálculo de la temperatura de la mezcla se obtiene a partir del balance térmico de los diferentes materiales, ya que la cantidad total de calor de los materiales antes y después del amasado es la misma, siendo la única incógnita la temperatura final. No se debe olvidar el calor latente de fusión del hielo en caso de que el agua de los áridos esté congelada.

A continuación os dejo un problema resuelto que, espero, os sea de interés.

Descargar (PDF, 93KB)

Os dejo también algún vídeo explicativo.

Referencias:

AENOR (2022). UNE 83151-1 IN Hormigonado en condiciones climáticas especiales. Parte 1: Hormigonado en tiempo frío. Madrid, 27 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València. 189 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.