UPV



Resultados de la búsqueda By Etiquetas: perforacion


Requerimientos en la ejecución de los barrenos

Perforacion barrenosLa perforación realizada en una voladura, consiste en la operación de llevar a cabo varias penetraciones cilíndricas en la superficie del macizo a volar, llamadas barrenos que tendrán una distribución y un ángulo de inclinación diseñados con el fin de producir el arranque, fragmentación y desplazamiento de parte del macizo rocoso. Estos barrenos alojarán las cargas explosivas que se detonarán con una secuencia de disparo diseñada para obtener un tamaño de piedra medio o fragmentación óptimos con mínimas proyecciones y vibraciones.

La correcta ejecución de los barrenos, sea cual sea el sistema de perforación empleado, se caracteriza fundamentalmente por los siguientes factores:

  • El diámetro del barreno
  • La longitud o profundidad del barreno
  • La desviación de la perforación
  • La estabilidad del barreno

 

(más…)

30 mayo, 2015
 
|   Etiquetas: ,  ,  ,  |  

Perforación a percusión con cable

Sondeo a percusión con cable.

La perforación a percusión con cable se basa en el golpeteo con una pesada herramienta de corte (trépano) que se eleva con un cable y que cae por gravedad, fragmentando el suelo. Resulta evidente, por tanto, que los sondeos realizados por esta máquina deben ser verticales.

Este sistema empezó a utilizarse en China en el 4000 A.C., consistiendo en un balancín que se contrapesaba con un grupo de hombres que efectuaban el tiro en un extremo de una cuerda mientras que de otra colgaba la sarta de perforación construida con cañas de bambú.

Su ámbito de aplicación se centra en terrenos de dureza media a baja o bien en aquellos otros duros que sean frágiles. Sin embargo, se encuentran contraindicados en terrenos detríticos no cohesionados, muy duros, abrasivos y plásticos.

La frecuencia de golpeo se encuentra en el entorno de 40 a 50 impactos/minuto, en función de los parámetros mecánicos del suelo perforado. Con ello se consiguen unos rendimientos medios de 2 a 4 m/día en materiales duros y de 10 a 20 m/día en materiales blandos. La percusión se consigue mediante un movimiento de balancín y manivela proporcionado por la máquina. La altura de caída del trépano dependerá de la dureza del terreno y de la profundidad del fondo de perforación. En máquinas normales, esta altura oscila entre 20 y 60 cm.

La perforación comienza hincando un tramo de tubería, generalmente de longitud inferior a 2 m y con un diámetro mayor al diámetro a perforar (700-800 mm), de forma que sirva de guía inicial al trépano. La entubación sólo es necesaria en casos de inestabilidad del terreno, en cuyo caso se entuban tuberías auxiliares recuperables aprovechando la percusión.

Con este sistema de perforación se hace necesario el uso de agua para facilitar la recogida del detritus formado. Este suelo fragmentado mezclado con agua forma un lodo viscoso que se recoge periódicamente mediante una válvula o cuchara de limpieza que se introduce cuando se detiene el golpeteo.

Estas cucharas consisten en una tubería terminada en su parte inferior en una válvula, que puede ser plana o de dardo. La plana, también llamada de charnela o de chapeta, hace mejor la limpieza del sondeo. La de dardo o lanza se usa fundamentalmente en pruebas de caudal. (más…)

15 mayo, 2015
 
|   Etiquetas: ,  ,  ,  |  

Perforación dirigida horizontal

perforacionLa perforación dirigida horizontal es un método de perforación empleado para la instalación de tuberías que evita la apertura de zanjas a cielo abierto minimizando el movimiento de tierras. Se utiliza fundamentalmente para la instalación de líneas de comunicación (fibra óptica, cables de datos), líneas eléctricas, gaseoductos, oleoductos y conducciones de agua a presión.

Esta tecnología opera mediante una máquina que perfora el suelo a lo largo de toda la trayectoria de la instalación, siendo orientada y seguida desde la superficie mediante un localizador que indica la posición, sin necesidad de pozos verticales, ya que la obra comienza desde la superficie. (más…)

19 marzo, 2015
 
|   Etiquetas: ,  ,  ,  |  

Plataformas petrolíferas

Plataforma Mittelplate en Alemania. Wikipedia

El mundo necesita energía desesperadamente. Pero cada vez cuesta más encontrar petróleo y gas. Las prospecciones se llevan a sitios complicados. Los primeros pozos petroleros se perforaban mediante percusión, martillando una herramienta sujeta a un cable. Poco tiempo después las herramientas de cables fueron substituidas por la perforación rotatoria, que permitía perforar a mayor profundidad y en menor tiempo. En 1989 se alcanzó un récord en el pozo Kola Borehole al norte de Rusia, que alcanzó 12.262 m de profundidad, usando un motor de perforación no rotatoria en el fango.

Una plataforma petrolífera o plataforma petrolera es una estructura de grandes dimensiones cuya función es extraer petróleo y gas natural de los yacimientos del lecho marino que luego serán exportados hacia la costa. También sirve como vivienda de los trabajadores que operan en ella y como torre de telecomunicaciones. Dependiendo de las circunstancias, la plataforma puede estar fija al fondo del océano, flotar o ser una isla artificial.

1, 2) Plataformas convencionales fijas; 3) Plataformas de torre autoelevable; 4, 5) Plataformas flotantes tensionadas; 6) Plataformas Spar; 7,8) Plataformas semi-sumergibles; 9) Plataformas en barcos perforadores; 10) Plataformas sustentadas en el zócalo y unidas a instalaciones de extracción en el fondo marino. Wikipedia

Os dejo un vídeo donde podéis ver una plataforma petrolífera de récord. Es tan alta como la Torre Eiffel y pesa unas 20.000 toneladas. La compañía Shell ha tardado un año y medio en construirla.

25 octubre, 2014
 
|   Etiquetas: ,  ,  ,  |  

Perforación mediante jumbos

Jumbo es el nombre que recibe una unidad de perforación equipada con uno o varios martillos perforadores sobre brazos hidráulicos donde puede montarse un martillo de perforación o una cesta donde pueden alojarse uno o dos operarios y que permite el acceso a cualquier parte del frente. Es una máquina diseñada para realizar labores subterráneas de forma rápida y automatizada: avance de túneles y galerías, bulonaje y perforación transversal, banqueo con barrenos horizontales y minería por corte y relleno, entre otras.

El mecanismo de traslación de los jumbos normalmente es autopropulsado por un tractor montado sobre neumáticos, cadenas o carriles, aunque existen modelos remolcados. Cuando trabajan se estacionan y su accionamiento es eléctrico, aunque pueden disponer de un motor diésel para el desplazamiento.

Los martillos perforadores son hidráulicos para conseguir mayores potencias que los neumáticos, funcionando a rotopercusión: la barrena gira continuamente ejerciendo a la vez un impacto sobre el fondo del taladro. Se precisa un aporte de agua para arrastrar los detritus y refrigerar la boca de perforación.

(más…)

27 julio, 2014
 
|   Etiquetas: ,  ,  ,  |  

Perforación con coronas

Elementos de la corona

La perforación con corona es el método de sondeo más difundido en el ámbito de la ingeniería civil, siendo imprescindible cuando se trata de extraer un testigo continuo en formaciones rocosas.

La zona de corte consta de la matriz, que es una aleación de distintas características según el terreno a perforar y en la que se insertan los diamantes, y de un cuerpo principal, que da soporte a la matriz y sirve de unión por roscado al varillaje. Si hay necesidad de extraer testigos, la matriz debe ser hueca (de corte anular) y en el caso contrario, maciza o ciega.

coronas de matriz maciza

Coronas de matriz maciza

La función de la corona es fragmentar la roca hasta dejarla en condiciones de ser extraída a la superficie. La eficacia de esta función, su precio y la duración (que dependerá del desgaste) son los tres aspectos básicos en su elección. Según la dureza y abrasividad del terreno la corona puede ser de widia o de diamantes.

Las coronas de widia son apropiadas para perforar rocas blandas o de dureza media. Están compuestas por prismas octogonales de unos 15 mm de longitud, insertados en las zonas más sobresalientes del perfil que forma el perímetro de la corona. La widia (aglomerado de carburo de wolframio, tungsteno, molibdeno, cobalto y otros metales) es mucho más resistente y menos sensible a la abrasión que los aceros especiales, pero su costo es bastante más elevado, aunque menor que el del diamante.

Coronas de widia

Coronas de widia

Las coronas de diamante se emplean en rocas muy duras y abrasivas, donde el rápido desgaste de las coronas de widia no compensaría la economía obtenida en su compra.

Por la forma de fabricación y distribución de los diamantes, estas coronas puedes ser de inserción o de concreción.

  • En las coronas de inserción los diamantes están incrustados sobre la superficie de la corona de la que sobresalen en forma de casquete. El tamaño de los diamantes es en estos casos de 10-80 p.p.q. (piedras por quilate: 1 quilate = 0,2 gramos).
  • En las coronas de concreción, los diamantes son de bastante menor tamaño (80-1000 p.p.q.), están mezclados y distribuidos regularmente por la matriz.
Coronas de diamantes de inserción

Coronas de diamantes de inserción

Al cabo de cierto tiempo de utilización, la corona no proporciona ya un avance aceptable por lo que es necesario su recambio. Ese momento puede medirse aproximadamente, cuando con la máxima carga sobre la corona, el avance es inferior a unos 2 cm/min. El intentar en estos casos mantener el rendimiento aumentando la carga podría provocar la fractura de algún diamante o de la matriz.

Os dejo unos vídeos sobre el tema.

Referencias:

YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València. 89 pp.

16 junio, 2014
 
|   Etiquetas: ,  ,  ,  ,  ,  |  

Sistema “Franki” de ejecución de pilotes de desplazamiento

El sistema “Franki” de ejecución de un pilote de desplazamiento se base en una entubación metálica que presenta un tapón de hormigón en la punta. Dicho conjunto se hinca “a golpes” mediante una maza. Una vez se llega a la profundidad adecuada, se sujeta la entubación y se golpea el tapón en la punta para expulsarlo hacia abajo, creando así un bulbo o “punta ensanchada” a base de compactar el terreno, lo que hace que este pilote sea también muy eficiente trabajando a tracción.No se recomienda su uso en suelos cohesivos, donde la compactación de la base no es posible.

Fue desarrollado en el año 1909 por el ingeniero belga Frankignoul Edgard y desde entonces ha logrado un éxito considerable en todo el mundo.  Este método se puede aplicar en diferentes condiciones, y sigue siendo utilizado debido a su alta capacidad de carga y tracción, y los bajos niveles de ruido y las vibraciones del suelo.

A continuación podéis ver un vídeo explicativo de los pilotes de desplazamiento con tapón de gravas, que en la nomenclatura de las NTE se denomina CPI-3.

Os recomiendo el enlace de Enrique Montalar, y también los siguientes vídeos explicativos que espero os gusten.

(más…)

11 marzo, 2014
 
|   Etiquetas: ,  ,  ,  ,  |  

Sistema “Fundex” de ejecución de pilotes de desplazamiento a rotación

El sistema “Fundex” de pilotes de desplazamiento por rotación requiere una cabeza de rotación en punta, que no se vuelve a recuperar.

En la figura se puede apreciar el método de ejecución, que consta de las siguientes fases:

  1. El hueco de perforación se cierra de forma estanca mediante una cabeza especial de perforación
  2. A través de una mesa de rotación se hace girar el taladro formado por la cabeza de perforación y el entubado
  3. Se coloca la armadura sobre la longitud del pilote
  4. Se hormigona hasta alcanzar la cota del terreno
  5. A través de la mesa de perforación, se retira el entubado, manteniendo un control constante del cuele del hormigón.

Os dejo el siguiente link de la empresa Martí Ibérica S.A. sobre el tema y un vídeo explicativo, que espero os guste.

19 febrero, 2014
 
|   Etiquetas: ,  ,  ,  ,  ,  |  

Perforación con martillo en fondo

La perforación con martillo en fondo (D.T.H. down the hole), desarrollada por Stenuick en 1951, se basa en que un martillo golpea directamente la boca en el fondo de la perforación. De esta forma se evita la pérdida de energía transmitida por la percusión del pistón a través del varillaje (a partir de 15-20 m, los martillos en cabeza dejan de ser efectivos). Hoy se pueden alcanzar profundidades superiores a los 100 m con rendimientos de 60 a 100 m/turno. El martillo en fondo y la boca forman una unidad integrada dentro del barreno. Esto garantiza una velocidad de perforación bastante homogénea con el aumento de la profundidad del taladro, aunque es normal que disminuya la velocidad al reducirse la velocidad de barrido con la profundidad. El accionamiento del pistón se lleva a cabo neumáticamente, mientras que la rotación puede ser neumática o hidráulica.

El martillo DTH consta de un cilindro cuya longitud es función de la carrera del pistón y de diámetro acorde con el diámetro de perforación. En el extremo de este cilindro se aloja la boca de perforación, alojada en un portabocas. El varillaje se sustituye por un tubo hueco que conecta el martillo con el equipo y que se encarga de transmitir el par de rotación y la fuerza de avance. Los barrenos perforados con martillo en fondo acusan mínimas desviaciones, consiguiendo buenos resultados en rocas muy fracturadas. El varillaje, compuesto por tubos de igual diámetro en toda la longitud, no tiene acoplamientos que puedan atascar la perforación. La rotación la realiza un motor neumático o hidráulico montado en el carro, al igual que el sistema de avance. El aire de escape limpia el detritus y lo transporta al exterior.

Martillo DTH Secoroc COP 64 Gold. www.dthrotarydrilling.com

El campo de aplicación del martillo DTH son las rocas de resistencia a compresión media-alta (60-100 MPa), utilizando como diámetros más frecuentes los comprendidos entre 85 y 200 mm, aunque podrían ampliarse a diámetros mayores entrando en competencia con los sistemas rotopercutivos hidráulicos con martillo en cabeza. La velocidad de penetración de estos martillos, para diámetros entre 105 y 165 mm, es de 0,5 a 0,6 m/min, con presiones de trabajo entre 1800 kPa y 2000 kPa. La frecuencia de golpeo oscila entre 600 y 1600 golpes por minuto. En cuanto al empuje, son necesarios unos 85 kg por cada cm de diámetro. Para hacerse una idea, con diámetros de 125 mm podemos obtener el doble de potencia que con un diámetro de 100 mm, a igualdad de presión y carrera de pistón.

www.codelcoeduca.cl

Hoy en día, el sistema DTH, en el rango de 76 a 125 mm, se está sustituyendo por la perforación con martillo hidráulico en cabeza.

Las ventajas de la perforación con martillo DTH, frente a otros sistemas son:

  • Velocidad de penetración prácticamente constante con el aumento de la profundidad de perforación
  • Salvo en rocas muy abrasivas, desgastes de las bocas menores que con martillo en cabeza
  • Vida más larga de los tubos que de las varillas y manguitos de los martillos en cabeza
  • Desviaciones pequeñas de los barrenos, por lo que son adecuados para profundidades largas
  • Menor energía de impacto y más frecuencia, lo cual es apto para macizos muy fracturados o desfavorables
  • Par y velocidad de rotación menor que otros métodos
  • No necesitan barras de carga, lo cual permite pequeños carros de perforación para barrenos de gran diámetro y profundidad
  • Menor coste por metro lineal que con perforación rotativa en diámetros grandes y rocas muy duras
  • Consumo de aire comprimido más bajo que con martillo en cabeza neumático
  • Nivel de ruido inferior al estar el martillo dentro de la perforación.

 

En cuanto a los inconvenientes de este sistema:

  • Velocidades de penetración bajas
  • Cada martillo está diseñado para una gama de diámetros muy estrecha que oscila en unos 12 mm
  • El diámetro más pequeño está limitado por las dimensiones del martillo para un rendimiento aceptable (unos 76 mm)
  • El costo de un martillo de fondo es muy elevado frente a la pequeña inversión de un tren de varillaje
  • Riesgo de pérdida del martillo en el interior de la perforación
  • Se necesitan compresores de alta presión con elevados consumos energéticos.

 

Os dejo a continuación algunos vídeos de este sistema de perforación. En el primero os dejo un Polimedia que espero os sea útil.

En el siguiente vemos una máquina perforadora neumática  Stenuick modelo MD25-60 con motor de rotación Stenuick mod F574, martillo del fondo de 2″, broca de carburo de tungsteno de 2 ¾ ” y 3″ y tubos de perforación de 60 mm de diámetro por 2 m.

En este vemos una perforación de anclajes con martillo de fondo para la estabilización de un talud en roca meteorizada de basalto.

En este otro se puede ver una perforación con DTH a través de estructuras geotécnicas para la ejecución de inyecciones de contacto en una estructura subterránea.

 

Referencias:

  • DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
  • INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Editorial de la Universitat Politècnica de València. Ref. 530, 165 pp.
  • UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.
  • YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209.
18 enero, 2014
 
|   Etiquetas: ,  ,  ,  ,  |  

Perforación con martillo en cabeza

Simba S7 D: Equipo de perforación de barrenos largos con martillo en cabeza. http://www.atlascopco.es/

La forma habitual de perforación de una roca a rotopercusión es la perforación con martillo en cabeza. El principio de corte se basa en el impacto realizado en el exterior de la perforación de un pistón de acero sobre una barrena o varillaje, que a su vez transmite la energía al fondo del taladro por medio del elemento final (boca) que fragmenta en esquirlas la roca. Para asegurar una sección circular en el barreno, a cada golpe gira el útil para presentar a su corte nueva roca virgen en el fondo del barreno. Además, es preciso evacuar del barreno los detritus (barrido), lo que se consigue mediante insuflado de aire al fondo del taladro. Parte de la energía del impacto se pierde en la transmisión y en los cambios de sección del varillaje, por lo que la velocidad de penetración de la perforación disminuirá con la profundidad del barreno. Es un sistema que conceptualmente es similar al barrenado manual, donde un operario golpea con una maza la cabeza de una barrena.

Se pueden distinguir los martillos manuales de las perforadoras de martillo en cabeza propiamente dichas. Los primeros son equipos sencillos, actualmente en desuso salvo en demoliciones o perforaciones de pequeña sección no mecanizable. Los segundos son equipos pesados que, en consecuencia, precisan de su montaje en chasis especiales.

Perforación manual con martillo en cabeza. www. codelcoeduca.cl

Perforación manual con martillo en cabeza. www. codelcoeduca.cl

Las perforadoras con martillo en cabeza pueden accionarse mediante martillos neumáticos y martillos hidráulicos. El desarrollo de los martillos hidráulicos en los años sesenta y comienzos de los setenta supuso un gran avance tecnológico en la perforación de rocas.

Tanto las perforadoras neumáticas como las hidráulicas constan de los siguientes elementos:

  • Un cilindro que con su movimiento alternativo golpea el extremo de una barrena
  • Un mecanismo de rotación incorporado al pistón (barra rifle o rueda trinquete) o independiente de éste (motor de rotación)
  • Un sistema que permite el barrido del barreno mediante una aguja de barrido que atraviesa el pistón o bien por medio de la inyección del fluido de barrido lateralmente en la cabeza frontal de la perforadora

 

Perforadoras neumáticas

El accionamiento de estas perforadoras es mediante aire comprimido, con una misma presión tanto para el mecanismo de impacto como para el aire de barrido. Son perforadoras que se han empleado de forma tradicional para barrenos de menos de 150 mm de diámetro. Su peso y tamaño son menores que el de las perforadoras hidráulicas. Presentan un consumo de aire de unos 2,1-2,8 m3/min por cada centímetro de diámetro, la velocidad de rotación es de 40-400 rpm y la carrera del pistón de 35-95 mm.

La rotación del varillaje puede realizarse mediante:

  • Barra estriada o rueda de trinquete: Muy generalizado en perforadoras ligeras
  • Motor independiente: Barrenos de gran diámetro

 

Las longitudes de perforación con este sistema no superan habitualmente los 30 m debido a las importantes pérdidas de energía debidas a las transmisión de la onda de choque y a las desviaciones de los barrenos. Lo normal es utilizar barrenos cortos, con longitudes entre 2 y 15 m y el empleo de diámetros pequeños, entre 38 y 100 mm. Además, a medida que aumenta la longitud del barreno, se precisa de una mayor presión de aire de barrido.

Entre las ventajas de las perforadoras neumáticas cabe destacar las siguientes:

  • Gran simplicidad
  • Fiabilidad y bajo mantenimiento
  • Facilidad de reparación
  • Precios de adquisición bajos

 

Perforadoras hidráulicas

Estos equipos se introdujeron al principio en los trabajos subterráneos, pero poco a poco, se están imponiendo en la perforación en superficie. Estructuralmente la perforadora hidráulica es similar a la neumática, aunque el accionamiento se realiza mediante un grupo de bombas que suministran un caudal de aceite que impulsa los componentes. Además, estas unidades van equipadas con un compresor cuya función es suministrar aire para el barrido del detritus, pudiéndose incrementar la presión del aire con la profundidad del barreno. La presión de trabajo de estos equipos ronda entre 7,5 y 25 MPa, la potencia de impacto entre 6 y 20 kW y la velocidad de rotación entre 0 y 500 rpm. Aquí el consumo relativo de aire comprimido es menor, entre 0,6 y 0,9 m3/min por cada centímetro de diámetro.

Martillo hidráulico. www.codelcoeduca.cl

Respecto a las neumáticas, necesitan de una mayor inversión inicial, siendo las reparaciones más complejas y costosas, y requiriendo una mejor organización y formación del personal de mantenimiento. En cambio, las ventajas tecnológicas de las perforadoras hidráulicas son las siguientes:

  • Menor consumo de energía: tres veces menos
  • Menor coste de accesorios de perforación: incremento del 20% de la vida útil del varillaje
  • Mayor capacidad de perforación: velocidades de penetración entre un 50 y un 100% mayores
  • Mejores condiciones ambientales: más limpios y silenciosos
  • Mayor elasticidad en la operación: posibilidad de variar la presión de accionamiento, la energía y la frecuencia de golpeo
  • Mayor facilidad para la automatización: cambio de varillaje, mecanismos antiatranque, etc.

 

Os dejo un Polimedia explicativo sobre este sistema de perforación que espero os sea útil.

Referencias:

  • DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
  • INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Editorial de la Universitat Politècnica de València. Ref. 530, 165 pp.
  • UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.

 

 

Entrada siguiente Previous Posts

Universidad Politécnica de Valencia