Resultados parciales del proyecto BRIDLIFE

ph_vigas-artesaEl objetivo del proyecto BRIDLIFE consiste en desarrollar una metodología que permita incorporar un análisis del ciclo de vida de puentes de hormigón pretensado, definiendo un proceso de toma de decisiones que integre los aspectos sociales y medioambientales mediante técnicas analíticas de toma de decisiones multicriterio.

Los resultados esperados detallarán qué tipologías, actuaciones de conservación y alternativas de demolición y reutilización son adecuadas para minimizar los impactos, dentro de una política de fuerte limitación presupuestaria que compromete seriamente las políticas de creación y conservación de las infraestructuras.

Este proyecto competitivo, financiado por el Ministerio de Economía y Competitividad y los fondos FEDER (proyecto de investigación BIA2014-56574-R), tiene una duración prevista de 2015 a 2017. En este momento, superado el ecuador del proyecto, podemos dar cuenta de algunos de los resultados ya publicados en revistas de impacto, que espero sean de vuestro interés.

Como antecedentes necesarios se indican algunos trabajos previos, fruto del proyecto HORSOST, precedente al actual. La optimización de un puente de vigas artesa se abordó con algoritmos híbridos basados en el recocido simulado [1] y algoritmos meméticos [2]; se utilizaron algoritmos de enjambres de luciérnagas para optimizar el coste y las emisiones de CO₂ de vigas en I, incorporando la carbonatación en el ciclo de vida [3]; asimismo se evaluó el ciclo de vida de hormigones con distintas adiciones incluyendo la carbonatación y la durabilidad [4].

Las primeras aportaciones realizadas en el año 2015, ya dentro del proyecto, fueron la optimización de estribos abiertos mediante algoritmos híbridos de escalada estocástica [5]; la optimización del coste de puentes en vigas artesa con hormigón con fibras [6] y la optimización de las emisiones de CO₂ de pasarelas de hormigón pretensado y sección en cajón [7]. Destaca también el trabajo desarrollado, basándose en una aproximación cognitiva, de una metodología que permite la toma de decisiones tras la aplicación de técnicas de optimización multiobjetivo [8].

En el año 2016 se empezaron a realizar aportaciones realizadas, fundamentalmente con la evaluación de los impactos sociales de las infraestructuras a lo largo del ciclo su ciclo de vida [9,10]. Se avanzó con la optimización de la energía embebida en puentes de vigas artesa [11] y en la optimización multiobjetivo del coste, las emisiones de CO₂ y la seguridad a lo largo del ciclo de vida de puentes cajón [12]. Se han comparado puentes losa postesados y puentes prefabricados óptimos [13]. Otra aportación de interés se hizo con la colaboración del profesor Dan M. Frangopol, que realizó una estancia en nuestro grupo de investigación. Se comparó el coste del ciclo de vida de puentes cajón usando una aproximación basada en la fiabilidad [14].

Durante el año 2017, último del proyecto, existen trabajos ya publicados y otros en proceso de revisión. Se describen brevemente los ya publicados. Se aplicó el análisis de ciclo de vida completo atendiendo a todo tipo de impactos ambientales a muros de contrafuertes [15], introduciendo una metodología que se está aplicando a estructuras más complejas como los puentes. Se ha introducido un metamodelo basado en redes neuronales para mejorar el rendimiento en el proceso de optimización multiobjetivo de puentes en cajón [16]. También se optimizaron las emisiones de CO₂ en puentes de vigas artesa ejecutados con hormigones con fibras [17].

Aparte de estas aportaciones, directamente relacionadas con el proyecto BRIDLIFE, durante este periodo de tiempo destacan dos trabajos similares aplicados a la optimización del mantenimiento de pavimentos de carreteras desde los puntos de vista económicos y medioambientales [18,19].

Cabe destacar, por último, que durante los años 2015-2016 se han leído cinco tesis doctorales relacionadas, de forma directa o indirecta, con los objetivos desarrollados por el presente proyecto de investigación [20-24], existiendo otras cinco en estado avanzado de desarrollo.

Referencias:

[1] J.V. Martí, F. González-Vidosa, F.; V. Yepes, J. Alcalá, Design of prestressed concrete precast road bridges with hybrid simulated annealing, Engineering Structures. 48 (2013) 342-352.

[2] J.V. Martí, V. Yepes, F. González-Vidosa, A. Luz, Diseño automático de tableros óptimos de puentes de carretera de vigas artesa prefabricadas mediante algoritmos meméticos híbridos, Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería. 30(3) (2014) 145-154.

[3] T. García-Segura, V. Yepes, J.V. Martí, J. Alcalá, Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm, Latin American Journal of Solids and Structures. 11(7) (2014) 1190-1205.

[4] T. García-Segura, V. Yepes, J.V. Martí, J. Alcalá, Life-cycle greenhouse gas emissions of blended cement concrete including carbonation and durability, International Journal of Life Cycle Assessment. 19(1) (2014) 3-12.

[5] A. Luz, V. Yepes, F. González-Vidosa, J.V. Martí, Diseño de estribos abiertos en puentes de carretera obtenidos mediante optimización híbrida de escalada estocástica, Informes de la Construcción. 67(540) (2015) e114.

[6] J.V. Martí, V. Yepes, F. González-Vidosa, Memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement, Journal of Structural Engineering ASCE. 141(2) (2015) 04014114.

[7] T. García-Segura, V. Yepes, J. Alcalá, E. Pérez-López, Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges, Engineering Structures. 92 (2015) 112-122.

[8] V. Yepes, T. García-Segura, J.M. Moreno-Jiménez, A cognitive approach for the multi-objective optimization of RC structural problems, Archives of Civil and Mechanical Engineering. 15(4) (2015) 1024-1036.

[9] E. Pellicer, L.A. Sierra, V. Yepes, Appraisal of infrastructure sustainability by graduate students using an active-learning method, Journal of Cleaner Production. 113 (2016) 884-896.

[10] L.A. Sierra, E. Pellicer, V. Yepes, Social sustainability in the life cycle of Chilean public infrastructure, Journal of Construction Engineering and Management ASCE. 142(1) (2016) 05015020.

[11] J.V. Martí, T. García-Segura, V. Yepes. Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy, Journal of Cleaner Production. 120 (2016) 231-240.

[12] T. García-Segura, V. Yepes, Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety, Engineering Structures. 125 (2016) 325-336.

[13] J.V. Martí, J. Alcalá, T. García-Segura, V. Yepes, Heuristic design of precast-prestressed concrete U-beam and post-tensioned cast-in-place concrete slab road bridges, International Conference on High Performance and Optimum Design of Structures and Materials (HPSM/OPTI 216) (2016), 10 pp.

[14] T. García-Segura, V. Yepes, D.M. Frangopol, D.Y. Yang, Comparing the life-cycle cost of optimal bridge designs using a lifetime reliability-based approach, Fifth International Symposium on Life -Cycle Civil Engineering (IALCCE 2016). (2016) 1146-1153.

[15] P. Zastrow, F. Molina-Moreno, T. García-Segura, J.V. Martí, V. Yepes. Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study, Journal of Cleaner Production. 140 (2017) 1037-1048.

[16] T. García-Segura, V. Yepes, J. Alcalá, Computer-support tool to optimize bridges automatically, International Journal of Computational Methods and Experimental Measurements. 5(2) (2017) 171-178.

[17] V. Yepes, J.V. Martí, T. García-Segura, Design optimization of precast-prestressed concrete road bridges with steel fiber-reinforcement by a hybrid evolutionary algorithm, International Journal of Computational Methods and Experimental Measurements. 5(2) (2017) 179-189.

[18] C. Torres-Machi, A. Chamorro, E. Pellicer, V. Yepes, C. Videla, Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making, Transportation Research Record. 2523 (2015) 56-63.

[19] V Yepes, C. Torres-Machí, A. Chamorro, E. Pellicer, Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm, Journal of Civil Engineering and Management. 22(4) (2016) 540-550.

[20] C. Torres-Machí, Optimización heurística multiobjetivo para la gestión de activos de infraestructuras de transporte terrestre, Tesis doctoral, Universitat Politècnica de València y Pontificia Universidad Católica de Chile, 2015.

[21] A.M. Rodriguez-Calderita, Optimización heurística de forjados de losa postesa, Tesis doctoral, Universitat Politècnica de València, 2015.

[22] A.J. Luz, Diseño óptimo de estribos abiertos de hormigón armado en puentes de carretera mediante optimización heurística, Tesis doctoral, Universitat Politècnica de València, 2016.

[23] F. Navarro-Ferrer, Modelos predictivos de las características prestacionales de hormigones fabricados en condiciones industriales, Tesis doctoral, Universitat Politècnica de València, 2016.

[24] T. García-Segura, Efficient design of post-tensioned concrete box-girder road bridges based on sustainable multi-objective criteria, Tesis doctoral, Universitat Politècnica de València, 2016.

Evaluación del ciclo de vida de muros óptimos de contrafuertes

s09596526Nos acaban de publicar un artículo que versa sobre la evaluación del ciclo de vida de muros óptimos de contrafuertes. En este estudio se han analizado 30 muros optimizados de varias alturas (4-13 m), con terrenos de distintas capacidades portantes (0,2; 0,3 y 0,4 MPa). Os paso la referencia, el resumen y el enlace al artículo. Espero que os sea de interés.

NOTICIA: Hasta el 21 de diciembre de 2016 podéis descargaros gratis el artículo directamente en:

http://authors.elsevier.com/a/1Tz-03QCo9JQWX

Aprovecha la oportunidad para no pagar los costes de descarga.

Highlights

  • A life cycle assessment over 30 optimized earth-retaining walls is conducted
  • Concrete presents the highest contribution to all impact categories
  • Steel significance on every impact increases with wall size
  • The recycling rate influences each impact category to different degrees
  • Savings on abiotic resource depletion with 70% recycled steel are about 72%

 

l-31-fig31-3-counterfort-retaining-wallsAbstract:

In this paper life cycle assessments are carried out on 30 optimized earth-retaining walls of various heights (4–13 m) and involving different permissible soil stresses (0.2, 0.3 and 0.4 MPa) in Spain. Firstly, the environmental impacts considered in the assessment method developed by the Leiden University (CML 2001) are analyzed for each case, demonstrating the influence of the wall height and permissible soil stress. Secondly, this paper evaluates the contribution range of each element to each impact. The elements considered are: concrete, landfill, machinery, formwork, steel, and transport. Moreover, the influence of the wall height on the contribution of each element over the total impact is studied. This paper then provides the impact factors per unit of concrete, steel, and formwork. These values enable designers to quickly evaluate impacts from available measurements. Finally, the influence of steel recycling on the environmental impacts is highlighted. Findings indicate that concrete is the biggest contributor to all impact categories, especially the global warming potential. However, the steel doubles its contribution when the wall heights increase from 4 m to 13 m. Results show that recycling rates affect impacts differently.

Keywords

Life cycle assessmentRetaining wallSustainability; Buttressed wall

Referencia:

ZASTROW, P.; MOLINA-MORENO, F.; GARCÍA-SEGURA, T.; MARTÍ, J.; YEPES, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study. Journal of Cleaner Production, 140:1037-1048. DOI: 10.1016/j.jclepro.2016.10.085

 

 

Tesis doctoral: Efficient design of post-tensioned concrete box-girder road bridges based on sustainable multi-objective criteria

tatiana_jpg-1024x748Hoy 30 de septiembre de 2016 ha tenido lugar la defensa de la tesis doctoral de Dª Tatiana García Segura denominada «Efficient design of post-tensioned concrete box-girder road bridges based on sustainable multi-objective criteria», dirigida por Víctor Yepes Piqueras. La tesis recibió la calificación de «Sobresaliente Cum Laude» por unanimidad, con mención internacional. Presentamos a continuación un pequeño resumen de la misma.

Resumen:

Los puentes, como parte importante de una infraestructura, se espera que reúnan todos los requisitos de una sociedad moderna. Tradicionalmente, el objetivo principal en el diseño de puentes ha sido lograr el menor coste mientras se garantiza la eficiencia estructural. Sin embargo, la preocupación por construir un futuro más sostenible ha provocado un cambio en las prioridades de la sociedad. Estructuras más ecológicas y duraderas son cada vez más demandadas. Bajo estas premisas, los métodos de optimización heurística proporcionan una alternativa eficaz a los diseños estructurales basados en la experiencia. La aparición de nuevos materiales, diseños estructurales y criterios sostenibles motivan la necesidad de crear una metodología para el diseño automático y preciso de un puente real de hormigón postesado que considere todos estos aspectos. Por primera vez, esta tesis estudia el diseño eficiente de puentes de hormigón postesado con sección en cajón desde un punto de vista sostenible. Esta investigación integra criterios ambientales, de seguridad estructural y durabilidad en el diseño óptimo del puente. La metodología propuesta proporciona múltiples soluciones que apenas encarecen el coste y mejoran la seguridad y durabilidad. Al mismo tiempo, se cuantifica el enfoque sostenible en términos económicos, y se evalúa el efecto que tienen dichos criterios en el valor óptimo de las variables.

2016-09-30-19_21_29En este contexto, se formula una optimización multiobjetivo que proporciona soluciones eficientes y de compromiso entre los criterios económicos, ecológicos y sociales. Un programa de optimización del diseño selecciona la mejor combinación de geometría, tipo de hormigón, armadura y postesado que cumpla con los objetivos seleccionados. Se ha escogido como caso de estudio un puente continuo en cajón de tres vanos situado en la costa. Este método proporciona un mayor conocimiento sobre esta tipología de puentes desde un punto de vista sostenible. Se ha estudiado el ciclo de vida a través de la evaluación del deterioro estructural del puente debido al ataque por cloruros. Se examina el impacto económico, ambiental y social que produce el mantenimiento necesario para extender la vida útil del puente. Por lo tanto, los objetivos propuestos para un diseño eficiente han sido trasladados desde la etapa inicial hasta la consideración del ciclo de vida.

Para solucionar el problema del elevado tiempo de cálculo debido a la optimización multiobjetivo y el análisis por elementos finitos, se han integrado redes neuronales en la metodología propuesta. Las redes neuronales son entrenadas para predecir la respuesta estructural a partir de las variables de diseño, sin la necesidad de analizar el puente. El problema de optimización multiobjetivo se traduce en un conjunto de soluciones de compromiso que representan objetivos contrapuestos. La selección final de las soluciones preferidas se simplifica mediante una técnica de toma de decisiones. Una técnica estructurada convierte los juicios basados en comparaciones por pares de elementos con un grado de incertidumbre en valores numéricos que garantizan la consistencia de dichos juicios. Esta tesis proporciona una guía que extiende y mejora las recomendaciones sobre el diseño de estructuras de hormigón dentro del contexto de desarrollo sostenible. El uso de la metodología propuesta lleva a diseños con menor coste y emisiones del ciclo de vida, comparado con diseños que siguen metodologías generales. Los resultados demuestran que mediante una correcta elección del valor de las variables se puede mejorar la seguridad y durabilidad del puente con un pequeño incremento del coste. Además, esta metodología es aplicable a cualquier tipo de estructura y material.

Hacia la sostenibilidad en la obra civil con soluciones prefabricadas de hormigón (y IV)

UNA PRIMERA APROXIMACIÓN HACIA LA SOSTENIBILIDAD EN LA OBRA CIVIL CON SOLUCIONES PREFABRICADAS DE HORMIGÓN (y IV)

Alejandro López-Vidal (ANDECE) y Víctor Yepes (Universitat Politècnica de València)

Próximos retos de la industria del prefabricado de hormigón

ala014La propia industria reconoce que no sólo tiene una responsabilidad para mejorar su comportamiento por la creciente demanda de soluciones sostenibles, sino que parte de su competitividad futura crecerá si es capaz de sacar provecho del potencial inherente que tiene el propio concepto de construcción industrializada con elementos prefabricados de hormigón, tal y como hemos ido destacando anteriormente, algo que cada vez es más apreciado por proyectistas e ingenieros, promotores, empresas constructoras, compañías aseguradoras y en general, los usuarios finales (que al fin y al cabo, acabamos siendo todos).

Una de las aparentes desventajas de los productos de hormigón es su contenido en cemento, y más en particular la cantidad de Clinker incorporada, causante de una parte importante de las emisiones globales de CO2. De esta forma, las industrias cementeras y del prefabricado deben invertir enormes esfuerzos en optimizar el uso del cemento, mejorando la hidratación del mismo y ajustando la proporción del mismo para reducir el CO2 embebido. El uso de adiciones como las escorias granuladas de altos hornos, las cenizas volantes y el humo de sílice está en pleno crecimiento, lo que supone una reducción de las emisiones de CO2 que conllevan con respecto al cemento Portland [9].

La sostenibilidad en las plantas de prefabricados se traslada a la eficiencia de los recursos, mediante la reducción de residuos o a través de la certificación bajo normas como la ISO 14001 y EMAS. Las nuevas fábricas suelen incorporar grandes sistemas de reciclado para la reutilización del agua sobrante del proceso productivo, o cualquier otro material de desecho. Nada de esto sería posible sin la aportación de una capacitación humana de gran desempeño y que se implique para el éxito de la empresa en este enfoque sostenible, que en muchos casos acaban siendo el motor de la introducción de nuevas técnicas de ahorro de energía, iniciativas de reciclaje e incluso programas con la comunidad local.

Debe destacarse por encima de todas el plan estratégico “Precast Sustainability Strategy and Charter” de la Asociación Británica de Prefabricados de Hormigón [10]. Firmado por primera vez en 2007 por 17 empresas, está incluido ya hoy dentro del programa de acción “Raising the Bar” y al que todas las compañías asociadas están comprometidas a cumplir. Este plan anima a dichas empresas a ir más allá de lo que exige la legislación vigente, de tal forma que lleven a cabo acciones voluntarias que permitan una mayor sostenibilidad en los productos y operaciones que realizan. Para cumplir estos retos, se han desarrollado un conjunto de principios sostenibles adaptados a la dinámica propia de la industria. El primer periodo se enmarcó entre 2008 y 2012, en el que 12 de los 14 objetivos fueron alcanzados. En 2013, el Consejo Británico del Prefabricado aprobó una nueva batería de medidas a cumplir en el año 2020, tomando como base algunos datos de 2012.

  • 10% de reducción de la energía total utilizada en la fabricación
  • 20% de reducción de las emisiones de CO2
  • 10% de reducción de los residuos en las fábricas
  • Reducir a menos de 0,5 kg/Tn los residuos de fábrica a enviar a vertedero
  • Incremento al 25% de la proporción de adiciones alternativas al cemento
  • Incremento al 25% de la proporción de áridos reciclados o secundarios
  • 20% de reducción del consumo total de agua
  • Reducción a la mita del riesgo de accidentes laborales entre 2015 y 2020
  • Ampliar el peso total fabricado, así como el número de centros productivos, certificados bajo algún sistema de gestión medioambiental (p.ej. ISO 14001) al 95%. Mismo objetivo para la certificación bajo algún sistema de gestión de calidad (p.ej. ISO 9001) o cubiertos por alguna norma de uso de fuentes responsables
  • Reducción de condenas por vertidos a la atmósfera y al agua a cero
  • Mejorar la captación de datos de transporte en 2015 (se fijará un Nuevo objetivo en 2016)
  • Incrementar el número de empleados cubiertos por un sistema de gestión certificado (p.ej. ISO 9001/ ISO 14001/ OHSAS 18001) al 100%
  • Incrementar el número de empleados cubiertos por el programa de formación y cualificación de la MPA al 100%
  • Mantenimiento del 100% de centros productivos que cuentan con programas de apoyo a la comunidad local

858802_331527263630484_1482261224_o

Otro asunto importante a tratar será el cumplimiento de las empresas de prefabricados con el nuevo requisito básico “Uso sostenible de los recursos naturales” que se incluyó en el Reglamento UE 305/2011 de Productos de Construcción [11]. Las obras de construcción deberán proyectarse, construirse y demolerse de tal forma que la utilización de los recursos naturales sea sostenible y garantice en particular:

  • La reutilización y la reciclabilidad de las obras de construcción, sus materiales y sus partes tras la demolición;
  • La durabilidad de las obras de construcción;
  • La utilización de materias primas y materiales secundarios en las obras de construcción que sean compatibles desde el punto de vista medioambiental.

La industria está analizando cómo presentar de la forma más clara y creíble los datos para los análisis de ciclo de vida (ACV), mediante el empleo de declaraciones ambientales de producto verificadas por tercera parte que cumplan con las nuevas normativas, como es el caso europeo. Esta información además resultará de interés porque podrá ir incluida en los sistemas BIM (Modelo de información de la Construcción). Esto permitirá a que los técnicos alcancen durante el desarrollo del proyecto un impacto reducido de los indicadores de la sostenibilidad tanto en edificios como en infraestructuras, todo ello basado en datos fiables que se ajusten a la realidad a lo largo de su vida útil. Esto además servirá para que los fabricantes optimicen sus procesos de producción, a partir de una mejora en la eficiencia de los recursos (materias primas, agua y energía), la minimización de residuos e incluso un incentivo para el empleo de materiales y fuentes de energía alternativos

Esta preocupación medioambiental (sostenible) debería ir convirtiéndose en un estímulo creciente en cualquier empresa. Este enfoque ya se está implementando en las tomas de decisiones de las compañías, motivado especialmente por la mayor apuesta de las administraciones públicas, como puede ser el caso de las políticas y procedimientos de compra verde que ya están instaurados en países como Suecia o Noruega, o ha sucedido más recientemente en el País Vasco [12], que promueve un mayor uso de elementos prefabricados como vía para la no generación de residuos.

Referencias

[1] BREEAM, Building Research Establishment Environmental Assessment

[2] LEED, Leadership in Energy and Environmental Design

[3] Draft ISO 21931-2 Sustainability in building construction — Framework for methods of assessment of the sustainability performance of construction works. Part 2: Civil Engineering Works

[4] Draft EN 15643-5 Sustainability of construction works – Sustainability assessment of buildings and civil engineering works – part 5: framework on specific principles and requirement for civil engineering works

[5] ISO 21930:2007 Sustainability in building construction – Environmental declaration of building products

[6] UNE-EN 15804:2012+A1:2014  Sostenibilidad en la construcción. Declaraciones ambientales de producto. Reglas de categoría de producto básicas para productos de construcción.

[7] «EPD Arroyo Valchano railway bridge». Acciona Infraestructuras, EPD. 2013

[8] YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49:123-134

[9] «Little Green Book of Concrete – sustainable construction with precast concrete». British Precast, 2008

[10] “Precast Sustainability Strategy and Charter”. British Precast Concrete Association, 2013

[11] Reglamento (UE) No 305/2011 del Parlamento Europeo y del Consejo por el que se establecen condiciones armonizadas para la comercialización de productos de construcción y se deroga la Directiva 89/106/CEE del Consejo

[12] «Manual práctico de compra y contratación pública verde. Modelos y ejemplos para su implantación por la administración pública vasca». ihobe. 2011

 

Sobre los autores:

Alejandro López-Vidal. Nacido en 1978. Ingeniero Industrial por la Universidad de León. Ha desempeñado diversos cargos en ANDECE (Asociación Española de la Industria del Prefabricado de Hormigón) desde 2008, pasando a ocupar el puesto de Director Técnico en 2013. Es miembro de varias organizaciones relacionadas con la industria del prefabricado de hormigón, como son las Comisiones Técnica y Medioambiental de BIBM, o siendo el delegado español en el Comité de Normalización Europeo CEN/TC 229. Es Coordinador del Primer Máster Internacional sobre Construcción con Prefabricados de Hormigón en lengua hispana. Como aspectos interesantes relativos a la construcción sostenible, es secretario técnico del comité espejo español del CEN/TC 350 para los temas de sostenibilidad en la edificación, y colabora actualmente con el Grupo de Trabajo 6.15 de la FIB que está desarrollando un nuevo documento sobre la sostenibilidad de las estructuras prefabricadas.

Víctor Yepes. Nacido en 1964. Doctor Ingeniero de Caminos, Canales y Puertos. Catedrático Acreditado por ANECA y Profesor Titular en la Universitat Politècnica de València. Actualmente está implicado en varios proyectos de investigación relacionados con la optimización y la evaluación del ciclo de vida de las estructuras de hormigón. Imparte clases sobre métodos de construcción, innovación y gestión de la calidad. Es además director del Máster en Ingeniería del Hormigón. También es investigador senior en el Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y dirige el Proyecto de investigación BRIDLIFE: “Toma de decisiones en la gestión del ciclo de vida de puentes pretensados en términos de eficiencia social y medioambiental, bajo presupuestos ajustados”.

 

Hacia la sostenibilidad en la obra civil con soluciones prefabricadas de hormigón (III)

UNA PRIMERA APROXIMACIÓN HACIA LA SOSTENIBILIDAD EN LA OBRA CIVIL CON SOLUCIONES PREFABRICADAS DE HORMIGÓN (III)

Alejandro López-Vidal (ANDECE) y Víctor Yepes (Universitat Politècnica de València)

 

Casos prácticos

Figura 4.- Construcción de un puente en el mar mediante el empleo de cajones prefabricados de hormigón para la formación del tablero
Figura 4.- Construcción de un puente en el mar mediante el empleo de cajones prefabricados de hormigón para la formación del tablero

Deben reseñarse los casos de dos compañías internacionales españolas como FCC y ACCIONA. Por parte de FCC, se ha desarrollado una metodología propia de evaluación de la sostenibilidad en obra civil denominada SAMCEW que tiene en cuenta la experiencia adquirida por la aplicación de su propio sistema interno de gestión de la sostenibilidad durante los últimos años. Se trata de una metodología de análisis flexible y ajustable en función del tipo de obra civil, la ubicación, las características del proyecto o de la etapa evaluada, que implicará que ciertos aspectos tengan mayor impacto que otros. En cuanto a ACCIONA, ha llevado a cabo iniciativas interesantes en materia de cuantificar el grado de sostenibilidad de algunas de sus obras, siendo pionera a nivel mundial en la obtención de declaraciones ambientales en infraestructuras, como son los casos de las evaluaciones realizadas sobre el viaducto ferroviario “Arroyo Valchano” [7] en la línea de AVE Madrid-Galicia y que incluye un análisis “cuna a puerta” de todos los materiales utilizados, o un tramo de carretera de la N-340 en Elche (Alicante).

 

Descripción del puente de ferrocarril “Arroyo Valchano”

El puente aloja una doble vía de ferrocarril que ha sido construida exclusivamente para el transporte de pasajeros. El tablero consta de vigas prefabricadas y una losa de hormigón hecha in situ, con la siguiente distribución de los vanos: 35 + 5×45 +35 = 295 m. La losa tiene un ancho de 14 m y tiene un espesor variable. La unidad funcional escogida es “1 m de puente”.

 

Límites del sistema y calidad de los datos

 

La EPD cubre solamente la estructura del Puente. El análisis del ciclo de vida se refiere a la producción de los distintos materiales utilizados, el transporte de éstos a la obra y la fase de ejecución del puente. No se han considerado el resto de fases como la etapa de servicio del puente o las tareas de mantenimiento.

Comportamiento ambiental

Los datos genéricos seleccionados para la producción de las materias primas y los combustibles se tomaron de la base de datos de PE utilizando el programa GaBi 6. Los resultados se indicaron para una vida útil de servicio del puente de 60 años.

Figura 3.- Categorías de impacto para la construcción de 1 m del puente “Arroyo Valchano”
Figura 3.- Categorías de impacto para la construcción de 1 m del puente “Arroyo Valchano”

 

 

 

A nivel de investigación, debe destacarse el proyecto “Optimización del coste y las emisiones de CO2 de los puentes de carretera con vigas artesas prefabricadas de hormigón pretensado en U, mediante un algoritmo híbrido de optimización por enjambre de luciérnagas” [8].  Esta investigación describe una metodología para optimizar el coste y las emisiones de CO2 cuando se diseña el puente utilizando vigas prefabricadas pretensadas con sección transversal en forma de doble artesa. Para su finalización, el algoritmo utilizado (acrónimo en inglés, SAGSO) se utiliza combinando el efecto sinérgico de una búsqueda local con el recocido simulado (SA) y una búsqueda global con la optimización por enjambre de luciérnagas (GSO). La solución de la estructura del puente se define a partir de 40 variables, que incluyen la geometría, los tipos de materiales y las armaduras de la viga y de la losa. Respecto al material, se ha utilizado hormigón de alta resistencia así como hormigón autocompactante en la fabricación de las vigas. Los resultados obtenidos proporcionan una excelente guía a los ingenieros para el diseño de puentes prefabricados de hormigón pretensado. El análisis reveló además que por cada 1€ de ahorro, se reduce la emisión de 1,75 kg de CO2. Finalmente, el estudio paramétrico indico que las soluciones óptimas económicas conllevan resultados satisfactorios medioambientalmente hablando, y que difieren muy poco de la mejor solución posible si fuese analizada exclusivamente desde la perspectiva medioambiental.

Referencias

[1] BREEAM, Building Research Establishment Environmental Assessment

[2] LEED, Leadership in Energy and Environmental Design

[3] Draft ISO 21931-2 Sustainability in building construction — Framework for methods of assessment of the sustainability performance of construction works. Part 2: Civil Engineering Works

[4] Draft EN 15643-5 Sustainability of construction works – Sustainability assessment of buildings and civil engineering works – part 5: framework on specific principles and requirement for civil engineering works

[5] ISO 21930:2007 Sustainability in building construction – Environmental declaration of building products

[6] UNE-EN 15804:2012+A1:2014  Sostenibilidad en la construcción. Declaraciones ambientales de producto. Reglas de categoría de producto básicas para productos de construcción.

[7] «EPD Arroyo Valchano railway bridge». Acciona Infraestructuras, EPD. 2013

[8] YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49:123-134

[9] «Little Green Book of Concrete – sustainable construction with precast concrete». British Precast, 2008

[10] “Precast Sustainability Strategy and Charter”. British Precast Concrete Association, 2013

[11] Reglamento (UE) No 305/2011 del Parlamento Europeo y del Consejo por el que se establecen condiciones armonizadas para la comercialización de productos de construcción y se deroga la Directiva 89/106/CEE del Consejo

[12] «Manual práctico de compra y contratación pública verde. Modelos y ejemplos para su implantación por la administración pública vasca». ihobe. 2011

 

Sobre los autores:

Alejandro López-Vidal. Nacido en 1978. Ingeniero Industrial por la Universidad de León. Ha desempeñado diversos cargos en ANDECE (Asociación Española de la Industria del Prefabricado de Hormigón) desde 2008, pasando a ocupar el puesto de Director Técnico en 2013. Es miembro de varias organizaciones relacionadas con la industria del prefabricado de hormigón, como son las Comisiones Técnica y Medioambiental de BIBM, o siendo el delegado español en el Comité de Normalización Europeo CEN/TC 229. Es Coordinador del Primer Máster Internacional sobre Construcción con Prefabricados de Hormigón en lengua hispana. Como aspectos interesantes relativos a la construcción sostenible, es secretario técnico del comité espejo español del CEN/TC 350 para los temas de sostenibilidad en la edificación, y colabora actualmente con el Grupo de Trabajo 6.15 de la FIB que está desarrollando un nuevo documento sobre la sostenibilidad de las estructuras prefabricadas.

Víctor Yepes. Nacido en 1964. Doctor Ingeniero de Caminos, Canales y Puertos. Catedrático Acreditado por ANECA y Profesor Titular en la Universitat Politècnica de València. Actualmente está implicado en varios proyectos de investigación relacionados con la optimización y la evaluación del ciclo de vida de las estructuras de hormigón. Imparte clases sobre métodos de construcción, innovación y gestión de la calidad. Es además director del Máster en Ingeniería del Hormigón. También es investigador senior en el Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y dirige el Proyecto de investigación BRIDLIFE: “Toma de decisiones en la gestión del ciclo de vida de puentes pretensados en términos de eficiencia social y medioambiental, bajo presupuestos ajustados”.

 

 

Hacia la sostenibilidad en la obra civil con soluciones prefabricadas de hormigón (II)

UNA PRIMERA APROXIMACIÓN HACIA LA SOSTENIBILIDAD EN LA OBRA CIVIL CON SOLUCIONES PREFABRICADAS DE HORMIGÓN (II)

Alejandro López-Vidal (ANDECE) y Víctor Yepes (Universitat Politècnica de València)

 

Papel de las soluciones prefabricadas de hormigón para mejorar la sostenibilidad de las obras de ingeniería civil

ph_dinteles1Es evidente que hay una demanda creciente que exige soluciones constructivas que permitan alcanzar el desarrollo sostenible. En este contexto, la industria de los prefabricados de hormigón es cada vez más consciente de que debe establecer mecanismos para una mayor eficiencia en el uso de los recursos y de qué forma los productos puedan contribuir a lograr construcciones más ecológicas.

El concepto de obra civil incluye a un amplio número de proyectos, en los cuales los productos prefabricados de hormigón ofrecen un papel cada vez más relevante:

 

Campos de la obra civil Infraestructuras Elementos prefabricados de hormigón
Infraestructuras de procesos industriales Plantas de generación eléctrica Muros o cualquier otros elemento prefabricado estructural
Instalaciones para la distribución de electricidad, gas, agua, etc. Tubos, pozos de registro y cámaras de inspección, marcos
Agua y otros sistemas de tratamiento Depósitos de aguas residuales y fosas séticas, retenedores de grasas
Generación y suministro de energía Postes para aerogeneradores, líneas eléctricas, de telecomunicaciones, iluminación, etc.
Infraestructuras lineales Puentes Prelosas, vigas, pilas, estribos
Pasarelas Cualquier elemento es prefabricable
Carreteras Barreras de seguridad, losas de calzadas, paneles acústicos
Líneas de ferrocarril Traviesas, vía en placa
Tuneles Bóvedas, dovelas
Diques y otras construcciones fluviales Canales Losas y muros prefabricados
Defensas frente a inundaciones Sistemas de contención
Construcciones marítimas Puertos Pantalanes, pavimentos
Rompeolas Bloques macizos
Otras obras de ingeniería civil Public realm works Pavimentos, mobiliario urbano

 

Tabla 1.- Productos Prefabricados de hormigón para construcciones de obra civil, acorde con la clasificación del apartado 5 del borrador de la norma ISO 21931-2 [3]

Figura 2.- Traviesas y dovelas juegan un papel fundamental en la construcción de líneas de ferrocarril y túneles, como sucede actualmente en dos de las mayores obras que se están acometiendo, como son los nuevos túneles subterráneos que cruzan el Estrecho del Bósforo en Estambul (Turquía) y la nueva línea de Londres (Inglaterra).
Figura 2.- Traviesas y dovelas juegan un papel fundamental en la construcción de líneas de ferrocarril y túneles, como sucede actualmente en dos de las mayores obras que se están acometiendo, como son los nuevos túneles subterráneos que cruzan el Estrecho del Bósforo en Estambul (Turquía) y la nueva línea de Londres (Inglaterra).

El diseño sostenible de un edificio es diferente al que tiene una infraestructura. Mientras que en los edificios son esenciales los requisitos de resistencia al fuego, aislamiento acústico o eficiencia energética, las exigencias de comportamiento de la obra civil se mueven en otros caminos distintos. De hecho, hay una clara diferenciación en cuanto a la importancia de las etapas durante el ciclo de vida de la construcción. Mientras que en la edificación la fase de uso es la más importante, ya que es responsable de aproximadamente el 80% del impacto ambiental del ciclo completo, es durante la ejecución de la infraestructura cuando resultan los mayores impactos, incluso más allá que en la fase de servicio de la misma.

Algunos de los criterios asumidos como sostenibles ya eran parte intrínseca de los procesos de producción de elementos prefabricados de hormigón en las últimas décadas, como son el uso eficiente de materiales o la mejora motivada por el empleo de hormigones de alta resistencia, aunque cabe indicar que todavía existe un amplio potencial de crecimiento:

 

Características elementos prefabricados de hormigón Medioambiental Social Económica
Durabilidad (incremento de la vida útil) Soluciones eficaces a largo plazo suponen una preservación de los recursos naturales, una reducción de los impactos, ahorro de energía y una mejora del potencial de extracción de los recursos Una vida prolongada de las infraestructuras implica menores perturbaciones a los ciudadanos Los costes iniciales se amortizan en un periodo de tiempo más lagoMenor mantenimiento (reducción de costes)
Industrialización Construcción sin apenas residuosConstrucción en seco: los elementos Prefabricados llegan a obra justo para su colocación Seguridad laboral mejorada: menor riesgo de accidentes Devolución más rápida de créditos de financiación
Eficiencia de los recursos Reducción del consume de recursos naturales mediante el uso de materiales de desecho en los productos (p.ej. áridos reciclados procedentes de residuos de hormigón de la propia planta) Eliminación parcial de un problema global Uso mayor de materiales con propiedades mejores (p.ej. hormigones de alta resistencia/prestaciones, técnica del pretensado) que implican una optimización de la relación consumo de materiales/coste
Mayor uso de hormigones autocompactantes Reduce el consumo eléctrico La eliminación de las vibraciones implica unas condiciones en fábrica mucho más confortables y seguras
Origen de las materias primas Las redes de suministro locales suponen distancias planta-obra más cortas, con lo que la huella ambiental se reduceTodos los materiales proceden de fuentes naturales, y principalmente de origen inorgánico Los materiales están disponibles de forma local, mejorando la economía y el empleo en la zona
Carbonatación Reabsorción del CO2 de la atmósfera Eliminación parcial de un problema global
Fotocatálisis Disminución de los efectos de la contaminación del aire  (NOx, etc.) Reducción de enfermedades respiratorias

Tabla 2.- Algunas ventajas de los elementos prefabricados de hormigón para obras de ingeniería civil, analizadas desde los tres dimensiones de la sostenibilidad

Referencias

[1] BREEAM, Building Research Establishment Environmental Assessment

[2] LEED, Leadership in Energy and Environmental Design

[3] Draft ISO 21931-2 Sustainability in building construction — Framework for methods of assessment of the sustainability performance of construction works. Part 2: Civil Engineering Works

[4] Draft EN 15643-5 Sustainability of construction works – Sustainability assessment of buildings and civil engineering works – part 5: framework on specific principles and requirement for civil engineering works

[5] ISO 21930:2007 Sustainability in building construction – Environmental declaration of building products

[6] UNE-EN 15804:2012+A1:2014  Sostenibilidad en la construcción. Declaraciones ambientales de producto. Reglas de categoría de producto básicas para productos de construcción.

 

Sobre los autores:

Alejandro López-Vidal. Nacido en 1978. Ingeniero Industrial por la Universidad de León. Ha desempeñado diversos cargos en ANDECE (Asociación Española de la Industria del Prefabricado de Hormigón) desde 2008, pasando a ocupar el puesto de Director Técnico en 2013. Es miembro de varias organizaciones relacionadas con la industria del prefabricado de hormigón, como son las Comisiones Técnica y Medioambiental de BIBM, o siendo el delegado español en el Comité de Normalización Europeo CEN/TC 229. Es Coordinador del Primer Máster Internacional sobre Construcción con Prefabricados de Hormigón en lengua hispana. Como aspectos interesantes relativos a la construcción sostenible, es secretario técnico del comité espejo español del CEN/TC 350 para los temas de sostenibilidad en la edificación, y colabora actualmente con el Grupo de Trabajo 6.15 de la FIB que está desarrollando un nuevo documento sobre la sostenibilidad de las estructuras prefabricadas.

Víctor Yepes. Nacido en 1964. Doctor Ingeniero de Caminos, Canales y Puertos. Catedrático Acreditado por ANECA y Profesor Titular en la Universitat Politècnica de València. Actualmente está implicado en varios proyectos de investigación relacionados con la optimización y la evaluación del ciclo de vida de las estructuras de hormigón. Imparte clases sobre métodos de construcción, innovación y gestión de la calidad. Es además director del Máster en Ingeniería del Hormigón. También es investigador senior en el Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y dirige el Proyecto de investigación BRIDLIFE: “Toma de decisiones en la gestión del ciclo de vida de puentes pretensados en términos de eficiencia social y medioambiental, bajo presupuestos ajustados”.

Hacia la sostenibilidad en la obra civil con soluciones prefabricadas de hormigón (I)

UNA PRIMERA APROXIMACIÓN HACIA LA SOSTENIBILIDAD EN LA OBRA CIVIL CON SOLUCIONES PREFABRICADAS DE HORMIGÓN (I)

Alejandro López-Vidal (ANDECE) y Víctor Yepes (Universitat Politècnica de València)

Introducción

Figura 1.- Ciclo de vida que ilustra el proceso complete de la construcción mediante el empleo de elementos Prefabricados de hormigón
Figura 1.- Ciclo de vida que ilustra el proceso completo de la construcción mediante el empleo de elementos prefabricados de hormigón

La mayoría de avances alcanzados relacionados con los métodos estandarizados para cuantificar la sostenibilidad de la construcción, están fundamentalmente enfocados a la edificación más que a las infraestructuras, especialmente en su variante residencial. El impacto global de la edificación residencial es el mayor de todos, pues implica a los tres ejes de la sostenibilidad: medioambiental (emisiones de gases de efecto invernadero, derivados de los consumos de calefacción y/o refrigeración para lograr unas condiciones interiores confortables), social (la vivienda es una primera necesidad para las personas) y económico (suele representar el mayor gasto que afronta una persona a lo largo de su vida).

Mientras tanto, la obra civil no ha evolucionado igualmente en esta materia. Aunque generalmente se trata de construcciones de mayor envergadura, los impactos sobre la sostenibilidad son mucho más difusos y no tienen una repercusión tan directa sobre la vida diaria de los ciudadanos.

Por estas razones, puede explicarse que los métodos de evaluación de la sostenibilidad para la obra civil no estén tan desarrollados como los existentes en la edificación, incluso con cierta dificultad para encontrar referencias sobre este campo. Esto puede implicar de alguna forma un obstáculo para la promoción técnica de los elementos prefabricados de hormigón, en un área que suele estar dominado por ingenieros que, en general, saben apreciar mejor las ventajas funcionales que esta metodología constructiva ofrece con respecto a otras.

Este artículo pretende describir las fortalezas que la construcción con prefabricados de hormigón tendrá en el inminente marco reglamentario sobre la sostenibilidad en la obra civil, como vía para mejorar sus posibilidades y lograr una mayor cuota de mercado. También se analizarán algunos de los indicadores de la sostenibilidad que ya aparecen en los borradores de normas actuales.

ala014

La razón de la sostenibilidad

Los conceptos de sostenibilidad y desarrollo sostenible se mencionan en casi cualquier actividad que esté relacionada con el uso de recursos, consumo de energía o el ambiente exterior. Pero ninguno de ellos son términos nuevos, habiendo evolucionado notablemente en las últimas décadas hasta el punto de tener una enorme importancia en muchas decisiones que se toman actualmente, especialmente en aquellos países o economías más avanzadas en las que existe una creciente preocupación por las consecuencias del cambio climático, la escasez de energía o el crecimiento demográfico.

La construcción tiene una tremenda influencia analizada desde los puntos de vista económicos (por su peso en el PIB), sociales (como generador de empleos, o como medio para resolver algunas necesidades básicas como la vivienda, o la creación de infraestructuras) y medioambiental (uso de recursos naturales, energía, o posibles daños al ambiente).

Las administraciones públicas son cada vez más conscientes acerca de que el modelo actual y reciente de construir puede (y debe) mejorar mucho:

  • Gases de efecto invernadero: ↓ 30 – 40%
  • Consumo de agua: ↓ 12 – 20%
  • Consumo de energía primaria: ↓ 35 – 40%
  • Consumo de materias primas: ↓ 30 – 40%
  • Ocupación del suelo: ↓ 20%

Es evidente que construyendo de forma más ecológica se conseguirá una notable reducción del impacto para lograr los objetivos marcados por los gobiernos y la sociedad en su conjunto. Sin embargo, la mayoría de los criterios calificados como sostenibles en la construcción no son nuevos, siendo muchos de ellos ya utilizados desde el pasado cuando seguramente se hacía un consumo más responsable de los recursos disponibles, bien porque no había otra posibilidad o bien porque no existía esa cultura que ha llevado a ciertos excesos arquitectónicos tan habituales en tiempos recientes.

Hay que remarcar igualmente que el enfoque sostenible puede correr cierto riesgo de ser malinterpretado, si se utiliza de manera desproporcionada. Vivimos una época en la que muchos productos de construcción son presentados directamente como el adalid de la sostenibilidad, algo que conlleva a pensar que debería realizarse un uso más moderado del término. Debemos ser muy cautos con la interpretación del término, así como con todo aquello que se nos presente como sostenible, debiendo ponerse siempre en el contexto adecuado. Es el caso, por ejemplo, de la madera que se presenta (casi) siempre como el material de construcción más sostenible, sin tener en consideración ningún otro factor como el marco climático, social, económico e incluso cultural del lugar donde se emplee, lo que provoca escepticismo en muchas ocasiones acerca de la validez del propio concepto.

Métodos de evaluación de la sostenibilidad

Existen ya un buen número de metodologías para evaluar cuánto tiene de sostenible un edificio o una infraestructura. Éstas pueden clasificarse como metodologías privadas o bajo procedimientos normalizados. Respecto a los sistemas privados de certificación, deben destacarse BREEAM [1] que fue el primer método de evaluación de la sostenibilidad de los edificios, desarrollado en el Reino Unido en 1990 por el Building Research Institute; y la herramienta LEED [2], desarrollada en 1996 y operada por el U.S. Green Building Council. Ambos sistemas de certificacion están expandidos a nivel mundial. Otros sistemas conocidos son el SBTool (Canada), HQE (Francia) o el DGNB (Alemania). Un aspecto común a todos ellos es que están orientados a edificación.

Respecto a modelos de evaluación de la sostenibilidad de infraestructuras, pueden destacarse los programas CEEQUAL y SUNRA.

La reciente proliferación de este tipo de procedimientos provoca cierta dificultad en realizar comparaciones comprensibles entre distintos programas, e incluso entre una construcción ecológica frente a la tradicional. Para hacer frente a esta gran cantidad de métodos de cuantificación de la sostenibilidad, las dos principales organizaciones mundiales de normalización, CEN (Europa) e ISO (Internacional) han comenzado a desarrollar sus propias normas. En el caso de ISO, los comités que tratan con aspectos de construcción sostenible son los TC207, ISO TC59 SC17 e ISO TC71SC8. En cuanto a CEN, se hace a través del comité TC 350, dividido en seis grupos de trabajo siendo el WG6 el dedicado a la obra civil

Los métodos de evaluación de la sostenibilidad en los tres ejes – medioambiental, social y económico – de las obras de ingeniería civil establecidos en las normas tienen en cuenta los aspectos de comportamiento y los impactos para que puedan ser cuantificados, sin lugar a interpretaciones subjetivas y conducentes a resultados claros de cada indicador que se evalúe.

Las normas ISO 21931-2 [3] y EN 15643-5 [4] son las que establecen el marco que definen los métodos de evaluación de la sostenibilidad de las infraestructuras. Ambas normas se encuentran todavía en fase de análisis, por lo que aún habrá que esperar 1 o 2 años hasta su aprobación.

En lo que se refiere a nivel de productos o elementos constructivos, se deben destacar las normas ISO 21930 [5] y EN 15804 [6]. Ambas normas presentan un esquema similar. Las dos proporcionan las reglas de categoría de producto (acrónimo en inglés, PCR) básicas para llevar a cabo las declaraciones ambientales (acrónimo en inglés, EPD) o etiquetas Tipo III de cualquier producto o servicio de construcción, definiendo los parámetros a declarar y la forma en que se recopilan y se consignan en los informes, las etapas del ciclo de vida de un producto que hay que considerar, o las reglas para el desarrollo de escenarios. Estas normas establecen la base para estimar los valores que corresponden a más de 20 indicadores ambientales, los cuales pueden organizarse en tres categorías:

  • Indicadores de impacto ambiental: potencial de calentamiento global; potencial de agotamiento de la capa de ozono estratosférica; potencial de acidificación de tierra y agua; etc.
  • Indicadores de uso de recursos: uso de energía primaria renovable; uso de energía primaria no renovable, uso neto de agua corriente; etc.
  • Indicadores que describen categorías de residuos: residuos peligrosos y no peligrosos vertidos; residuos radiactivos vertidos; etc.

En este sentido, hay que aclarar que la evaluación del comportamiento social y económico a nivel de producto todavía no está cubierta en las normas, al menos a nivel europeo.

Y de manera más particular, debe destacarse el hecho importante de que el Comité Europeo de Normalización para los productos prefabricados de hormigón, el CEN/TC 229, acaba recientemente de iniciar los trabajos que llevarán a definir una norma específica que establezca las reglas de categoría de producto para la emisión de declaraciones ambientales de producto tipo III para tales productos prefabricados.

Debe también remarcarse otro hecho significativo. Frente a la estrategia seguida por la mayoría de materiales de construcción que sólo declaran los parámetros medioambientales hasta el final del proceso productivo sin tener en cuenta los impactos del resto del ciclo de vida, lo que se conoce como de “cuna a puerta”, las declaraciones ambientales de los productos prefabricados de hormigón se basarán en el ciclo completo, es decir, la opción denominada “de cuna a tumba”, permitiendo que todos los consumidores conozcan todos los impactos obtenidos en el ciclo de vida total, incluso hasta la fase de demolición o deconstrucción de la obra, o la posible reutilización de elementos en otra construcción en el futuro.

Referencias

[1] BREEAM, Building Research Establishment Environmental Assessment

[2] LEED, Leadership in Energy and Environmental Design

[3] Draft ISO 21931-2 Sustainability in building construction — Framework for methods of assessment of the sustainability performance of construction works. Part 2: Civil Engineering Works

[4] Draft EN 15643-5 Sustainability of construction works – Sustainability assessment of buildings and civil engineering works – part 5: framework on specific principles and requirement for civil engineering works

[5] ISO 21930:2007 Sustainability in building construction – Environmental declaration of building products

[6] UNE-EN 15804:2012+A1:2014  Sostenibilidad en la construcción. Declaraciones ambientales de producto. Reglas de categoría de producto básicas para productos de construcción.

Sobre los autores:

Alejandro López-Vidal. Nacido en 1978. Ingeniero Industrial por la Universidad de León. Ha desempeñado diversos cargos en ANDECE (Asociación Española de la Industria del Prefabricado de Hormigón) desde 2008, pasando a ocupar el puesto de Director Técnico en 2013. Es miembro de varias organizaciones relacionadas con la industria del prefabricado de hormigón, como son las Comisiones Técnica y Medioambiental de BIBM, o siendo el delegado español en el Comité de Normalización Europeo CEN/TC 229. Es Coordinador del Primer Máster Internacional sobre Construcción con Prefabricados de Hormigón en lengua hispana. Como aspectos interesantes relativos a la construcción sostenible, es secretario técnico del comité espejo español del CEN/TC 350 para los temas de sostenibilidad en la edificación, y colabora actualmente con el Grupo de Trabajo 6.15 de la FIB que está desarrollando un nuevo documento sobre la sostenibilidad de las estructuras prefabricadas.

Víctor Yepes. Nacido en 1964. Doctor Ingeniero de Caminos, Canales y Puertos. Catedrático Acreditado por ANECA y Profesor Titular en la Universitat Politècnica de València. Actualmente está implicado en varios proyectos de investigación relacionados con la optimización y la evaluación del ciclo de vida de las estructuras de hormigón. Imparte clases sobre métodos de construcción, innovación y gestión de la calidad. Es además director del Máster en Ingeniería del Hormigón. También es investigador senior en el Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y dirige el Proyecto de investigación BRIDLIFE: “Toma de decisiones en la gestión del ciclo de vida de puentes pretensados en términos de eficiencia social y medioambiental, bajo presupuestos ajustados”.

Antecedentes y motivación del proyecto de investigación BRIDLIFE

BCH001La sostenibilidad constituye un enfoque que ha dado un giro radical a la forma de afrontar nuestra existencia. El calentamiento global debido a las emisiones de gases de efecto invernadero y las tensiones sociales derivadas de la presión demográfica y del reparto desequilibrado de la riqueza son, entre otros, los grandes retos que debe afrontar nuestra generación. La concentración de CO2, alcanzó un máximo sin precedentes en 2013, con el mayor incremento anual en 30 años (World Meteorological Organization, 2014), por lo que la economía baja en carbono se perfila como una línea estratégica de gran importancia. Las actividades humanas son las principales responsables de este problema, provocando un desarrollo alejado de satisfacer las necesidades de las generaciones presentes sin comprometer las necesidades de las generaciones futuras, que constituye el núcleo del paradigma de “desarrollo sostenible” (Brundtland, 1987).

La construcción juega un papel fundamental en el desarrollo de la sociedad. Influye fuertemente en la actividad económica, el crecimiento y en el empleo. Sin embargo, es una actividad que impacta significativamente en el medio ambiente (Marí, 2007), presenta efectos irreversibles y puede comprometer el presente y futuro de la sociedad. Este sector consume hasta un 60% de las materias primas extraídas (Vital Signs, 2005), generando su transformación sobre el 50% de todas las emisiones de CO2. En Europa, el 30% de los residuos proceden de la construcción y la demolición; consumiendo la industria y la construcción un 42% de la energía total de (Pacheco-Torgal y Jalali, 2011). Son datos que muestran la brecha de mejora posible en esta industria para acercarse a la sostenibilidad. No basta con construir de forma económica y eficiente, sino que debe ser socialmente aceptable, debe ahorrar recursos naturales no renovables y respetar el medio ambiente a largo plazo. Un paso en este sentido son herramientas como BREEAM, CASBEE, DGNB o LEED que certifican la sostenibilidad de las edificaciones usando parámetros objetivos.

BBA027

Otro aspecto con grandes repercusiones sociales es la profunda crisis financiera que afecta de una forma extrema la economía de nuestro país y que ha provocado el hundimiento de la actividad constructora. Las infraestructuras que se crearon con una financiación a largo plazo presentan actualmente déficits de conservación y es posible que las generaciones futuras tengan que pagar unas infraestructuras mermadas en sus requisitos de seguridad y funcionales asociados a la fase de servicio. En este sentido, Nishijima et al. (2012) plantean una metodología, limitada a aspectos económicos, que balancea los beneficios conseguidos y los costes asociados al diseño y construcción, costes de reposición, mantenimiento y fallos de un puente, teniendo en cuenta la tasa de equidad intergeneracional y la optimización de la estructura.

Por otra parte, no es difícil encontrar noticias causantes de alarma social en relación a la interrupción de grandes vías de comunicación debido al deterioro de los puentes, incluso algunos de muy reciente construcción. Un informe de la Asociación Española de Carreteras (2012), centrado en los firmes y la señalización, estima que el deterioro del patrimonio viario en los últimos 6 años crece a un ritmo del 5% anual, con un déficit acumulado de inversión de 5500 millones de euros. Sin embargo, este problema es común en otros países desarrollados. Uno de cada nueve puentes de Estados Unidos son estructuralmente deficientes, presentando una edad media de 42 años. Para resolver esta situación en el horizonte de 2028, deberían gastarse 20,5 mil millones de dólares anuales, aunque sólo se invierte el 62,4% de lo necesario (ASCE, 2013). El escenario dibuja una verdadera crisis en las infraestructuras. Cualquier actuación que se quiera realizar deberá contar con unos presupuestos muy restrictivos. El reto social será cómo aplicar dichos presupuestos de forma que se minimicen los impactos ambientales, los riesgos a las personas (Sydam et al., 2013) y la gestión sea socialmente sostenible, dentro de una política de conservación del patrimonio. Se trata de un problema de optimización muy complejo, con muchas restricciones y sometido a grandes incertidumbres, lo cual representa un reto científico.

Aspectos contradictorios entre los indicadores sociales y medioambientales a corto y largo plazo complican enormemente la toma de decisiones en el ámbito de la construcción, pues, lejos de ser un problema meramente técnico, debe contemplar aspectos difusos y cualitativos, con un enfoque holístico. Ello se complica cuando el deterioro inevitable de estructuras como los puentes dependen de multitud de parámetros difíciles de estimar que requieren herramientas de identificación estructural que complementen las inspecciones (Structural System Identification, SSI) (ASCE, 2011). La extracción del conocimiento derivado de la resolución científica de los problemas planteados en el ámbito de las decisiones públicas y privadas constituye uno de los aspectos de vanguardia en el ámbito científico (Moreno-Jiménez et al., 2012). De hecho, el concepto de infraestructura sostenible debería apoyarse en los pilares social, biofísico, económico y técnico. Los requerimientos de sostenibilidad deberían considerar aspectos globales y deberían definir los objetivos y las necesidades a satisfacer por las infraestructuras: diseño, ejecución, uso y reutilización. Ello requiere una visión amplia de la sostenibilidad a todos los niveles: ambientales, económicos, sociales, de seguridad, de prevención de riesgos, funcionales e incluso estéticos (San José y Garrucho, 2010). El pilar social se debería basar en la equidad y justicia social, entendida como la oportunidad de redistribución sobre toda la población. Existe una gran labor de investigación pendiente en el estudio de la sostenibilidad social de las infraestructuras, que debería mejorar la calidad de vida, proteger y promover la salud, buscar una distribución equitativa de los costes sociales de la construcción y buscar la equidad intergeneracional (Alarcón, 2005). Rackwitz et al. (2005) plantean, en este sentido, una optimización socio-económica de las infraestructuras como un punto de arranque a la solución de este problema complejo.

Los puentes forman parte de las infraestructuras básicas en el desarrollo económico y en el equilibrio territorial, cuya construcción, diseño, conservación y desmantelamiento se ven afectados fuertemente cuando los presupuestos son restrictivos. El proyecto propuesto, BRIDLIFE, ha elegido esta infraestructura básica, en particular los puentes pretensados, para desarrollar una metodología que resuelva el reto social descrito. En efecto, ya se ha indicado que el deterioro de los puentes y su incidencia en la seguridad son objeto de gran alarma social. Además, un mantenimiento ineficiente provoca un mayor coste económico y social por las reparaciones severas que comportan. En este coste tiene una especial relevancia el mantenimiento y los costes derivados por los fallos. Desgraciadamente, los daños estructurales del puente dependen de una gran multitud de parámetros como su situación, los materiales o la historia de las acciones a las que ha estado sometida. Se hace necesario en estos casos un análisis de fiabilidad con modelos probabilísticos sobre las cargas y la capacidad portante de sus materiales (Wisniewski et al., 2006). Destacan en este sentido los trabajos de identificación estructural mediante técnicas de observabilidad (Lozano-Galant et al., 2013). Sin embargo, sería necesario un enfoque holístico que permitiera la toma de decisiones durante el ciclo de vida de una infraestructura considerando, entre otros, los riesgos en la planificación, adjudicación, gestión, procedimientos constructivos y negociación en la materialización de las infraestructuras. Un ejemplo actual es la ampliación del Canal de Panamá, caso estudiado por el profesor Molenaar, que forma parte de nuestro equipo de trabajo (Alarcón et al., 2011), o la especial relevancia es la influencia que tiene la contratación de los proyectos (Molenaar et al., 2010).

BBA041La toma de decisiones es una de las características esenciales del ser humano que da idea de su grado de autodesarrollo, conocimiento y libertad. En ella influye la experiencia o la intuición del individuo, su comportamiento racional o emocional. Pues bien, las técnicas de decisión multicriterio abordan la resolución de problemas complejos incorporando diferentes criterios y visiones de la realidad. Jato-Espino et al. (2014) ofrecen una revisión actualizada de estas técnicas aplicadas al sector de la construcción. El empleo de técnicas de análisis del valor y toma de decisiones ha supuesto un gran avance en la definición de un indicador de sostenibilidad. El trabajo de San José y Garrucho (2010) aplica un “Modelo integrado de valor para una evaluación sostenible (MIVES)” de forma determinista en el análisis ambiental de la construcción industrial. Esta metodología permite la formulación de objetivos multidimensionales, utiliza una estructura de requerimientos jerarquizada y es capaz de unificar indicadores cuantitativos y cualitativos para llegar a un índice de sostenibilidad ambiental. Sin embargo, la selección de los criterios es una labor compleja que influye mucho en el resultado final y los indicadores empleados distan de ser determinísticos, siendo conveniente aplicar técnicas de simulación Monte Carlo o aritmética difusa para mejorarlo. Una ventaja de MIVES es la asignación de una función de valor a cada indicador, cuantitativos o cualitativos. Sin embargo, esta labor es subjetiva y requiere de un gran conocimiento del problema. Ello, no obstante, permite el trabajo interdisciplinar de grupos de expertos para definir las funciones de valor de los indicadores. Sin embargo, MIVES presenta oportunidades de mejora, objeto de investigación científica.

El Anejo 13 de la norma EHE de hormigón estructural (Aguado et al., 2008; 2012; Gómez et al., 2012) define un “Índice de contribución de la estructura a la sostenibilidad”, utilizando el modelo MIVES. Existen trabajos (Pons y Aguado, 2013; Pons y de la Fuente, 2013) donde se aplica la metodología a piezas de hormigón estructural o edificios que no incluyen técnicas de optimización. Además, este enfoque queda limitado a aspectos ambientales que no consideran el ciclo completo de la vida de una estructura o el uso de hormigones de baja huella de carbono. Son técnicas jerárquicas que no contemplan las interacciones entre los distintos factores. La investigación propuesta trata de dar respuesta a los retos sociales planteados incorporando la toma de decisiones y la sostenibilidad social y aplicando las tecnologías de la información y comunicaciones, así como el uso de materiales avanzados, como tecnologías facilitadoras esenciales. El aspecto más relevante de BRIDLIFE consiste en incorporar un análisis del ciclo de vida definiendo un proceso de toma de decisiones que integre los aspectos sociales y medioambientales mediante técnicas analíticas de toma de decisiones multicriterio tanto de forma previa a los procesos de optimización multiobjetivo, como posteriormente en la priorización de las soluciones del frente de Pareto. Un análisis crítico de las tareas necesarias para conseguir este objetivo indica la necesidad de coordinar un grupo multidisciplinar amplio capaz de aglutinar no sólo distintas perspectivas técnicas, sino también distintos intereses, públicos y privados.

Existen dificultades al realizar un análisis de ciclo de vida de una infraestructura debido a las incertidumbres presentes en la definición de las entradas y salidas del sistema (Jato-Espino et al., 2014), que incluye la tecnología empleada en la elaboración de las materias primas, la procedencia de los materiales y su transporte, la definición de los procesos constructivos y de demolición y reutilización de los materiales (Knoeri et al., 2011). El reto implica un proceso de toma de decisiones que minimice los impactos sociales y medioambientales al coste más bajo posible. En este sentido, trabajos como los de Kim et al. (2013) proponen procesos de toma de decisión eco-amigables basados en AHP (Saaty, 1980) que aplican al caso de dos tipologías de puentes. Sin embargo, una de los inconvenientes más importantes que encuentran es la gran dependencia de los resultados en función de los pesos asignados a cada uno de los factores. Trabajos como los de Moreno-Jimenez et al. (2008), Lin et al. (2008) y Moreno-Jimenez et al. (2014) tratan de superar estas deficiencias.

La línea de investigación basada en la optimización multiobjetivo empleada por nuestro grupo constituye una técnica sin información a priori de las preferencias del decisor al analista que realiza la optimización y genera un conjunto de alternativas eficientes. El proyecto BRIDLIFE busca un salto cualitativo en nuestra línea de investigación en cuanto a que se pretenden técnicas de decisión con información a priori, donde el decisor proporciona al analista una estructura de preferencias y éste es quien construye el modelo incluyendo en él toda esta información. Sin embargo el conocimiento explícito de las preferencias del decisor no es sencillo (incorporación de criterios de sostenibilidad social y ambiental en la gestión del ciclo de vida del puente). Se necesita conocer la estructura de preferencias, no cometer errores en el proceso de extracción y, además, considerar que el decisor suele modificar sus preferencias a lo largo del proceso de resolución.

BBA023

El diseño de los puentes se realiza de forma secuencial. Tras un predimensionamiento se comprueban todos los estados límites, en un proceso iterativo cuyo resultado en términos de eficiencia económica dependen fuertemente de la experiencia del proyectista. Una alternativa es el diseño totalmente automático utilizando técnicas de optimización, capaces de incorporar múltiples funciones objetivo y cuyo resultado es la generación de un conjunto de soluciones eficientes (frontera de Pareto). La disponibilidad de ordenadores de elevada potencia de cálculo y bajo coste, junto con el desarrollo de técnicas de análisis inteligente y minería de datos, ha permitido que en las últimas décadas haya crecido de forma importante el diseño de estructuras óptimas. Sarma y Adeli (1998) aportan una extensa revisión de artículos sobre la optimización económica de estructuras de hormigón. Estos autores insistieron en la necesidad de optimizar estructuras reales de interés, tal y como ya apuntaron Cohn y Dinovitzer (1994), constatando la escasez en la aplicación de la optimización al hormigón estructural frente a las estructuras metálicas. Además de los métodos basados en la programación matemática (Hernández y Fontán, 2002), el problema de la optimización se puede abordar mediante técnicas metaheurísticas y bioinspiradas. La presencia de grupos de investigación europeos en optimización de estructuras de hormigón gravitan en la República Checa (Leps y Sejnoha), Grecia (Kousmousis y Arsenis), y Reino Unido (Topping, Leite, Rafiq, Southcomb, Ashad, Baines). En América destaca el grupo de Coello, en México, y en Estados Unidos los grupos de Camp, Adeli y Frangopol. En la India destacan Ramasamy, Ramanjaneyulu y Krishnamoorthy. También se conocen trabajos puntuales en los Emiratos Árabes (Altoubat) y en Irán (Kaveh y Sahab). Han existido contactos con estos grupos a través de congresos, revistas y dirección de ejercicios final de carrera (el caso del profesor Leps, con el programa ERASMUS). En otros ámbitos, cabe destacar la Red HEUR en Optimización Heurística (http://www.redheur.org), cuyo coordinador es R. Martí, de la U. de Valencia, y la Red Española de Minería de Datos y Aprendizaje (http://www.lsi.us.es/redmidas/). La optimización heurística del hormigón estructural presenta pocos grupos de investigación en España; destaca el dirigido por Hernández en A Coruña, y el de Martí y Tomás, en la U.P. de Cartagena, con estudios sobre la optimización de forma y armado de estructuras laminares. Habría que añadir los trabajos encabezados por F. Navarrina y M. Casteleiro, también en A Coruña, en relación a aspectos topológicos, los de la U.P. de Madrid de Utrilla y Samartín sobre optimización de puentes y estructuras bidimensionales y la del grupo de la UPC (Aparicio, Casas, Ramos) con software de diseño automático para mejorar la elección en proyectos estructurales. En relación con los indicadores de contribución de las estructuras a la sostenibilidad, destacan los grupos de la UPC (Aguado), los de A Coruña (del Caño) los grupos de la UPM (Rodríguez y Fernández) o del IECA (Burón). También hay que resaltar el trabajo realizado por los profesores Castillo, Turmo Nogal, Lozano-Galant y colaboradores respecto a la identificación estructural mediante técnicas de observabilidad.

En relación con la optimización de puentes, la revisión mencionada de Cohn y Dinovitzer (1994) ya apuntaba la gran escasez de artículos publicados en esta materia. El diseño óptimo de vigas pre-tensadas, en especial la disposición de los tendones, es un problema clásico planteado desde hace años. Aparicio et al. (1996) presentaron un sistema de diseño asistido por ordenador de puentes de hormigón pretensado para carreteras, identificando cuáles eran las tipologías estructurales más eficaces. Hassanain y Loov (2003) presentan una revisión del estado de la cuestión de las técnicas de optimización de puentes de hormigón. Sin embargo, tal y como apuntan Hernández et al. (2010), existe cierto vacío en la investigación que se ocupe específica-mente de la optimización y el diseño completo de los puentes reales.

Con todo, la línea de investigación emprendida por nuestro grupo no puede quedarse en la mera optimización económica del hormigón estructural, que podría ser un objetivo a corto plazo de interés evidente para las empresas constructoras o de prefabricados. Además, tampoco es suficiente la optimización multiobjetivo considerando aspectos ambientales y económicos. Si bien en trabajos previos de nuestro grupo se han comprobado reducciones significativas, estimadas entre el 10 y 50% de las emisiones de CO2 y coste respecto a estructuras no optimizadas; también es cierto que son necesarios criterios sociales, la incorporación de las restricciones presupuestarias (pasa de ser función objetivo a restricción) y la evaluación completa del ciclo de vida. En este proyecto se consideran los puentes pretensados como objeto de estudio, aunque la metodología propuesta es aplicable a otras estructuras. Además, BRIDLIFE pretende profundizar en los puentes prefabricados, pues, tal y como indica Yee (2001), existen motivos adicionales basados en beneficios sociales y medioambientales que justifican la adopción del hormigón prefabricado. El ahorro en material y mano de obra, la calidad en el producto y el rápido montaje son razones que justifican, por sí solas, el uso de esta tecnología.

Nuestro equipo investigador ha llevado a cabo estudios de optimización heurística de estructuras de hormigón desde hace una década en una trayectoria de profundización de esta disciplina. Como resultado de lo anterior, los investigadores principales han dirigido 7 tesis doctorales, 15 tesinas de máster y se han publicado 28 artículos indexados JCR directamente relacionados con estos proyectos:

  • Proyecto 80016/A04: Optimización heurística económica de marcos de paso de carretera y ferrocarril. Este proyecto se centró en la optimización económica de estructuras empleadas en carreteras como marcos, bóvedas, pórticos y muros. Se aplicó a la optimización en fase de diseño. Se detectó la necesidad de incluir estados límite no habituales en el cálculo de estas estructuras (fatiga, deformación, vibraciones).
  • Proyecto BIA2006-01444: Diseño óptimo sostenible de tableros de puentes losa pretensados. En este proyecto se optimizó tanto la economía como las emisiones de CO2 y el consumo energético en la fase de diseño de puentes losa postesados. Se aplicaron técnicas estadísticas convencionales para extraer conclusiones de predimensionamiento.
  • Proyecto BIA2011-23602: Diseño eficiente de estructuras con hormigones no convencionales basados en criterios sostenibles multiobjetivo mediante el empleo de técnicas de minería de datos (HORSOST). Con este proyecto se aplicó la optimización multiobjetivo considerando aspectos económicos y ambientales en fase de proyecto y de construcción. Se estudió asimismo el uso de hormigones con fibras, de alta resistencia y autocompatables. Se aplicaron técnicas de minería de datos para extraer conclusiones no triviales en predimensionamiento.
  • En el ámbito autonómico el grupo ha desarrollado un proyecto de investigación financiados por la Generalitat Valenciana. GV/2010/086 Criterios económicos y medioambientales para el diseño óptimo de pasos superiores de hormigón “in situ” mediante técnicas de inteligencia artificial y minería de datos. También se desarrollaron dos proyectos financiados por la Universidad Politécnica de Valencia. Los trabajos se centraron en el diseño óptimo de puentes prefabricados pretensados y con fibras.

Los trabajos desarrollados hasta el momento por nuestro grupo de investigación ha permitido avances importantes en el diseño automatizado y óptimo de las estructuras de hormigón con múltiples criterios, sin embargo existen una serie de limitaciones que este proyecto tiene intención de superar:

  • La optimización no incluye funciones objetivo de difícil cuantificación como la sostenibilidad social, con aspectos tales como la estética o la equidad social intergeneracional. Se debe incluir además la seguridad de las personas (Fortunato III et al., 2012), o la influencia de la forma de contratación de los proyectos y las obras (Molenaar et al., 2010).
  • Los costes económicos se han considerado hasta ahora como una función objetivo en la optimización. Sin embargo, la crisis actual obliga a replantear la disposición anual de presupuestos, todos ellos muy restrictivos. Por tanto el presupuesto pasa de ser objetivo a ser una restricción en el problema de optimización.
  • Debe analizarse la sensibilidad que existe en las políticas presupuestarias poco sensibles a la realidad del sector en la gestión de las estructuras. Ello supone modelar distintos escenarios económicos y analizar las soluciones eficientes derivadas.
  • Elegida la tipología estructural, la optimización multiobjetivo permite la obtención de un conjunto de soluciones eficientes (frontera de Pareto). Sin embargo, la decisión previa debe ser priorizada en base a un proceso de toma de decisión multicriterio. Tras la obtención de la frontera de Pareto, deberá elegirse la mejor opción en base a una nueva toma de decisiones. Aquí, la determinación de los factores determinantes constituye un proceso altamente complejo que requiere de la participación de expertos multidisciplinares y un control sobre el sesgo y rigor académico del juicio de dichos expertos (Hallowell y Gambatase, 2010).
  • Los proyectos previos no han incluido la gestión de activos. La determinación de cómo y cuándo deber realizarse la conservación de forma que se mantengan las prestaciones constituye un problema de optimización multiobjetivo. Deben incluirse los costes de mantenimiento y los esperados en caso de fallo de la estructura. Además, las incertidumbres asociadas con el deterioro de las estructuras requieren el uso de métodos probabilísticos para evaluar el comportamiento a lo largo de su vida útil (Yang et al., 2006; Osaka y Frangopol, 2009; Orcesi y Frangopol, 2011).
  • La inclusión de la demolición y reutilización de los materiales de la estructura constituye un aspecto básico a incorporar en el análisis del ciclo de vida. Una variable de diseño debe ser la durabilidad y la incorporación de la recarbonatación del hormigón (García-Segura et al., 2014).
  • Es necesario incorporar los avances realizados con hormigones de baja huella ecológica (Mellado et al., 2014) para comprobar su eficacia en los procesos de toma de decisión y optimización multiobjetivo. Asimismo, se requiere la comparación con estructuras mixtas hormigón-acero.

Lo indicado hasta ahora, que resume los antecedentes y las realizaciones del grupo, se podría resumir en los siguientes aspectos:

  1. La temática a investigar se ha ido profundizado en cada uno de los proyectos realizados, acorde a los objetivos previstos.
  2. Todos los estudios realizados hasta ahora estaban basados en la optimización multiobjetivo en fase de diseño y construcción. El objetivo de esta propuesta de investigación es dar un salto científico al incorporar la visión social y el análisis completo del ciclo de vida en la toma de decisiones. Se eligen los puentes pretensados como elemento de estudio para determinar el alcance del proyecto.

El motivo de este planteamiento no solo es un desafío científico, sino también una necesidad social. En efecto, las incertidumbres relacionadas con la toma de decisiones en el diseño de nuevas infraestructuras que contemplen aspectos de sostenibilidad social y ambiental en situaciones extremas de restricciones presupuestarias, así como la decisión en las políticas de mantenimiento y gestión de activos, demolición y reutilización de las infraestructuras es un problema altamente complejo que afecta directamente a las estructuras de hormigón. Se hace necesario profundizar en la incorporación de la durabilidad y el uso de hormigones no convencionales con baja huella de carbono en la toma de decisiones. Asimismo, sería de gran interés completar y mejorar algunos criterios tomados en la norma EHE relacionados con el cálculo del índice de sostenibilidad, de forma que incorpore el análisis completo del ciclo de vida de las estructuras, incluyendo aspectos como el mantenimiento, la demolición y reutilización de las estructuras. Además, se considera necesario incorporar un índice de sostenibilidad social en la normativa actual. A continuación se relacionan los artículos científicos indexados en JCR relacionados con el proyecto. Se hace notar la productividad científica alcanzada por el Proyecto BIA2011-23602 (HORSOST) vigente de 2012 a 2014.

BIBLIOGRAFÍA DEL GRUPO RELACIONADA CON EL PROYECTO

  1. CARBONELL, A.; GONZÁLEZ-VIDOSA, F.; YEPES, V. (2011). Heuristic optimization of reinforced concrete road vault underpasses. Adv Eng Softw, 42(4): 151-159.
  2. CARBONELL, A.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2011). Búsqueda exhaustiva por entornos aplicada al diseño económico de bóvedas de hormigón armado. Rev Int Metod Numer, 27(3):227-235.
  3. CARBONELL, A.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2012). Automatic design of concrete vaults using iterated local search and extreme value estimation. Lat Am J Solids Struct, 9:675-689.
  4. GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures (accepted, in press).
  5. GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J. (2014). Life-cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. Int J Life Cycle Assess, 19(1):3-12.
  6. GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.; PÉREZ-LÓPEZ, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Eng Struc, 92:112-122.
  7. GARCÍA-SEGURA, T.; YEPES, V.; MARTÍ, J.V.; ALCALÁ, J. (2014). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Lat Am J Solids Struct, 11:1190 – 1205.
  8. LUZ, A.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; MARTÍ, J.V. (2015). Diseño de estribos abiertos en puentes de carretera obtenidos mediante optimización híbrida de escalada estocástica. Informes de la Construcción, 67(540), e114.
  9. MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120:231-24.
  10. MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2010). Design of prestressed concrete precast pedestrian bridges by heuristic optimization. Adv Eng Softw, 41:916-922.
  11. MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J. (2013). Design of prestressed concrete precast road bridges with hybrid simulated annealing. Eng Struct48:342-352.
  12. MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2014). A memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement. J Struct Eng ASCE, 04014114.
  13. MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2015). A memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement. J Struct Eng ASCE, 141(2): 04014114.
  14. MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; LUZ, A. (2014). Diseño automático de tableros óptimos de puentes de carretera de vigas artesa prefabricadas mediante algoritmos meméticos híbridos. Rev Int Metod Numer, 30(3), 145-154.
  15. MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2011). Estudio paramétrico de pilas para viaductos de carretera. Rev Int Metod Numer, 27(3):236-250.
  16. MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2010). Heuristic Optimization of RC Bridge Piers with Rectangular Hollow Sections. Comput Struct, 88: 375-386.
  17. MARTÍNEZ. F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; ALCALÁ, J. (2011). Design of tall bridge piers by ant colony optimization. Eng Struc, 33:2320-2329.
  18. MARTÍNEZ-MARTÍN, F.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2013). A parametric study of optimum tall piers for railway bridge viaducts. Struct Eng Mech, 45: 723-740.
  19. MARTINEZ-MARTIN, F.J.; GONZALEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2012). Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. J Zhejiang Univ-SCI A, 13(6):420-432.
  20. MARTÍ-VARGAS, J.R.; FERRI, F.J.; YEPES, V. (2013). Prediction of the transfer length of prestressing strands with neural networks. Comput Concr, 12(2):187-209.
  21. PAYÁ, I.; YEPES, V.; CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F. (2006). Optimización heurística de pórticos de edificación de hormigón armado. Rev Int Metod Numer, 22(3): 241-259.
  22. PAYÁ, I.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Multiobjective Optimization of Reinforced Concrete Building Frames by Simulated Annealing. Comput Aided Civ Infrastruct Eng, 23(8): 596-610.
  23. PAYÁ-ZAFORTEZA, I.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2010). On the Weibull cost estimation of building frames designed by simulated annealing. Meccanica45(5): 693-704.
  24. PAYÁ-ZAFORTEZA, I.; YEPES, V.; HOSPITALER, A.; GONZÁLEZ-VIDOSA, F. (2009). CO2-Optimization of Reinforced Concrete Frames by Simulated Annealing. Eng Struct, 31(7): 1501-1508.
  25. PELLICER, E.; SIERRA, L.A.; YEPES, V. (2016). Appraisal of infrastructure sustainability by graduate students using an active-learning method. Journal of Cleaner Production, 113:884-896.
  26. PEREA, C.; ALCALÁ, J.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Design of Reinforced Concrete Bridge Frames by Heuristic Optimization. Adv Eng Softw, 39(8): 676-688.
  27. PEREA, C.; YEPES, V.; ALCALÁ, J.; HOSPITALER, A.; GONZÁLEZ-VIDOSA, F. (2010). A parametric study of optimum road frame bridges by threshold acceptance. Indian J Eng Mat Sci, 17(6):427-437.
  28. PONZ-TIENDA, J.L.; PELLICER, E.; YEPES, V. (2012). Complete fuzzy scheduling and fuzzy earned value management in construction projects. J Zhejiang Univ-SCI A, 13(1):56-68
  29. PONZ-TIENDA, J.L.; YEPES, V.; PELLICER, E.; MORENO-FLORES, J. (2013). The resource leveling problem with multiple resources using an adaptive genetic algorithm. Autom Constr, 29(1):161-172.
  30. SIERRA, L.A.; PELLICER, E.; YEPES, V. (2016). Social sustainability in the life cycle of Chilean public infrastructure. Journal of Construction Engineering and Management ASCE, 142(5):  05015020.
  31. TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E.; YEPES, V.; VIDELA, C. (2015). Sustainable pavement management: How to integrate economic, technical and environmental aspects in decision making. Transportation Research Record: Journal of the Transportation Research Board, 2523:56-63.
  32. TORRES-MACHÍ, C.; CHAMORRO, A.; VIDELA, C.; PELLICER, E.; YEPES, V. (2014). An iterative approach for the optimization of pavement maintenance management at the network level. Sci World J, Volume 2014, Article ID 524329
  33. TORRES-MACHÍ, C.; CHAMORRO, A.; YEPES, V.; PELLICER, E.; (2014). Models and actual practices in the economic and environmental evaluation for the sustainable management of pavements networks. Rev Constr 13(2): 51-58.
  34. TORRES-MACHÍ, C.; YEPES, V.; ALCALA, J.; PELLICER, E. (2013). Optimization of high-performance concrete structures by variable neighborhood search. International Journal of Civil Engineering, 11(2):90-99.
  35. YEPES, V.; ALCALÁ, J.; PEREA, C.; GONZÁLEZ-VIDOSA, F. (2008). A Parametric Study of Optimum Earth Retaining Walls by Simulated Annealing. Eng Struct30(3): 821-830.
  36. YEPES, V.; DÍAZ, J.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J. (2009). Caracterización estadística de tableros pretensados para carreteras. Rev Constr, 8(2):95-109.
  37. YEPES, V.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J.; VILLALBA, P. (2012). CO2-Optimization Design of Reinforced Concrete Retaining Walls based on a VNS-Threshold Acceptance Strategy. J Comput Civ Eng ASCE26 (3):378-386.
  38. YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Autom Constr, 49:123-134.
  39. YEPES, V.; MEDINA, J.R. (2006). Economic Heuristic Optimization for Heterogeneous Fleet VRPHESTW. J Transp Eng ASCE, 132(4): 303-311.
  40. YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550.

REFERENCIAS:

  • AGUADO, A.; CAÑO, A.; DE LA CRUZ, M.; GÓMEZ, D.; JOSA, A. (2012). Sustainability Assessment of Concrete Structures within the Spanish Structural Concrete Code. J Constr Eng Manage ASCE, 138(2):268-276.
  • AGUADO, A. et al. (2008). “Índice de contribución de la estructura a la sostenibilidad”, Anejo 13 de la norma española EHE de hormigón estructural, pp. 487-504. M. de Fomento, España.
  • ALARCÓN, D.B. (2005). Modelo integrado de valor para estructuras sostenibles. Tesis doctoral, Universitat Politècnica de Catalunya.
  • ALARCÓN, L.F. et al. (2011). Risk Planning and Management for the Panama Canal Expansion Program. J Const Eng Manag ASCE, 137(10):762-771.
  • APARICIO, A.C.; CASAS, J.R.; RAMOS, G. (1996). Computer aided design of prestressed concrete highway bridges. Comput Struct, 60:957–969.
  • ASCE (2011). Structural identification (St-Id) of constructed facilities. Technical report, ASCE SEI Committee on Structural Identification of Constructed Systems.
  • ASCE (2013). Report card for America’s infrastructure, 2013 progress report, Washington DC.
  • ASOCIACIÓN ESPAÑOLA DE LA CARRETERA (2012). Informe sobre necesidades de inversión en conservación, Madrid.
  • BRUNTLAND, G. (1987). Our common future. Report of the World Commission on Environment and Development. Oxford University Press, Oxford.
  • COHN, M.Z.; DINOVITZER, A.S. (1994). Application of structural optimization. J Struct Eng ASCE, 120(2):617-649.
  • FORTUNATO III, B.R.; HALLOWELL, M.R.; BEHM, M.; DEWLANEY, K.S. (2012). Identification of safety risks for high performance sustainable construction projects. J Constr Eng Manage ASCE, 138(4): 499-508.
  • GÓMEZ, D.; DEL CAÑO, A.; DE LA CRUZ, M.P.; JOSA, A. (2012). “Evaluación de la sostenibilidad en estructuras de hormigón y metálicas. La EHE y la EAE”. En: Sostenibilidad y construcción. ACHE. Editor: A. Aguado. Cap. 19, pp. 413-439.
  • GÓMEZ, D.; DEL CAÑO, A.; DE LA CRUZ, M.P.; JOSA, A. (2012). “Metodología genérica para la evaluación de la sostenibilidad de sistemas constructivos. El método MIVES”. En: Sostenibilidad y construcción. Editor: A. Aguado. ACHE. Cap. 18, pp. 385-411.
  • HALLOWELL, M.R.; GAMBATASE, J.A. (2010). Qualitative research: application of the Delphi method to CEM research. J Constr Eng Manage ASCE, 136(1): 99-107.
  • HASSANAIN, M.A.; LOOV, R.E. (2003). Cost optimization of concrete bridge infrastructure. Canadian J Civ Eng, 30:841-849.
  • HERNÁNDEZ, S.; FONTAN, A. (2002). Practical Applications of Design Optimization, WIT Press, Southampton.
  • HERNÁNDEZ, S.; FONTAN, A.; DÍAZ, J.; MARCOS, D. (2010). An improved software for design optimization of prestressed concrete beams, Adv Eng Softw, 41:415–421.
  • JATO-ESPINO, D.; CASTILLO-LÓPEZ, E.; RODRÍGUEZ-HERNÁNDEZ, J.; CANTERAS-JORDANA, J.C. (2014). A review of application of multi-criteria decision making methods in construction. Autom Constr, 45:151-162.
  • JATO-ESPINO, D.; RODRÍGUEZ-HERNÁNDEZ, J.; ANDRÉS-VALERI, V.C.; BALLESTER-MUÑOZ, F. (2014). A fuzzy stochastic multi-criteria model for the selection of urban pervious pavements. Expert Syst Appl, 41:6807-6817.
  • KIM, S.H. et al. (2013). Environmental impact assessment and eco-friendly decision-making in civil structures. J Env Manag, 126:105-112.
  • KNOERI, C.; BINDER, C.B.; ALTHAUS, H.J. (2011). Decisions on recycling: Construction stakeholders’ decisions regarding recycled mineral construction materials. Resources, Conservation and Recycling, 55:1039-1050.
  • LIN, C.C.; WANG, W.C.; YU, W.D. (2008). Improving AHP for construction with an adaptive AHP approach (A3). Autom Constr, 17:180-187.
  • LOZANO-GALANT, J.A.; NOGAL, M.; CASTILLO, J.; TURMO, J. (2013). Application of observability techniques to structural system identification. Comput Aided Civ Infrastruct Eng, 28(6):434-450.
  • MARI, A. (2007). Educar para la sostenibilidad en el ámbito de la ingeniería. Conferencia de clausura. II Jornadas de enseñanza del hormigón estructural. ACHE, Madrid, pp. 33-49.
  • MELLADO, A. et al. (2014). Carbon footprint of geopolymeric mortar: Study of the contribution of the alkaline activating solution and assessment of an alternative route. RSC Advances, 4: 23846.
  • MOLEENAR, K.R.; SOBIN, N.; ANTILLON, E.I. (2010). A synthesis of best-value procurement practices for sustainable design-build projects in the public sector. J Green Build, 5(4):148-157.
  • MORENO-JIMÉNEZ, J.M.; AGUARÓN, J., ESCOBAR, M.T. (2008) The core of consistency in AHP-group decision making. Group Decis Negot 17:249–265.
  • MORENO-JIMÉNEZ, J.M. et al. (2012). A collaborative platform for cognitive decision making in the Knowledge Society. Computers in Human Behavior, 28:1921-1928.
  • MORENO-JIMÉNEZ, J.M. et al. (2014). Systemic decision making in AHP: a Bayesian approach. Annals of Operations Research. doi:10.1007/s10479-014-1637-z
  • NISHIJIMA, K. et al. (2007). Inter-generational distribution of the life-cycle cost of an engineering facility. J Reliab Struct Mat, 1(3):33-46.
  • ORCESI, A.D.; FRANGOPOL, D.M. (2011). Probability-based multiple-criteria optimization of bridge maintenance using monitoring and expected error in the decision process. Struct Multidisc Optim 44:137-148.
  • OSAKA, N.M.; FRANGOPOL, D.M. (2009). Lifetime-oriented multi-objective optimization of structural maintenance considering system reliability, redundancy and life-cycle cost using GA. Structural Safety, 31:460-474.
  • PACHECO-TORGAL, F.; JALALI, S. (2011). Eco-efficient Construction and Building Materials. Springer Verlag London Limited.
  • PONS, O.; AGUADO, A. (2012). Integrated value model for sustainable assessment applied to technologies used to build schools in Catalonia, Spain. Building and Environment, 53:49-58.
  • PONS, O.; DE LA FUENTE, A. (2013). Integrated sustainability assessment method applied to structural concrete columns. Construction and Building Materials, 49:882-893.
  • RACKWITZ, R. et al. (2005). Socio-economically sustainable civil engineering infrastructures by optimization. Structural Safety, 27(3):187-229.
  • SAATY, T.L. (1980). The analytic hierarchy process, McGraw-Hill, New York.
  • SAN-JOSÉ, J.T.; GARRUCHO, (2010). A system approach to the environmental analysis of industrial buildings. Building and Environment, 45:673-683.
  • SAYDAM, D.; FRANGOPOL, D.M.; DONG, Y. (2013). Assessment of risk using bridge element condition ratings. J Infrast Syst, 19:252-265.
  • SARMA, K.C.; ADELI, H. (1998). Cost optimization of concrete structures. J Struct Eng ASCE, 124(5): 570-578.
  • Vital Signs 2005. Washington: Worldwatch Intitute: 2005.
  • WISNIEWSKI, D.F.; CASAS, J.F.; GHOSN, M. (2006). Simplified probabilistic non-linear assessment of existing railway bridges. Struct Infrastr Eng, 5(6):439-453.
  • YANG, S.I.; FRANGOPOL, D.M.; KAWAKAMI, Y.; NEVES, L.C. (2006). The use of lifetime functions in the optimization of interventions on existing bridges considering maintenance and failure costs. Reliability Engineering & System Safety, 91:698-705.
  • YEE, A.A. (2001). Social and environmental benefits of precast concrete technology. PCI Journal, 43:14-20.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Cuánto CO2 se emite cuando empleamos hormigón?

Cementera, http://www.coinref.com/
Cementera, http://www.coinref.com/

Una de las mayores preocupaciones actuales es el calentamiento del planeta debido a la emisión desmesurada de gases de efecto invernadero, entre los cuales se encuentra el CO₂. Siempre se ha dicho que la construcción es uno de los sectores que más influye en dicho cambio climático, fundamentalmente porque la fabricación de cemento Portland provoca una emisión considerable de CO₂, que llega a ser el 5 % del balance total de emisiones mundiales. De hecho, determinados informes advierten de que la industria de la construcción, en su conjunto, podría ser responsable de generar entre el 40 y el 50 % de todos los gases de efecto invernadero.

En resumen, fabricar una tonelada de cemento Portland implica la emisión de una tonelada de CO₂. Sin embargo, el uso de cementos con adiciones puede reducir drásticamente este tipo de emisiones, incluso hasta en un 40 %.

Sin embargo, no siempre tenemos en cuenta todos los factores que entran en juego. Recientemente, nuestro grupo de investigación realizó un ejercicio de análisis del ciclo de vida completo del hormigón empleado en la fabricación de un elemento estructural sencillo, como puede ser una columna de hormigón armado (García-Segura et al., 2014). Algunos resultados son muy interesantes, especialmente los relacionados con los cementos con adiciones, la carbonatación y la reutilización del material al terminar su vida útil.

Efectivamente, de todos es conocido el fenómeno de la carbonatación, por la cual el hormigón captura CO₂ y pierde la alcalinidad que protege de la corrosión a las armaduras, acortando, por tanto, la vida útil de la estructura. Aunque el fenómeno es perverso, también es cierto que dicha carbonatación supone un sumidero de gases de efecto invernadero. La cuantificación de este efecto, más la carbonatación última, que puede tener lugar al final del ciclo de vida de las estructuras, si usamos el hormigón, por ejemplo como árido machacado de relleno, puede hacer que el balance de CO₂ completo sea diferente al que estamos acostumbrados.

Carbonatación del hormigón, que al bajar el pH del hormigón, puede llevar a la corrosión de la armadura

Los cementos con adiciones utilizan ciertos subproductos de desecho para reemplazar el cemento Portland, el principal contribuyente a las emisiones de CO₂ en la fabricación de hormigón. El objetivo de este estudio es determinar si la reducción de la durabilidad y la reducción de la carbonatación de los hormigones con cementos con adiciones compensan las menores emisiones en su producción. Este estudio evalúa las emisiones y la captura de CO₂ en una columna de hormigón armado durante su vida útil y después de su demolición y reutilización como grava de relleno. El deterioro del hormigón debido a la carbonatación y la inevitable corrosión de las armaduras, terminan con la vida útil de la estructura. Sin embargo, la carbonatación continúa incluso después de la demolición, debido a la mayor superficie expuesta del material reciclado. Los resultados indican que los hormigones fabricados con cemento Portland, con adiciones de cenizas volantes silíceas (35% FA) y con escoria siderúrgica granulada de alto horno (80% BFS), capturan un 47, 41 y 20%, respectivamente, de las emisiones de CO₂. La vida de servicio de cementos con altas cantidades de adiciones, como CEM III/A (50 % BFS), CEM III/B (80 % BFS), y CEM II/BV (35 % FA), es aproximadamente un 10 % más corta, debido al mayor coeficiente de velocidad de carbonatación. En comparación con el cemento Portland, y a pesar de una menor captura de CO₂ y de vida útil, el CEM III/B emite un 20 % menos de CO₂ al año. Se concluye que la adición de FA al cemento Portland, en lugar de BFS, conduce a menores emisiones, pues FA necesita menos procesamiento después de ser recogido, y las distancias de transporte son generalmente más cortas. Sin embargo, las mayores reducciones se lograron usando BFS, debido a que se puede reemplazar una cantidad mayor de cemento. Los cementos con adiciones emiten menos CO₂ al año durante el ciclo de vida de una estructura, a pesar de que dicha adición reduce notablemente la vida útil. Si el hormigón se recicla como grava en relleno, la carbonatación puede reducir las emisiones de CO₂ a la mitad. El caso estudiado demuestra cómo se pueden utilizar los resultados obtenidos.

Os dejo a continuación los resultados, en tablas, de dicho balance aplicados a distintos tipos de cementos, con más o menos adiciones. Podréis comprobar que se ha analizado el ciclo completo, desde la producción (incluido el transporte), la construcción, el uso, la demolición y tras la demolición. En el artículo de referencia tenéis los detalles del estudio.

Resultados interesantes:

  • La vida de servicio de cementos con altas cantidades de adiciones, como CEM III/A (50 % BFS), CEM III/B (80 % BFS), y CEM II/BV (35 % FA), es aproximadamente un 10 % más corta, debido al mayor coeficiente de velocidad de carbonatación.
  • CEM III/B emite un 20% menos de CO₂ anual que el CEM Portland, a pesar de que tiene una vida útil menor y que recarbonata mucho menos. En valores de emisiones absolutas, CEM III/B emite un 28% menos que el CEM Portland. También es verdad que este cemento se recomienda en para hormigón en masa y armado de grandes volúmenes, como presas de hormigón vibrado o cimentaciones de hormigón armado. No es utilizable para hormigón de alta resistencia, hormigón prefabricado u hormigón pretensado.
  • Si el hormigón se recicla como grava en relleno, la carbonatación puede reducir las emisiones de CO₂ a la mitad.

De todos modos, no todos los tipos de cementos sirven para cualquier cosa. Os dejo estos enlaces que creo os serán útiles:

 

Referencias:

GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J. (2014). Life-cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. International Journal of Life Cycle Assessment, 19(1):3-12. DOI 10.1007/s11367-013-0614-0 (link)

ICITECH (Instituto de Ciencia y Tecnología del Hormigón)

2013-05-03 09.20.32

El Instituto ICITECH (Instituto de Ciencia y Tecnología del Hormigón) es un centro de investigación de la Universidad Politécnica de Valencia creado en 2005 que agrupa a profesores e investigadores cuya actividad investigadora se centra en el hormigón. Actualmente, el instituto está formado por 63 miembros, de los cuales 32 son profesores, 14 son investigadores contratados y el resto son personal técnico de apoyo a la investigación y de administración.

El Instituto se dedica a la investigación del hormigón desde las perspectivas de los materiales constituyentes y de las estructuras, abordando una amplia gama de aspectos como el proceso de fabricación, el comportamiento físico-químico, mecánico o medioambiental, la sostenibilidad y el comportamiento, el diseño, la construcción y el mantenimiento de las estructuras.

Los objetivos son fomentar y promover la investigación de calidad mediante la realización de proyectos de I+D, potenciar la investigación aplicada y la transferencia de tecnología y conocimiento a empresas afines, así como fomentar la participación de socios industriales.

Las instalaciones de ICITECH se ubican en un nuevo edificio que alberga una gran losa de carga de 500 m², junto con un muro de reacción horizontal en L de 14 x 6 m y 13 m de altura, con puntos de anclaje tanto en la losa como en el muro de 500 kN situados a un metro de distancia entre sus ejes. Además, dispone de una instalación oleohidráulica constituida por seis grupos motobomba que proporcionan 250 bares, un caudal de 1560 litros/min y dos puentes grúa de 10 t cada uno, lo que permite manejar elementos de hasta 20 t por toda la superficie de la nave. Este conjunto permite realizar ensayos a escala real de estructuras con diferentes tipologías de carga. Además de esta gran instalación, el edificio incluye laboratorios de química y materiales con un total de 175 m², tres cámaras húmedas de 117 m³, 57 m³ y 57 m³, y una central de aire comprimido, gas natural, dióxido de carbono y aire seco.

Os paso a continuación un pequeño dosier que hemos preparado para explicar lo que hace nuestro grupo de investigación sobre optimización heurística relacionado con temas de hormigón (proyecto HORSOST) y con el mantenimiento de activos e infraestructuras. Esta actividad se encuentra enmarcada dentro del ICITECH, del Máster Oficial en Ingeniería del Hormigón (acreditado con el sello EUR-ACE) y del Programa de Doctorado en Ingeniería de la Construcción de la Universidad Politécnica de Valencia (verificado por ANECA).

Pincha aquí para descargar