Técnica innovadora optimiza estructuras de hormigón y reduce emisiones de CO₂ al considerar la interacción suelo-estructura

El artículo científico, titulado «Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction» y publicado recientemente en Engineering Structures, una de las revistas de mayor impacto en ingeniería civil, aborda un desafío clave en la ingeniería estructural: cómo optimizar el diseño de estructuras de hormigón armado para minimizar su impacto ambiental, con especial atención a la reducción de las emisiones de CO₂.

Esta investigación es el resultado de una colaboración internacional realizada en el marco de los proyectos HYDELIFE y RESILIFE, cuyo investigador principal es Víctor Yepes, y es fruto de una colaboración internacional entre investigadores de Cuba, Brasil y España.

Contexto de la investigación

La optimización estructural ha sido ampliamente explorada en las últimas décadas debido a la creciente necesidad de reducir los costes de construcción y el uso de materiales, todo ello mientras se minimiza el impacto ambiental. En el caso de las estructuras de hormigón armado, que son esenciales en la construcción de edificios y obras de infraestructura, optimizar su diseño conlleva implicaciones significativas en cuanto al ahorro de recursos y la reducción de las emisiones de CO₂.

Los problemas de optimización estructural pueden resolverse mediante métodos exactos, como la programación matemática, o mediante métodos heurísticos que imitan procesos naturales (como la evolución genética o el comportamiento de enjambres). Aunque los métodos heurísticos son más eficientes para problemas complejos y no lineales, como los que involucran grandes estructuras tridimensionales, requieren un alto coste computacional. Para abordar este problema, los autores proponen el uso de metamodelos, que son modelos simplificados que permiten realizar simulaciones con un consumo computacional mucho menor sin sacrificar demasiada precisión. En este estudio, se utiliza un metamodelo basado en Kriging, una técnica que permite aproximar el comportamiento de estructuras complejas.

Además, el estudio introduce una novedad crucial: la inclusión de la interacción suelo-estructura (SSI, por sus siglas en inglés) durante el modelado. Esta interacción, que muchas veces se ignora en los modelos tradicionales, afecta significativamente al comportamiento de la superestructura (el marco de hormigón). Ignorarla puede dar lugar a diseños menos precisos que no tienen en cuenta los asentamientos diferenciales del suelo, lo que puede provocar tensiones adicionales y un mayor deterioro de las estructuras con el tiempo.

Metodología

La investigación emplea un enfoque combinado de optimización heurística convencional y una estrategia basada en Kriging para optimizar marcos espaciales de hormigón armado. El objetivo es reducir las emisiones de CO₂ de las estructuras optimizadas, en línea con los esfuerzos para disminuir el impacto ambiental del sector de la construcción. El estudio incluye tres estudios de caso, cada uno con diferentes configuraciones estructurales (variando la longitud de los vanos y el número de niveles de las estructuras) para generalizar los resultados.

El elemento clave en esta investigación es la inclusión de la interacción suelo-estructura, que afecta al comportamiento global del sistema. Los autores utilizan un modelo de Winkler, que representa el suelo como un conjunto de resortes con rigidez variable en función de las características del suelo, y lo implementan en dos tipos de suelos: uno cohesivo y otro granular. Esta diferenciación es importante porque cada tipo de suelo responde de manera distinta a las cargas, lo que provoca asentamientos que, en última instancia, influyen en las tensiones de la superestructura. La plataforma CSi-SAP2000 se utilizó como motor de cálculo, mientras que el análisis geotécnico y estructural se integró mediante MATLAB.

Resultados

Uno de los hallazgos más destacados del estudio es que la inclusión de la interacción suelo-estructura modifica significativamente los diseños estructurales. En general, las estructuras diseñadas teniendo en cuenta la interacción suelo-estructura requieren más material (mayores cantidades de hormigón y acero), lo que refleja el aumento de tensiones debido a los asentamientos diferenciales. Por ejemplo, en comparación con un modelo con soportes rígidos ideales, las estructuras que consideran la inclusión de la interacción suelo-estructura muestran un aumento del 12,03 % en las emisiones de CO₂ en suelos cohesivos y hasta un 18,81 % en suelos friccionales.

Los elementos estructurales más afectados por la interacción suelo-estructura son las columnas. Esto se debe a que los asentamientos diferenciales incrementan los momentos flectores en las columnas, lo que requiere un refuerzo adicional y secciones más grandes para resistir las nuevas tensiones. En algunos casos, las emisiones de CO₂ asociadas a las columnas aumentaron más del 60 % al considerar la interacción con el suelo. Los resultados son especialmente marcados en suelos granulares, donde los asentamientos diferenciales son más pronunciados.

Además, la metodología basada en metamodelos, asistida por la técnica de Kriging, demostró ser eficaz para lograr optimizaciones con un alto grado de precisión (hasta un 98,24 % en suelos cohesivos y un 98,10 % en suelos granulares), todo ello reduciendo el tiempo de cálculo en aproximadamente un 90 % en comparación con los métodos heurísticos convencionales.

Implicaciones

Este estudio tiene importantes implicaciones prácticas para el diseño de estructuras de hormigón armado. La inclusión de la interacción suelo-estructura permite obtener diseños más robustos y precisos, lo que reduce el riesgo de fallos prematuros y la necesidad de costosos trabajos de mantenimiento a largo plazo. Los modelos que no tienen en cuenta la interacción suelo-estructura pueden dar como resultado estructuras que inicialmente parecen eficientes, pero que con el tiempo se deterioran más rápidamente debido a las tensiones adicionales no previstas. Por tanto, incluir esta interacción desde el inicio del diseño mejora significativamente la durabilidad y la fiabilidad de las estructuras.

Desde el punto de vista ambiental, el uso de metamodelos para optimizar estructuras de hormigón supone un importante avance. Al reducir el material necesario y mejorar la eficiencia estructural, se contribuye a la reducción de las emisiones de CO₂, un objetivo clave en la lucha contra el cambio climático. Además, la metodología propuesta ofrece un enfoque más sostenible al disminuir los recursos computacionales necesarios para realizar simulaciones complejas.

En conclusión, la inclusión de la interacción suelo-estructura y el uso de metamodelos basados en Kriging suponen una contribución innovadora al campo de la ingeniería estructural. Esta investigación no solo proporciona mejores resultados de diseño, sino que también tiene el potencial de reducir el impacto ambiental de las estructuras de hormigón armado, lo que hace que el sector de la construcción sea más sostenible y eficiente.

Referencia:

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction. Engineering Structures, 293:116657. DOI:10.1016/j.engstruct.2023.116657

Este artículo está publicado en abierto, por lo que puedes descargar aquí mismo:

Descargar (PDF, 8.18MB)

Redes neuronales y metamodelos Kriging para la optimización de la energía en puentes losa pretensados

Acaban de publicarnos un artículo en la revista Sustainability, revista indexada en el JCR. El artículo evalúa la eficacia de las redes neuronales artificiales y los modelos sustitutos de Kriging para optimizar la energía incorporada de los puentes de losas pretensadas, y proporciona recomendaciones prácticas para mejorar el diseño y la sostenibilidad.

El trabajo se enmarca dentro del proyecto de investigación RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València.

A continuación se recoge un resumen sintético del trabajo.

 

 

Introducción

  • La industria de la construcción contribuye significativamente al consumo mundial de energía y a las emisiones de gases de efecto invernadero, lo que suscita un interés creciente en mejorar las prácticas de sostenibilidad.
  • El hormigón pretensado destaca por sus ventajas, que incluyen la durabilidad, la reducción del mantenimiento y la rapidez de construcción, a pesar de los costes iniciales más altos en comparación con los métodos tradicionales.
  • Las investigaciones indican que existe una brecha en la optimización de la energía incorporada en los puentes de losas de hormigón, lo que exige una mayor exploración y metodologías innovadoras, como el Kriging y las redes neuronales artificiales, para optimizar su diseño de manera efectiva.

Descripción de la cubierta del puente de losa aligerada

  • Los diseñadores suelen utilizar una relación canto/luz de 1/25 para las losas de carreteras con el fin de garantizar su integridad estructural. Los diseños de losas aligeradas ofrecen ventajas en cuanto a rigidez a la flexión y adaptabilidad.
  • El estudio se centra en una configuración de losas aligeradas pretensadas adecuada para los pasos superiores, con el objetivo de mejorar la eficiencia del diseño y el rendimiento estructural.
  • La teoría del estado límite se emplea para verificar la resistencia estructural mediante el uso de software avanzado para el modelado tridimensional y el análisis de cargas.
Figura 2. Imagen aérea de la estructura, situada en Cocentaina (Alicante). Imagen: Google Maps.

Metodología

  • El estudio analiza varios materiales, incluidos tipos específicos de acero y calidades de hormigón, para optimizar el diseño del puente de losa aligerada.
  • Se utilizan dos metamodelos predictivos, Kriging y las redes neuronales, con el fin de optimizar el diseño propuesto del puente de losas.
  • La metodología incluye una fase de diversificación para la optimización inicial y una fase de intensificación para refinar los resultados, midiendo los errores de predicción mediante el error cuadrático medio (RMSE).

Metamodelo Kriging

  • Kriging se emplea para estimar las necesidades de energía del puente de losas, utilizando un enfoque determinista que proporciona respuestas consistentes basadas en los datos de entrada.
  • La «caja de herramientas Kriging de MATLAB» se utiliza para crear un modelo sustituto, y el LHS (LHS) mejora el proceso de muestreo para representar mejor el espacio de diseño.
  • Este método permite realizar pruebas computacionales eficientes y, al mismo tiempo, minimizar los errores sistemáticos, lo que lo hace adecuado para tareas complejas de optimización estructural.

Red neuronal artificial

  • Las ANN están estructuradas con capas de neuronas, donde las capas ocultas utilizan funciones sigmoideas para procesar las entradas y la capa de salida emplea funciones lineales para las predicciones.
  • El modelo de perceptrón multicapa (MLP) destaca por su capacidad para aproximar funciones de manera eficaz, basándose en el algoritmo de retropropagación para el entrenamiento.
  • El estudio hace hincapié en la importancia de la validación cruzada para evitar el sobreaprendizaje y garantizar que el rendimiento de la red neuronal sea sólido en los diferentes conjuntos de datos.

Visualización de los datos observados

  • La gráfica de contorno de los datos observados revela múltiples valores óptimos locales, lo que indica la complejidad del problema de optimización y las limitaciones de los modelos de regresión tradicionales.
  • Esta complejidad requiere el uso de modelos predictivos avanzados para identificar con precisión las soluciones óptimas dentro del espacio de diseño.

Comparación de modelos predictivos

  • Los modelos de Kriging son deterministas, mientras que las redes neuronales introducen variabilidad debido a que se basan en la selección aleatoria de datos para su entrenamiento y validación.
  • El rendimiento de la red neuronal se estabiliza mediante múltiples ejecuciones, lo que permite una comparación más fiable de los valores medios con las predicciones de Kriging.

Análisis de errores

  • El promedio de las predicciones de la red neuronal coincide estrechamente con los resultados del modelo de Kriging, aunque la red neuronal presenta un error cuadrático medio (MSE) y un error cuadrático medio (RMSE) más bajos.
  • El análisis destaca la necesidad de una evaluación exhaustiva de la capacidad de la red neuronal para identificar los valores óptimos, comparando las predicciones entre todos los puntos de datos.

Recomendaciones prácticas

  • El estudio proporciona recomendaciones prácticas para reducir las emisiones en los puentes de losas pretensadas, incluidas directrices específicas sobre el contenido de hormigón y refuerzo.
  • Los hallazgos sugieren que tanto las redes neuronales como las de Kriging pueden identificar eficazmente los valores óptimos locales, lo que ayuda a los ingenieros estructurales a optimizar los diseños para obtener beneficios económicos y ambientales.
  • Haciendo hincapié en la importancia de los modelos sustitutivos, la investigación aboga por su uso para perfeccionar los procesos de diseño y mejorar los resultados en materia de sostenibilidad.

Conclusiones

  • Se subraya la complejidad de la superficie de respuesta al consumo de energía, ya que tanto Kriging como las redes neuronales predicen valores superiores a los observados.
  • El modelo de Kriging muestra un error relativo menor en las predicciones óptimas locales en comparación con la red neuronal, que, sin embargo, muestra un rendimiento de RMSE superior.
  • El estudio concluye que, si bien Kriging proporciona resultados deterministas, las redes neuronales requieren múltiples iteraciones para estabilizar los resultados, lo que aporta información valiosa para optimizar los diseños estructurales.

ABSTRACT:

The main objective of this study is to assess and contrast the efficacy of distinct spatial prediction methods in a simulation aimed at optimizing the embodied energy during the construction of prestressed slab bridge decks. A literature review and cross-sectional analysis have identified crucial design parameters that directly affect the design and construction of bridge decks. This analysis determines the critical design variables to improve the deck’s energy efficiency, providing practical guidance for engineers and professionals in the field. The methods analyzed in this study are ordinary Kriging and a multilayer Perceptron neural network. The methodology involves analyzing the predictive performance of both models through error analysis and assessing their ability to identify local optima on the response surface. Results show that both models generally overestimate observed values. The Kriging model with second-order polynomials yields a 4% relative error at the local optimum, while the neural network achieves lower root-mean-square errors (RMSE). Neither the Kriging model nor the neural network provide precise predictions, but point to promising solution regions. Optimizing the response surface to find a local minimum is crucial. High slenderness ratios (around 1/28) and 40 MPa concrete grade are recommended to improve energy efficiency.

KEYWORDS:

bridges; embodied energy; optimization; prestressed concrete; artificial neural network; surrogate model; Kriging; sustainability

REFERENCE:

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2024). Artificial neural network and Kriging surrogate model for embodied energy optimization of prestressed slab bridges. Sustainability, 16(19), 8450; DOI:10.3390/su16198450

Descargar (PDF, 4.78MB)

Optimización estructural asistida por metamodelos: Aplicaciones

Figura 1. Conceptos relacionados con el uso de metamodelos, (a) relación entre precisión y coste computacional para diferentes enfoques de la modelación (adaptado de Roman et al. (2020)) y (b) descripción genérica de un metamodelo como una función de caja negra (adaptado de Texeira et al. (2020)).

Dentro del XIII Coloquio de Análisis, Diseño y Monitoreo Estructural de la IV Convención Científica Internacional UCLV 2023, se presentó una ponencia sobre las aplicaciones de la optimización estructural asistida por metamodelos. Os paso a continuación la ponencia, por si os resulta de interés.

Resumen:

Debido al creciente interés por mejorar la sostenibilidad del sector de las construcciones, la optimización del diseño estructural ha venido cobrando auge en los últimos tiempos. Una de las desventajas de estos procedimientos es el enorme consumo computaciones que requieren. Sin embargo, la optimización asistida por metamodelos (MASDO por sus siglas en inglés) es una variante muy útil, ya que permite acortar considerablemente los tiempos de cómputo manteniendo la precisión en los resultados de la optimización. En este trabajo se exponen las estrategias de MASDO más utilizadas en el ámbito de la ingeniería estructural, así como algunas aplicaciones prácticas.

Descargar (PDF, 900KB)

Optimización energética de tableros tipo losa pretensados aligerados mediante modelos Kriging

Durante los días 10-13 de julio de 2023 tuvo lugar en Donostia-San Sebastián (Spain) el 27th International Congress on Project Management and Engineering AEIPRO 2023. Fue una buena oportunidad para debatir y conocer propuestas sobre dirección e ingeniería de proyectos. Nuestro grupo de investigación, dentro del proyecto de investigación HYDELIFE, presentó varias comunicaciones. A continuación os paso el resumen de una de ellas.

El objetivo de este trabajo es desarrollar una metodología para optimizar la energía en la construcción de tableros losa pretensado aligerados. Se lleva a cabo un análisis de la sección transversal para determinar los parámetros de diseño a través de un estudio del estado del arte. A partir de ese análisis, se identifican las variables de diseño que mejorarán la eficiencia energética del tablero. La metodología se divide en dos fases: primero, se utiliza una técnica estadística llamada hipercubo latino para muestrear las variables del tablero y determinar una superficie de respuesta; y en segundo lugar, se optimiza la superficie de respuesta mediante un modelo de optimización basado en Kriging. Como resultado, se ha desarrollado una metodología que reduce el costo energético en la construcción de tableros losa pretensado aligerados. Las recomendaciones para mejorar la eficiencia energética incluyen emplear esbelteces elevadas (alrededor de 1/28), reducir el consumo de hormigón y armadura activa, y aumentar la cantidad de armadura pasiva.

El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Palabras clave:

Optimización; energía; puentes; Kriging; metamodelos; sostenibilidad

Agradecimientos:

This research was funded by MCIN/AEI/10.13039/501100011033, grant number PID2020-117056RB-I00 and The APC was funded by ERDF A way of making Europe.

Referencia:

BRUN-IZQUIERDO, A.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2023). Optimización energética de tableros tipo losa pretensados aligerados mediante modelos Kriging. 27th International Congress on Project Management and Engineering, AEIPRO, 10-13 de julio, Donostia/San Sebastián (Spain), pp. 426-437. DOI:10.61547/3374

A continuación os dejo un vídeo donde presentamos el trabajo. Espero que os sea de interés.

Os dejo la comunicación completa, pues está publicada en abierto.

Descargar (PDF, 1.88MB)

Optimización del coste energético de puentes losa postesados mediante un Kriging en dos fases

Acaban de publicarnos un artículo en la revista Materials, revista indexada en el JCR. El objetivo del estudio es optimizar la energía empleada en la construcción de pasos elevados de carreteras aligeradas mediante la identificación de las principales variables de diseño y el desarrollo de una metodología que utilice el muestreo latino de hipercubos y la optimización basada en el método Kriging. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

  • El artículo establece una metodología para optimizar la energía incorporada en la construcción de pasos elevados de carreteras aligeradas mediante la identificación de las principales variables de diseño y el uso del hipercubo latino y la optimización basada en el método Kriging.
  • El estudio recomienda emplear índices de esbeltez elevados, minimizar el uso de hormigón y armaduras activas y aumentar la cantidad de armaduras pasivas para mejorar la eficiencia energética.
  • El artículo utiliza una técnica estadística llamada muestreo de hipercubo latino para muestrear variables y crear una superficie de respuesta, que luego se ajusta con precisión mediante un metamodelo Krixing.
  • La metodología desarrollada en el trabajo reduce el coste energético de la construcción de puentes de losas aligeradas.
  • El estudio contribuye al campo de la optimización energética en la construcción al proporcionar una metodología específica para los puentes de losas de hormigón pretensado aligerado, especialmente en los pasos elevados de carreteras postesadas.

Abstract:

This study aims to establish a methodology for optimizing embodied energy while constructing lightened road flyovers. A cross-sectional analysis is conducted to determine design parameters through an exhaustive literature review. Based on this analysis, key design variables that can enhance the energy efficiency of the slab are identified. The methodology is divided into two phases: a statistical technique known as Latin Hypercube Sampling is initially employed to sample deck variables and create a response surface; subsequently, the response surface is fine-tuned through a Kriging-based optimization model. Consequently, a methodology has been developed that reduces the energy cost of constructing lightened slab bridge decks. Recommendations to improve energy efficiency include employing high slenderness ratios (approximately 1/28), minimizing concrete and active reinforcement usage, and increasing the amount of passive reinforcement.

Keywords:

Optimization; embodied energy; bridges; surrogate model; Kriging; prestressed concrete; sustainability

Reference:

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2023). Embodied energy optimization of prestressed concrete road flyovers by a two-phase Kriging surrogate model. Materials16(20); 6767. DOI:10.3390/ma16206767

Descargar (PDF, 2.15MB)

Optimización de estructuras de hormigón armado asistida por metamodelos considerando la interacción suelo-estructura

Acaban de publicarnos un artículo en Engineering Structures, revista indexada en el primer cuartil del JCR. El artículo propone una estrategia de optimización metaheurística asistida por metamodelos para minimizar las emisiones de CO₂ de las estructuras de armazón de hormigón armado, teniendo en cuenta la interacción suelo-estructura. El enfoque permite abordar problemas de optimización estructural de alta complejidad y, al mismo tiempo, lograr un ahorro computacional de alrededor del 90%. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Las contribuciones de este trabajo son las siguientes:

  • El artículo propone una estrategia de optimización metaheurística asistida por metamodelos para minimizar las emisiones de CO₂ de las estructuras de armazón de hormigón armado, teniendo en cuenta la interacción suelo-estructura.
  • El enfoque sugerido permite abordar problemas de optimización estructural de alta complejidad y, al mismo tiempo, lograr un ahorro computacional de alrededor del 90%.
  • El estudio muestra que incluir la interacción suelo-estructura conduce a resultados de diseño diferentes a los obtenidos con los soportes clásicos, y que los cimientos también resultan importantes dentro del ensamblaje estructural.
  • El enfoque metaheurístico permite obtener resultados (de media) con una precisión de hasta el 98,24% en los suelos cohesivos y del 98,10% en los suelos friccionales, en comparación con los resultados de la optimización heurística.

Abstract:

It is well known that conventional heuristic optimization is the most common approach to deal with structural optimization problems. However, metamodel-assisted optimization has become a valuable strategy for decreasing computational consumption. This paper applies conventional heuristic and Kriging-based meta-heuristic optimization to minimize the CO2 emissions of spatial reinforced concrete frame structures, considering an aspect usually ignored during modeling, such as the soil-structure interaction (SSI). Due to the particularities of the formulated problem, there are better strategies than simple Kriging-based optimization to solve it. Thus, a meta-heuristic strategy is proposed using a Kriging-based two-phase methodology and a local search algorithm. Three different models of structures are used in the study. Results show that including the SSI leads to different design results than those obtained using classical supports. The foundations, usually ignored in this type of research, also prove significant within the structural assembly. Additionally, using an appropriate coefficient of penalization, the meta-heuristic approach can find (on average) results up to 98.24% accuracy for cohesive soils and 98.10% for frictional ones compared with the results of the heuristic optimization, achieving computational savings of about 90%. Therefore, considering aspects such as the SSI, the proposed metamodeling strategy allows for dealing with high-complexity structural optimization problems.

Keywords:

Structural optimization; Reinforced concrete; Frame structures; CO₂ emissions; Metamodel; Kriging; Soil-structure interaction

Reference:

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction. Engineering Structures, 293:116657. DOI:10.1016/j.engstruct.2023.116657

Al tratarse de un artículo publicado en abierto, os dejo el mismo para su descarga. Espero que os sea de interés.

Descargar (PDF, 8.18MB)

Comunicaciones presentadas al 27th International Congress on Project Management and Engineering AEIPRO 2023

Durante los días 10-13 de julio de 2023 tiene lugar en Donostia-San Sebastián (Spain) el 27th International Congress on Project Management and Engineering AEIPRO 2023. Es una buena oportunidad para debatir y conocer propuestas sobre dirección e ingeniería de proyectos. Nuestro grupo de investigación, dentro del proyecto de investigación HYDELIFE, presenta varias comunicaciones. A continuación os paso los resúmenes.

BRUN-IZQUIERDO, A.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2023). Optimización energética de tableros tipo losa pretensados aligerados mediante modelos Kriging. 27th International Congress on Project Management and Engineering, AEIPRO, 10-13 de julio, Donostia/San Sebastián (Spain).

El objetivo de este trabajo es desarrollar una metodología para optimizar la energía en la construcción de tableros losa pretensado aligerados. Se lleva a cabo un análisis de la sección transversal para determinar los parámetros de diseño a través de un estudio del estado del arte. A partir de ese análisis, se identifican las variables de diseño que mejorarán la eficiencia energética del tablero. La metodología se divide en dos fases: primero, se utiliza una técnica estadística llamada hipercubo latino para muestrear las variables del tablero y determinar una superficie de respuesta; y en segundo lugar, se optimiza la superficie de respuesta mediante un modelo de optimización basado en Kriging. Como resultado, se ha desarrollado una metodología que reduce el costo energético en la construcción de tableros losa pretensado aligerados. Las recomendaciones para mejorar la eficiencia energética incluyen emplear esbelteces elevadas (alrededor de 1/28), reducir el consumo de hormigón y armadura activa, y aumentar la cantidad de armadura pasiva.

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023). Durability assessment and re-design of coastal concrete bridge through a non-destructive damage detection method. 27th International Congress on Project Management and Engineering, AEIPRO, 10-13 de julio, Donostia/San Sebastián (Spain).

Los expertos y los gobiernos llevan tiempo centrándose en reducir los costes de reparación y mantenimiento de estructuras cruciales como los puentes mediante un mantenimiento y una reparación continuos. Este estudio explora la rentabilidad de dos métodos de predicción de daños mediante el método de densidad espectral de potencia (PSD) en comparación con el método convencional de detección de daños mediante el rediseño de diferentes espesores de recubrimiento de hormigón para un puente costero de hormigón armado. El estudio evalúa el impacto de los iones cloruro en la localización y extensión de los daños a lo largo de la vida útil del puente y compara los costes totales de mantenimiento y reparación. Los resultados muestran que, si bien el método PSD es eficaz para estructuras de hormigón con recubrimientos de hormigón bajos, el aumento del espesor del recubrimiento de hormigón puede dar lugar a mayores costes de reparación.

YEPES, V.; MARTÍNEZ-PAGÁN, P.; ROSCHIER, L.; BOULET, D.J.; BLIGHT, T. (2023). Códigos abiertos basados en Python para la construcción de nomogramas y su aplicación en la ingeniería de proyectos. 27th International Congress on Project Management and Engineering, AEIPRO, 10-13 de julio, Donostia/San Sebastián (Spain).

La Nomografía es una disciplina científica que se encarga de representar gráficamente fórmulas complejas mediante nomogramas, permitiendo el cálculo de tres o más variables matemáticas. Durante el siglo XX, esta técnica fue ampliamente utilizada en áreas como la ingeniería, medicina, electrónica, ciencias físicas, biológicas, etc. Sin embargo, con la llegada de las calculadoras y computadoras, la construcción de nuevos nomogramas y su enseñanza en la universidad disminuyeron. En los últimos años, la nomografía ha resurgido gracias a la ayuda de códigos de programación como PyNomo y Nomogen, basados en Python, que pueden generar un nomograma en cuestión de segundos, frente a las horas que antes requerían. En este trabajo se presentan estos códigos abiertos y algunos nomogramas generados con ellos, analizando su usabilidad, precisión y contribución a la relación entre las variables de las expresiones matemáticas. Finalmente, se destacan las posibilidades del uso de los nomogramas en la enseñanza e ingeniería de proyectos.

Repercusión en prensa de nuestra investigación en optimización de aerogeneradores

Es de agradecer al área de comunicación de la Universitat Politècnica de València, y en especial, a Luis Zurano, su labor en la difusión del trabajo de investigación realizado en nuestra universidad.

En este caso, se ha hecho eco de uno de nuestros trabajos relacionados con la optimización de la cimentación de aerogeneradores mediante metamodelos tipo kriging. Os paso la noticia, tal y como ha salido en la web de nuestra universidad, así como en otros medios de prensa.

UPV Study Revolutionizes Wind Turbine Design

También tenéis un corte de la noticia emitida por Radio Nacional de España:

Y en este otro corte, podéis ver la noticia en la SER:

 

Diseño revolucionario

Un estudio de la Universitat Politècnica de València revoluciona el diseño de los aerogeneradores

Un estudio realizado por investigadores de la Universitat Politècnica de València (UPV), pertenecientes al Instituto de Ciencia y Tecnología del Hormigón (ICITECH), en colaboración con la Universidad Tecnológica Chalmers de Goteborg (Suecia), promete revolucionar el diseño estructural de los aerogeneradores. Su trabajo ofrece soluciones entre un 8 y un 15 % más sostenibles que los diseños tradicionales de estas infraestructuras,

Este estudio presenta un método innovador y eficiente para optimizar el diseño de cimentaciones de aerogeneradores, mejorando así la eficiencia energética en su construcción. Los resultados obtenidos en el estudio, publicados en la revista Structural and Multidisciplinary Optimization, demuestran su aplicabilidad en proyectos grandes y complejos y su potencial para ser utilizado en otras estructuras civiles.

Nuestro método permite diseñar estructuras de manera más sostenible y facilitar su construcción, a través de un software que puede analizar diferentes condiciones y optimizar así el producto final. Utiliza metamodelos, como Kriging, para mejorar la eficiencia y reducir el costo computacional del proceso de optimización del diseño”, explica Víctor Yepes, investigador del Instituto ICITECH de la Universitat Politècnica de València.

En su estudio, el equipo de la Universitat Politècnica de València y la Universidad Tecnológica Chalmers aplicaron el método a un ejemplo real de cimientos para turbinas eólicas en Suecia. “Comprobamos que con nuestra propuesta se pueden obtener mejores diseños, analizando solo veinte en lugar de mil diseños diferentes. Además, constatamos que estos diseños son más sostenibles que los diseños convencionales”, destaca Víctor Yepes, investigador del Instituto ICITECH de la Universitat Politècnica de València.

Entre las ventajas de este “revolucionario método” destaca también una significativa reducción de los costes – tanto económicos como computacionales— y tiempos a la hora de diseñar las cimentaciones de los aerogeneradores.

Otras aplicaciones

Aunque este estudio se centra en el diseño de cimientos para turbinas eólicas, el método propuesto por los investigadores españoles y suecos puede ser aplicado a otras estructuras empleadas en la ingeniería civil o en la edificación. Además, la técnica de metamodelado de Kriging es ampliamente utilizada en la industria y puede ser aplicada a una amplia variedad de proyectos de diseño estructural.

Nuestro trabajo puede ser de gran utilidad para la optimización de otras estructuras de ingeniería civil como puentes o edificios. Además, el método propuesto podría ser aplicado en otros campos como la optimización de procesos de fabricación o el desarrollo de nuevos materiales. En definitiva, se trata de una novedosa técnica con un gran potencial para afrontar y resolver una amplia variedad de problemas de diseño de ingeniería”, concluye Víctor Yepes.

El desarrollo de este método se enmarca dentro del proyecto de investigación HYDELIFE, financiado por el Ministerio de Ciencia e Innovación y el Fondo Europeo de Desarrollo Regional (FEDER).

Referencia

MATHERN, A.; PENADÉS-PLÀ, V.; ARMESTO BARROS, J.; YEPES, V. (2022). Practical metamodel-assisted multi-objective design optimization for improved sustainability and buildability of wind turbine foundations. Structural and Multidisciplinary Optimization, 65:46. DOI:10.1007/s00158-021-03154-0

https://link.springer.com/article/10.1007/s00158-021-03154-0

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Optimización sostenible de puentes losa postesados usando metamodelos

Durante los días 12 a 14 de septiembre de 2022 tuvo lugar en las Palmas de Gran Canaria el Congreso de Métodos Numéricos en Ingeniería CMN 2022. El objetivo de este congreso es actuar como un foro en que se recopilen los trabajos científicos y técnicos más relevantes en el área de los métodos numéricos y la mecánica computacional, así como sus aplicaciones prácticas.  CMN 2022 está organizado conjuntamente por las sociedades de métodos numéricos española (SEMNI), portuguesa (APMTAC) y por el Instituto Universitario de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería (SIANI) de la Universidad de Las Palmas de Gran Canaria (ULPGC).

Dentro de este congreso tuve la ocasión de actuar como presidente, junto con el profesor David Greiner, de la sesión paralela denominada “Optimization, metaheuristics and evolutionary algorithms in civil engineering“. Además, nuestro grupo de investigación presentó un trabajo de investigación sobre la optimización de puentes mediante metamodelos Kriging. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Os dejo la comunicación en español por si os resultara de interés.

Referencia:

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2022). Sustainable optimization of post-tensioned cast-in-place concrete slab road bridges using metamodels. Congress on Numerical Methods in Engineering CMN2022, 12-14 September 2022, Las Palmas de Gran Canaria, Spain, pp. 166-185. ISBN: 978-84-123222-9-3

Descargar (PDF, 1.61MB)

Aplicación de optimización kriging para la búsqueda de estructuras óptimas robustas

Redheugh Bridge, Newcastle. © Copyright Stephen Richards and licensed for reuse under this Creative Commons Licence.

En todos los problemas estructurales existe una variabilidad o incertidumbre asociada. En el diseño de estructuras hay parámetros de diseño como las dimensiones de la estructura, las características mecánicas de los materiales o las cargas de diseño que pueden tener variaciones respecto al valor de diseño. Lo mismo ocurre a la hora de valorar una función objetivo asociada la estructura. Por un lado, a la hora de diseñar una estructura, el valor nominal utilizado es aquel que tiene una baja probabilidad de ocurrir (por ejemplo, la resistencia característica del hormigón es aquella que tiene una probabilidad del 5% de fallo). Además, se asignan coeficientes de seguridad asociados a una probabilidad de fallo determinada. Por otro lado, a la hora de valorar una función objetivo, como el coste o algún impacto medioambiental, el valor unitario de esta función suele ser la media. Dado este enfoque, la optimización estructural se convierte en una optimización determinista que desprecia los efectos de la incertidumbre asociada. Esto significa que la estructura tiene un comportamiento óptimo solo bajo las condiciones definidas inicialmente, pudiendo la respuesta variar significativamente cuando los valores se alejan de los valores de diseño.

A continuación os dejo una comunicación que presentamos en el 5th International Conference on Mechanical Models in Structural Engineering, que se celebró del 23 al 25 de octubre de 2019 en Alicante (España). Se trata de la optimización de un puente de sección en cajón de hormigón postesado utilizando un metamodelo tipo Krigring.

Abstract:

All the structural problems have an associated variability or uncertainty. In the design of structures, there are parameters such as the dimensions of the structure, the mechanical characteristics of the materials, or the loads that can have variations concerning the design value. The goal of robust design optimization is to obtain the optimum design and be less sensitive to variations of these uncertain initial parameters. The main limitation of the robust design optimization is the high computational cost required due to the high number of optimizations that must be made to assess the sensitivity of the objective response of the problem. For this reason, the kriging model is applied to carry out the optimization process more efficiently. This work will apply robust design optimization to a continuous pedestrian bridge of prestressed concrete and box sections.

Keywords:

Post-tensioned concrete; Box-girder bridge; Robust design optimization; RDO; Kriging

Reference:

YEPES, V.; PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T. (2019). Aplicación de optimización Kriging para la búsqueda de estructuras óptimas robustas. 5th International Conference on Mechanical Models in Structural Engineering, CMMoST 2019, 23-25 oct 2019, Alicante, Spain, pp. 81-94. ISBN: 978–84–17924–58–4

Descargar (PDF, 886KB)