Modelización y métodos de optimización aplicados al consumo energético en los ferrocarriles

El sector ferroviario, reconocido por su eficiencia energética, sigue siendo objeto de investigación para mejorar su sostenibilidad. Pese a representar solo el 2 % del consumo energético del transporte en Europa, su relevancia en el transporte de mercancías y pasajeros impulsa la investigación para reducir su huella de carbono. La necesidad de reducir las emisiones de gases de efecto invernadero y mejorar la competitividad económica ha llevado a realizar estudios exhaustivos centrados en el consumo energético ferroviario.

 

Modelización del consumo energético

El modelado del consumo energético permite evaluar y simular el rendimiento de los trenes sin necesidad de realizar pruebas experimentales. Las técnicas de modelado se clasifican principalmente en modelos deterministas y métodos alternativos, como redes neuronales y modelos estocásticos. Estos enfoques permiten analizar múltiples escenarios operativos y optimizar las decisiones estratégicas y operativas.

Modelos deterministas

El enfoque predominante utiliza ecuaciones basadas en la ecuación de Davis, que describe la resistencia al movimiento del tren en función de factores como la velocidad, la masa y la fricción. Su modularidad permite incluir características como frenos regenerativos y sistemas de almacenamiento a bordo. Aunque estos modelos son fiables, requieren numerosos parámetros técnicos, algunos de los cuales son difíciles de obtener debido a su complejidad técnica y a la necesidad de realizar mediciones precisas.

La ecuación de Davis se amplía con frecuencia para incorporar factores como la inclinación de la vía, la resistencia aerodinámica y la fricción en curvas. Estas ampliaciones permiten crear simuladores más detallados que evalúan trayectorias específicas y condiciones operativas complejas. Algunos estudios incluyen incluso el consumo de sistemas auxiliares, como el aire acondicionado y la iluminación, lo que mejora la precisión.

Además, el modelado detallado permite tener en cuenta aspectos como la variación de la masa del tren debida a la carga de pasajeros o mercancías, así como las condiciones meteorológicas y la interacción entre trenes en redes densas. Gracias a estas mejoras, los simuladores no solo evalúan el consumo energético, sino también el impacto de distintas estrategias operativas.

Alternativas al enfoque determinista

Los modelos basados en redes neuronales (Neural Networks) y en técnicas estocásticas (Stochastic Methods) han sido menos explorados, pero ofrecen flexibilidad y pueden manejar incertidumbres como retrasos y cambios en la carga de pasajeros. Las redes neuronales permiten entrenar modelos a partir de grandes volúmenes de datos operativos, lo que les permite aprender patrones complejos que los modelos deterministas podrían pasar por alto. Sin embargo, estos métodos requieren grandes volúmenes de datos y procesos de entrenamiento complejos.

Los modelos estocásticos integran factores aleatorios, como fallos en el sistema y condiciones meteorológicas. Su uso es particularmente relevante en redes ferroviarias densas, donde las interacciones entre trenes generan escenarios difíciles de prever mediante métodos deterministas. Los estudios actuales sugieren que estas técnicas podrían aplicarse a la gestión en tiempo real de las redes ferroviarias para mejorar la eficiencia global.

Métodos de optimización

La optimización del consumo energético ferroviario implica resolver problemas complejos, desde la gestión de perfiles de velocidad hasta la distribución de tiempos de espera y la configuración de infraestructuras. Estos estudios buscan minimizar el consumo energético sin comprometer los tiempos de viaje ni la capacidad operativa.

La formulación de problemas de optimización se basa en variables como los tiempos de viaje, los perfiles de velocidad, el consumo energético y la utilización de las infraestructuras, y su enfoque varía en función de si se optimiza un solo tren o un sistema completo. Las metodologías utilizadas incluyen la optimización unidimensional, que se centra en variables individuales como, por ejemplo, minimizar el tiempo de viaje o el consumo energético, y la optimización multidimensional, que aborda simultáneamente varios factores como el tiempo, el consumo energético, los costos operativos y las emisiones contaminantes. Los problemas de optimización pueden ser estáticos, donde se consideran condiciones fijas, o dinámicos, que ajustan decisiones en tiempo real con datos operativos actualizados.

Los métodos de optimización incluyen la búsqueda directa, que evalúa todas las soluciones posibles y es adecuada para problemas simples con pocos parámetros, y el análisis de principios máximos, que obtiene soluciones exactas mediante ecuaciones matemáticas avanzadas, aunque para ello sea necesario realizar simplificaciones y hacerlos computacionalmente viables. Las metaheurísticas, inspiradas en procesos naturales, se utilizan ampliamente por su capacidad para gestionar espacios de solución complejos. Entre ellas destacan los algoritmos genéticos, que han demostrado su versatilidad y eficacia en numerosos estudios. También se emplean técnicas como la optimización por enjambre de partículas y la optimización por colonias de hormigas, que son útiles en problemas específicos como, por ejemplo, la asignación de horarios y rutas óptimas. Además, la optimización basada en aprendizaje combina aprendizaje individual y colectivo para mejorar los resultados en contextos operativos cambiantes.

Los métodos de optimización también incluyen técnicas como la programación lineal, la programación dinámica y los algoritmos híbridos, que combinan diferentes enfoques para superar las limitaciones de cada uno de ellos. Las técnicas más avanzadas integran sistemas de inteligencia artificial y algoritmos de predicción para ajustar dinámicamente los parámetros operativos.

Discusión y análisis estadístico

Un análisis estadístico muestra que los modelos deterministas predominan debido a su precisión y facilidad para incluir múltiples factores. En optimización, los algoritmos genéticos son ampliamente preferidos, aunque métodos como la optimización por enjambre de partículas han demostrado ser eficaces en ciertos problemas.

Estudios recientes sugieren la posibilidad de combinar diferentes algoritmos para cubrir todo el espacio de soluciones y abordar problemas complejos que incluyen interacciones entre múltiples trenes y redes ferroviarias completas. Estas estrategias son esenciales para implementar operaciones ferroviarias completamente autónomas y sostenibles.

Además, el uso de análisis estadísticos avanzados, como el análisis de correspondencias y el modelado predictivo, permite identificar patrones ocultos y mejorar la precisión de los modelos y algoritmos utilizados.

Conclusión

La combinación de modelos deterministas y técnicas complementarias podría mejorar la precisión de los estudios. En optimización, el desarrollo de enfoques híbridos que combinen diferentes algoritmos metaheurísticos podría suponer un gran avance en la gestión energética ferroviaria. La integración de datos en tiempo real y técnicas de aprendizaje automático (Machine Learning Techniques) podría revolucionar el campo y llevar a sistemas ferroviarios más sostenibles y eficientes.

Referencia:

MARTÍNEZ-FERNÁNDEZ, P.; VILLALBA-SANCHÍS, I.; YEPES, V.; INSA-FRANCO, R. (2019). A review of modelling and optimisation methods applied to railways energy consumption. Journal of Cleaner Production, 222:153-162. DOI:10.1016/j.jclepro.2019.03.037

Os dejo la versión autor del artículo, para su consulta.

Descargar (PDF, 517KB)

Special Issue: “Energy Efficiency and Innovative Material Application in Sustainable Buildings”

Sustainability (ISSN: 2071-1050) is an international, peer-reviewed, open-access journal on environmental, cultural, economic, and social sustainability of human beings, published semimonthly online by MDPI.

Impact Factor: 3.9 (2022); 5-Year Impact Factor: 4.0 (2022)
Deadline for manuscript submissions: 31 October 2024

Special Issue Editors

Construction Engineering Department, Universitat Politècnica de València, 46022 Valencia, Spain
Interests: multi-objective optimization; structure optimization; lifecycle assessment; social sustainability of infrastructures; reliability-based maintenance optimization; optimization and decision-making under uncertainty
Special Issues, Collections and Topics in MDPI journals
Prof. Lorena Yepes-Bellver E-Mail Website
Guest Editor
Mechanics of Continuous Media and Theory of Structures Department, Universitat Politècnica de València, 46022 Valencia, Spain
Interests: multi-objective optimization; structure optimization; lifecycle assessment; social sustainability of infrastructures; metamodels

Special Issue Information

Dear Colleagues:

The Special Issue “Energy Efficiency and Innovative Material Application in Sustainable Buildings” focuses on advancing energy-efficient practices and novel materials in construction, crucial for global sustainability. Buildings account for significant energy use and carbon emissions, necessitating innovations to enhance efficiency and reduce environmental impact. This Special Issue aims to facilitate interdisciplinary dialogue and to highlight cutting-edge research in sustainable architecture and engineering. Aligned with the journal’s scope, it seeks to inspire professionals while promoting sustainable design and construction excellence. Key themes include energy-efficient design, innovative materials, intelligent building technologies, lifecycle assessment, and case studies illustrating best practices. Through these avenues, this Special Issue aims to contribute to a more sustainable and resilient built environment, addressing critical challenges and fostering progress towards a greener future.

In this Special Issue, original research articles and reviews are welcome. Research areas may include (but are not limited to) the following:

  • Energy-Efficient Building Design and Retrofitting;
  • Nanotechnology Applications for Energy-Efficient Building Materials;
  • Integration of Renewable Energy Systems in Urban Buildings;
  • Sustainable Concrete Solutions for Green Construction;
  • Emerging Trends in Energy-Efficient HVAC Systems;
  • Smart Building Systems and Technologies ;
  • Circular Economy Approaches in Building Material Management;
  • The Role of Artificial Intelligence in Optimizing Building Energy Performance;
  • Innovations in Daylighting and Natural Ventilation Strategies;
  • Net-Zero Energy Building Case Studies: Lessons Learned and Future Directions;
  • Case Studies and Best Practices;
  • Regenerative Design in Architecture and Construction.

We look forward to receiving your contributions.

Prof. Dr. Víctor Yepes

Prof. Lorena Yepes-Bellver

Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sustainability is an international peer-reviewed open-access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open-access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI’s English editing service prior to publication or during author revisions.

Keywords

  • energy efficiency
  • innovative materials
  • sustainable buildings
  • smart buildings
  • green construction
  • circular economy

Revisión de los métodos de optimización aplicados al consumo de energía en ferrocarriles

Acaban de publicarnos un artículo en la revista Journal of Cleaner Production, revista de ELSEVIER indexada en el primer decil del JCR. Se trata de un artículo de revisión del estado del arte donde se analizan 52 artículos científicos relacionados con el consumo energético en ferrocarriles. Se analizan dos áreas principales: las técnicas de modelización utilizadas para simular el movimiento de los trenes y el consumo de energía, y los métodos de optimización utilizados para conseguir una circulación ferroviaria más eficiente. Se describen brevemente los métodos más utilizados en cada caso y se analizan las principales tendencias encontradas. Además, se ha realizado un estudio estadístico para reconocer las relaciones entre los métodos y las variables de optimización. Se encontró que los modelos determinísticos basados en la ecuación de Davis son, con diferencia (85% de los trabajos revisados), los más comunes en términos de modelización. En cuanto a la optimización, los métodos meta-heurísticos son la opción preferida (57,8%), en particular los Algoritmos Genéticos. Este artículo forma parte de nuestra línea de investigación BRIDLIFE en la que se pretenden optimizar las infraestructuras atendiendo no sólo a su coste, sino al impacto ambiental y social que generan a lo largo de su ciclo de vida.

El artículo lo podéis descargar GRATUITAMENTE hasta el 3 de mayo de 2019 en el siguiente enlace: https://authors.elsevier.com/a/1YjHX3QCo9Uqa3

Abstract:

Railways are a rather efficient transport mean, and yet there is increasing interest in reducing their energy consumption and making them more sustainable in the current context of climate change. Many studies try to model, analyse and optimise the energy consumed by railways, and there is a wide diversity of methods, techniques and approaches regarding how to formulate and solve this problem. This paper aims to provide insight into this topic by reviewing up to 52 papers related to railways energy consumption. Two main areas are analysed: modelling techniques used to simulate train(s) movement and energy consumption, and optimisation methods used to achieve more efficient train circulations in railway networks. The most used methods in each case are briefly described and the main trends found are analysed. Furthermore, a statistical study has been carried out to recognise relationships between methods and optimisation variables. It was found that deterministic models based on the Davis equation are by far (85% of the papers reviewed) the most common in terms of modelling. As for optimisation, meta-heuristic methods are the preferred choice (57.8%), particularly Genetic Algorithms.

Keywords:

Railways
Energy efficiency
Modelling
Optimisation
Meta-heuristics

Reference:

MARTÍNEZ-FERNÁNDEZ, P.; VILLALBA-SANCHÍS, I.; INSA-FRANCO, R.; YEPES, V. (2019). A review of modelling and optimisation methods applied to railways energy consumption. Journal of Cleaner Production, 222:153-162. DOI:10.1016/j.jclepro.2019.03.037

 

 

Optimización del diseño sostenible de puentes bajo incertidumbre

Nos acaban de publicar en la revista de Elsevier del primer decil, Journal of Cleaner Production, un artículo donde se propone una nueva metodología en la toma de decisiones del diseño óptimo de un puente bajo criterios de sostenibilidad y bajo incertidumbre. Este artículo forma parte de nuestra línea de investigación BRIDLIFE en la que se pretenden optimizar estructuras atendiendo no sólo a su coste, sino al impacto ambiental y social que generan a lo largo de su ciclo de vida.

Abstract:

Today, bridge design seeks not only to minimize cost but also to minimize adverse environmental and social impacts. This multi-criteria decision-making problem is subject to variability of stakeholders’ opinions regarding the importance of criteria for sustainability. As a result, this paper proposes a method for designing and selecting optimally sustainable bridges under the uncertainty of criteria comparison. A Pareto set of solutions is obtained using a metamodel-assisted multi-objective optimization. A new decision-making technique introduces the uncertainty of the decision-makers preference through triangular distributions and thereby ranks the sustainable bridge designs. The method is illustrated by a case study of a three-span post-tensioned concrete box-girder bridge designed according to the embodied energy, overall safety, and corrosion initiation time. In this case, 211 efficient solutions are reduced to two preferred solutions with a probability of being selected of 81.6% and 18.4%. In addition, a sensitivity analysis validates the influence of the uncertainty regarding the decision-making. The approach proposed allows actors involved in the bridge design and decision-making to determine the best sustainable design by finding the probability of a given design being chosen.

Keywords:

  • Sustainable criteria
  • Uncertainty
  • Decision-making
  • Multi-objective optimization
  • Energy efficiency

 

Reference:

GARCÍA-SEGURA, T.; PENADÉS-PLÀ, V.; YEPES, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty.  Journal of Cleaner Production, 202:904-915. https://doi.org/10.1016/j.jclepro.2018.08.177