En este caso, se trataba aplicar una técnica estadística procedente del diseño de experimentos, la metodología de la superficie de respuesta, a un cálculo estructural, en este caso, un muro. La optimización de procesos mediante la superficie de respuesta es habitual en el campo de la experimentación. La idea es considerar que el cálculo de una estructura se puede considerar también un experimento, donde los datos de entrada son las variables y parámetros que definen dicha estructura y el resultado final es el coste. En este caso, se trata de minimizar el coste. Esta metodología es muy interesante para los estudiantes de máster. Ya hemos publicado algún artículo sobre el mismo tema aplicado a puentes pretensados. Os dejo el artículo en abierto. En este caso se han optimizado las emisiones de CO2.
Referencia:
YEPES, V.; MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V. (2019). Optimización de muros de hormigón mediante la metodología de la superficie de respuesta. 5th International Conference on Mechanical Models in Structural Engineering, CMMoST 2019, 23-25 oct 2019, Alicante, Spain, pp. 603-615. ISBN: 978–84–17924–58–4
Recientemente hemos publicado un artículo en el que hemos empleado un algoritmo evolutivo híbrido para optimizar el coste y las emisiones de CO2 de puentes en viga artesa, con la particularidad de usar hormigones con fibras de acero. Se trata de un problema combinatorio complejo, con 41 variables de diseño, que se aplicó a un puente de 30 m de luz y una anchura de calzada de 12 m. A continuación, os dejo el artículo completo.
Abstract:
This paper uses heuristic optimization to investigate the influence of steel fiber reinforcement in the design of precast prestressed concrete (PPC) road bridges with a double U-shaped cross-section. A hybrid Evolutionary Algorithm (EA) combining a Genetic Algorithm (GA) with Variable Depth Neighborhood Search (VDNS) is formulated to minimize the economic cost and CO2 emissions while imposing constraints on all relevant limit states. The proposed case study is a 30 m span with a deck width of 12 m. The problem involved 41 discrete design variables. The algorithm requires an initial calibration. In addition, the heuristic is run nine times to obtain statistical information on the results’ minimum, mean, and deviation. The evolution of the objective function during the optimization procedure is highlighted. The results show that heuristic optimization is an emerging option for the design of real prestressed structures. This paper provides useful knowledge that could provide a better understanding of steel fiber reinforcement in U-beam road bridges.
YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2017). Design optimization of precast-prestressed concrete road bridges with steel fiber-reinforcement by a hybrid evolutionary algorithm.International Journal of Computational Methods and Experimental Measurements, 5(2):179-189.
Los dúmperes son vehículos de transporte con caja basculante, cuyas características de cargas por eje[1] y dimensiones no le permiten circular por carreteras, circulando por tanto sólo dentro de las obras o en explotaciones mineras. Todos sus elementos son robustos, sobre todo la suspensión, eje y bastidor, ya que circulan por pistas en mal estado. Tienen dos ejes, el delantero de dirección y el trasero de tracción, con ruedas gemelas. Necesitan trasladarse de una obra a otra mediante trailers.
Sus dimensiones pueden llegar a los 8 m de anchura, 3.000 CV de potencia y 250 t de carga útil, aunque las habituales son una carga útil entre 10 y 75 t.[2], una potencia entre 130 y 700 CV. y una anchura máxima entre 2,50 y 5,00 m. Sus taras oscilan entre 7 a 60 t y la distancia entre ejes varía de 1,15 a 1,95 veces del ancho de la vía. Pueden desplazarse a 50 o 60 Km/h en pistas en buen estado, por lo que precisan motores potentes. Su dirección es hidráulica, con radios de giro mínimos y por tanto gran maniobrabilidad, mejor que la de los camiones.
A continuación dejamos un enlace a un objeto de aprendizaje donde nuestros alumnos tratan de entender cómo varían las emisiones de polvo cuando se carga un dúmper, en función del contenido de limo en el material, de la velocidad media del viento a 4 m del suelo, de la altura de descarga, del contenido de humedad del material y de la capacidad de carga del equipo. Espero que os resulte útil. https://laboratoriosvirtuales.upv.es/eslabon/EmisionesCirculacionDumper/
[1]Su peso propio es del orden de 3 a 4 veces superior al de un camión normal, relación tara/carga equivalente a 0,75 mientras que en un camión es de 0,5.
[2]A partir de aquí ya no se usan en ingeniería civil, sino en minería.
La Naturaleza es más sabia de lo que sospechamos. Quién diría a un ingeniero estructural que una simple luciérnaga sería capaz de sonrojarle e incluso enseñarle trucos para diseñar puentes, no solo más baratos, sino también más respetuosos con el medio ambiente. Pues bien, no solo es cierto, sino que es podemos aprender del comportamiento social de las luciérnagas para optimizar estructuras. Efectivamente, las luciérnagas se comportan como colectivo de forma inteligente. Las luciérnagas basan su comportamiento social en la luminosidad que emiten (luciferina). La característica más distintiva de las luciérnagas es su cortejo nocturno. Los machos patrullan en busca de pareja con un vuelo característico mientras emiten secuencias de destellos de luz característicos de cada especie. Las hembras de la misma especie pueden responder con destellos específicos y así el apareamiento puede ocurrir. En resolución de problemas, la luminosidad de una luciérnaga depende de la calidad de la solución encontrada y la distancia desde donde las otras compañeras están buscando soluciones. Cada luciérnaga selecciona, utilizando un mecanismo probabilístico, un vecino que tiene un valor más alto de luciferina que su propio y se mueve hacia él. De esta forma, se pueden optimizar puentes.
Dentro del proyecto de investigación HORSOST, nos acaban de aceptar un artículo científico en la revista Automation in Construction, que es una revista de primer nivel en el ámbito de la tecnología de la construcción (Factor de impacto en 2013: 1,822, posición 9 de 58 en el ámbito de Construction & Building Technology, y posición 19 de 124 en el ámbito de Civil Engineering, en función del impacto de las revistas indexadas en el JCR).
En este trabajo se describe una metodología para minimizar las emisiones de CO2 y los costes de puentes de carretera de vigas de hormigón pretensado prefabricadas con sección transversal en doble U. Para ello se ha utilizado un algoritmo híbrido de optimización por enjambre de luciérnagas (glowworm swarm optimization, GSO) y el recocido simulado (simulated anneling, SA), que se ha denominado SAGSO. La estructura se define por 40 variables, que determina la geometría, los tipos de materiales y las armaduras de la viga y de la losa. Se emplea hormigón de alta resistencia autocompactante en la fabricación de las vigas. Los resultados suponen para los ingenieros proyectistas una guía útil para el predimensionamiento de puentes prefabricados de este tipo. Además, los resultados indican que, de media, la reducción de 1 euro en coste permite ahorrar hasta 1,75 kg en emisiones de CO₂. Además, el estudio paramétrico realizado muestra que las soluciones de menor coste presentan un resultado medioambiental satisfactorio, que difiere en muy poco respecto a las soluciones que provocan menores emisiones.
Resultados interesantes:
El coste C, en euros, y las emisiones de CO₂, en kg varían de forma parabólica con la luz (L) del vano, en metros:
C=48.088L2+613.99L+31139
kgCO2=63.418L2+2392.3L+13328
Si se minimiza el coste, también se reducen las emisiones de CO₂, de forma que el ahorro en 1 euro equivale a ahorrar 1,75 kg de CO₂.
La esbeltez de los puentes de mínimo coste (L/18.08) y de mínimas emisiones (L/17,57) siempre son inferiores a L/17.
El espaciamiento entre las vigas se sitúa en torno a 5,85 m, oscilando entre 5,65 y 5,95 m.
Las estructuras de coste mínimo precisan 42,35 kg/m² de armadura pasiva, mientras que si se optimizan las emisiones, se necesitarían 37,04 kg/m².
Sorprende observar que, aunque parece que el hormigón de alta resistencia sería el adecuado para el prefabricado de las vigas, las estructuras óptimas se alejan de este supuesto. De hecho, el hormigón para el coste mínimo en las vigas prefabricadas oscila entre 40 y 50 MPa, alejado de los 100 MPa que permitía la optimización.
Por último, un análisis de sensibilidad de costes en los resultados optimizados indica que un aumento del 20% en los costes del acero haría que el coste total de la estructura aumentara un 10,27%, disminuyendo el volumen de acero empleado. Sin embargo, si sube un 20% el precio del hormigón, el coste total únicamente subiría un 3,41% y no variaría apenas el volumen consumido de hormigón.
Referencia:
YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO₂ emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm.Automation in Construction, 49:123-134. DOI: 10.1016/j.autcon.2014.10.013 (link)
En un artículo reciente hemos analizado las emisiones de polvo producidas al cargar un dúmper. Siguiendo esa línea os pasamos ahora un objeto de aprendizaje similar en el que se analiza el polvo que se levanta al circular un dúmper por una pista sin pavimentar. Este objeto está pensado para que nuestros alumnos traten de entender cómo varían las emisiones de polvo cuando un dúmper circula por una pista sin pavimentar, en función del contenido de limo en el material de la superficie de rodadura, de la velocidad y peso medio del dúmper, del número de neumáticos y del número de días secos anuales. Espero que os resulte útil. https://laboratoriosvirtuales.upv.es/eslabon/Ejercicio?do=EmisionesCirculacionDumper
Referencias:
INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1995). Manual de arranque, carga y transporte en minería a cielo abierto. Ministerio de Industria y Energía.