Montaje de puente prefabricado en la carretera Betxí-Borriol

Gruas Rigar

La prefabricación en elementos de puentes comenzó en España a principios de los años 50, con los primeros tableros de vigas prefabricadas pretensadas. Hoy en día existen soluciones prefabricadas para casi todas las tipologías de puentes de hormigón, aunque habitualmente solo se prefabrica el tablero.

A continuación, os dejo un vídeo de Grúas Rigar donde se puede ver el montaje de un puente en la carretera Betxí-Borriol. Resulta interesante ver el grado de precisión y maestría necesario para encajar las grandes piezas. Espero que os guste.

Puentes sobre el Guadalquivir para la Sevilla de la Expo 92

Puente de la Barqueta. bloglamochiladepedro.files.wordpress.com

Se ha comentado mucho en la red acerca de los puentes construidos sobre el Guadalquivir para la Sevilla de la Expo 92. El horizonte del 92 supuso para muchos ingenieros (entre los que me incluyo) una bocanada de aire fresco y de ilusión por trabajar en España, ilusión que hoy se ha esfumado por completo para nuestros jóvenes titulados. El artículo de hoy no pretende aportar nada nuevo al tema, pero sí invita a echar la vista atrás y recordar una época que marcó el destino de nuestro país en aquella década. Para ello, nada mejor que el reportaje de Canal Sur Televisión que adjunto al artículo.

Tras la concesión de la Exposición Universal 1992, se inició un periodo de realización de grandes obras en lo que a comunicaciones se refiere en la ciudad de Sevilla, en los que fue preparada para el inicio del Siglo XXI. Seis nuevos puentes, se construyeron sobre la dársena: al sur se construyeron El Puente del V Centenario, que permite el paso del tráfico fluvial por debajo gracias a los 51 metros que hay desde el tablero al agua, y el Puente de las Delicias, puente basculante que substituyó al obsoleto puente de Alfonso XIII. Al norte, se construyeron cuatro nuevos puentes: Puente del Cristo de la Expiración, la Pasarela de la Cartuja, el Puente de la Barqueta y el impresionante Puente del Alamillo. En este enlace podéis ver más sobre los puentes de Sevilla.

Dos de los tres puentes situados más al norte en la dársena, en primer término, el de la barqueta, en segundo, el del Alamillo. Wikipedia.

En el reportaje que os dejo a continuación se incluyen fotografías antiguas de inundaciones, barcas por las calles, … además de imágenes históricas. Se muestran imágenes aéreas de Sevilla y la Isla de la Cartuja y de la construcción de los puentes. Ofrece un plano con la evolución de los puentes y el río Guadalquivir desde 1903 a 1992. Redacción Juan Luis Carrasco. Realización Miguel Ángel Carrasco [Reportaje «Sobre el viejo río», Los Reporteros, 089. 22/12/1991. Canal Sur Televisión]

Aplicación de métodos matemáticos en la estimación de la vida útil de los puentes

Fases de iniciación y propagación de la corrosión (Tuutti, 1982)
Fases de iniciación y propagación de la corrosión (Tuutti, 1982)

Cualquier tipo de infraestructura, ya sea una carretera o un puente, se deteriora con el paso del tiempo y también como resultado de acciones y solicitaciones externas. Otros factores que pueden determinar la duración de esta vida útil son los errores o defectos ocurridos en la fase de proyecto o durante el proceso de construcción. El tiempo, por tanto, influye directamente en la mayoría de las variables que intervienen en los procesos de deterioro, tanto físicos (acciones, características resistentes, interacción con el terreno, etc.) como químicos (corrosión, carbonatación, cloruros, sulfatos, etc.). El análisis de la vida útil de un puente es, por tanto, un proceso complejo que requiere identificar las variables que afectan a la durabilidad y su distribución temporal. El deterioro es un proceso inherente a las estructuras y, en consecuencia, inevitable, aunque los sistemas de gestión tratan de cuantificarlo y controlarlo mediante estrategias de mantenimiento. Sus efectos pueden ser devastadores, ya que reducen drásticamente sus aspectos funcionales, portantes, de confort y de seguridad.

Para profundizar en este tema, os dejo un vídeo producido por el Instituto Eduardo Torroja en el que Faviano Tavares explica cómo se aplican los métodos matemáticos para estimar la vida útil de las estructuras. Espero que sea de vuestro interés.

Inspección de puentes: evaluación de daños y su evolución

Inspección especial del Viaducto sobre el río Voltoya
Inspección especial del Viaducto sobre el río Voltoya

Cualquiera que sea el sistema de gestión de un puente, todos ellos requieren de inspecciones que permitan evaluar, a distintos niveles de alcance, los posibles daños existentes y su evolución. En España, la «Guía para la realización de inspecciones principales de obras de paso en la Red de Carreteras del Estado«, de la Dirección General de Carreteras (2012), distingue tres niveles de inspección: básica, principal y especial. En este documento se entiende por “inspección” al conjunto de actuaciones técnicas realizadas conforme a un plan previo, que facilitan los datos necesarios para conocer en un instante dado el estado de conservación de un puente. La consecuencia de estas inspecciones es la determinación de las operaciones de mantenimiento o conservación cuando sean convenientes, o bien se asigna una marca de condición o estado de la estructura, o bien se adoptan medidas de rehabilitación, unas otras acciones extraordinarias.

Inspección básica o rutinaria:

Se trata del primer escalón dentro de las inspecciones, realizado por el personal encargado de la conservación rutinaria de la carretera (no necesariamente especializado en el ámbito estructural, pero con nociones básicas al respecto) en la que se encuentra ubicada la estructura. Su objetivo es detectar problemas importantes de manera precoz, sin tener que esperar a niveles superiores de inspección, que podrían acarrear un empeoramiento del problema con el paso del tiempo. Este nivel de inspección permite detectar deterioros tempranos y evitar que estos evolucionen a ser graves, así como localizar daños que necesiten una reparación urgente. Estas se materializan en fichas básicas adjuntas a las de conservación integral de la red gestionada.

Inspección principal:

Se trata de una inspección visual minuciosa que no requiere, a priori, de medios extraordinarios. Se llevan a cabo en campañas sistemáticas en función de los recursos humanos y técnicos disponibles. La inspección la lleva a cabo personal especializado dirigido por un ingeniero con sólidos conocimientos en patologías y áreas geológico-geotécnicas. Se recomienda una primera inspección principal, denominada «Inspección cero», que se realice antes de la puesta en servicio del puente y que sirva de referencia para determinar la evolución de los deterioros. La guía española mencionada anteriormente va un paso más allá y define el término Inspección Detallada como un caso particular de la Inspección Principal, dentro del cual se engloba un conjunto de estructuras que, por sus características, requieren medios auxiliares extraordinarios para la realización de la inspección, como plataformas, pasarelas de inspección, camiones grúa con canastilla, embarcaciones auxiliares, etc. El resultado se refleja en una ficha en la que, además de informarse del estado de la estructura en la inspección, se proporciona una valoración de su estado con respecto al resto de los puentes de la red gestionados. La periodicidad de las inspecciones principales depende de los recursos disponibles, aunque pueden adelantarse si hay informes que alerten de deterioros que comprometan la seguridad.

Inspección especial:

Las inspecciones especiales no son sistemáticas, sino que se realizan como consecuencia de los importantes deterioros detectados en una inspección principal o ante situaciones especiales como un impacto de un vehículo o una riada. Por lo general, son el paso previo a las labores de rehabilitación, reparación o refuerzo de la estructura. Requieren de un equipo técnico multidisciplinar, cualificado y altamente especializado en materias estructurales, geotécnicas y de análisis del deterioro de materiales. En este caso, no basta con realizar una inspección visual, sino que se requieren datos cuantitativos completos para evaluar el estado del puente. Con frecuencia, se llevan a cabo pruebas y ensayos destructivos o semidestructivos, como catas, testigos y otras pruebas relacionadas con la durabilidad. Con los resultados obtenidos se redacta un informe de caracterización y evaluación de daños o un proyecto de reparación. La dirección de los trabajos requiere un ingeniero jefe con amplia experiencia que planifique los trabajos de campo y tenga conocimientos estructurales y de gestión suficientes para coordinar al equipo de personas a su cargo. Este tipo de inspección puede ser de naturaleza tan variada que resulta difícil definirlo y detallarlo dentro de un sistema de gestión. No obstante, los resultados de las operaciones de reparación se introducen en el sistema, formando parte del inventario y la biblioteca de daños y costes de reparación.

A continuación os dejo algunos vídeos relacionados con este tema. Espero que os sean de interés.

Workshop on Bridge Design 2016

work-shoEl grupo español de la International Association for Bridge and Structural Engineering (IABSE) y la Escuela de Ingenieros de Caminos de la Universitat Politècnica de València organizan el taller/concurso de diseño de puentes “Workshop on Bridge Design 2016” el próximo 18 de noviembre.

El evento consiste en:

  • Un ciclo de conferencias y una mesa redonda con destacados proyectistas de puentes y estructuras singulares en la sesión de mañana. Las conferencias impartidas serán:

– S. Monleón y C. Lázaro “Recent experiences of intervention on historical bridges”.

– D. Knight “Moving bridges – collaboration and design”.

– F. Ibáñez “Nordic design made in Spain in the field of bridges and building structures”

– E.· McCann “Engineering alchemy – An examination of the real but surprising ingredients of great projects”.

  • Un taller en la sesión de tarde relacionado con el diseño de la pasarela peatonal objeto de concurso. El taller contará con la participación de los conferenciantes de la mañana y con otros profesionales de reconocido prestigio. Además, en la tarde del 17 de noviembre está prevista una visita guiada a diferentes puentes del río Turia que incluye una visita al emplazamiento de la pasarela del concurso.

 Información detallada y el formulario de inscripción pueden encontrarse en:

El evento podrá seguirse on-line a través de un enlace que se difundirá en su momento y a través del hashtag: #WoBD2016  y será una oportunidad única para conocer y contactar directamente con destacados profesionales del ámbito de las estructuras.

Pincha aquí para descargar

Puente de hormigón pretensado en Oelde, pionero en hormigón pretensado «in situ»

Puente de hormigón pretensado en Oelde. 1938
Puente de hormigón pretensado en Oelde. 1938

La empresa alemana Weyss und Freitag adquirió la licencia del sistema Freyssinet en 1935 y ya en 1938 construyó en Alemania el primer puente viga de hormigón armado pretensado «in situ», concretamente un paso superior sobre la autopista en Oelde (Westfalia). Se trata de cuatro vigas de hormigón pretensado de sección en «I» con 31 m de luz, espaciadas a 1,40 m, con cuatro diafragmas intermedios y dos de apoyo, así como un tablero de hormigón armado. Con una altura de 1,60 m, la esbeltez conseguida con este puente, de 1/20, fue la mayor hasta ese momento en puentes viga. Las vigas se fabricaron en una bancada de pretensado situada junto a la obra y, posteriormente, se desplazaron sobre el andamiaje hasta su posición definitiva. Se usó acero al manganeso de alta resistencia como pretensado, con diámetros de 40 mm en el cordón inferior y 10 mm en el superior, con una resistencia de 960 MPa, de los que solo se utilizó el 55 % de la carga de rotura para el pretensado. Tal y como indica Manterola (1984), este puente fue pretensado en el sentido más estricto de la palabra, utilizando el molde metálico de las vigas como soporte para la puesta en carga de los alambres, lo cual produjo críticas por lo caro del procedimiento.

Imagen actual del puente
Imagen actual del puente

Referencias:

Manterola, J. (1984). Evolución de los puentes en la historia reciente. Informes de la Construcción, 36 (359-360):5-36.

Ricardo Bellsolá y los primeros puentes españoles de hormigón con cemento artificial

Ricardo Bellsolá Bayo (1836-1882). https://www.gasteizhoy.com/ricardo-bellsola-elciego/

Ricardo Bellsolá y Bayo (1836-1882) fue uno de esos ingenieros de caminos pioneros que introdujo como novedad en España la primera experiencia en la utilización del hormigón (en masa) hidráulico, de la que se tiene noticia hacia el año 1862. Hay que tener en cuenta que Vicat ya había investigado la fabricación de cementos artificiales entre 1812 y 1818, y que la primera aplicación del hormigón armado no aparecería hasta mediados de siglo, cuando Lambot construyó una pequeña barca con paredes delgadas.

En efecto, de forma muy modesta, pero bien documentada, se construye un puente sobre el río Iregua cerca del pueblo de Villanueva de Cameros (La Rioja), con una luz principal de 22 m, pero cuyo interés principal se encuentra en la pequeña obra de fábrica adyacente, de apenas 3 m de luz y 4.5 m de altura que se ejecuta monolíticamente con hormigón hidráulico en masa y cuya descripción podemos ver en una reseña de 1862 de la Revista de Obras Públicas. El puente se empezó a construir un 16 de mayo de 1860 por el contratista D. Domingo Garmendia, y si bien el director de las obras fue al principio el autor del proyecto, D. Alfonso Ibarreta, terminó su construcción, en particular las bóvedas, D. Ricardo Bellsolá, que en aquel momento era el ingeniero de la provincia. En la citada reseña de 1862, atribuible al propio D. Ricardo, ya se justifican los beneficios económicos del empleo del hormigón hidráulico, cuya bóveda se descimbró a los 10 días “sin que se notasen grietas ni defecto alguno de unión”.

Puente sobre el Iregua, en Villanueva de Cameros. Fotografía: José Ramón Francia

El paso siguiente que confirmó el éxito del primer experimento de D. Ricardo con los arcos monolíticos de hormigón en masa fue la construcción, hacia 1866, de los puentes de Lavalé y Lumbreras en la carretera de Logroño a Soria. Se trataban de dos obras muy semejantes, ambas de tres bóvedas de 10 m cada una. Sin embargo, para defender la dignidad de su obra, dispuso de unos “aristones” o boquillas exteriores de dovelas de piedra, pues parece ser que no le resultaba muy elegante el hormigón.

Puente de Lavalé sobre el río Iregua, de Ricardo Bellsolá (Fotografía: Juan Donaire Merino) http://ropdigital.ciccp.es/pdf/publico/2011/2011_SEPTIEMBRE_3524_03.pdf

El propio ingeniero nos explica que modificó la construcción de los arcos en ladrillo por el hormigón por motivos puramente económicos:

“Las circunstancia mencionadas y la de encontrarse en la localidad un cemento regular, que aunque caro en fábrica, estaba cerca de las obras, me sugirieron la idea de los arcos de hormigón hidráulico […] y es que se han construido bóvedas de hormigón hidráulico de una sola pieza, sin más precauciones para el hormigón que las que se usan en el de las fundaciones. Este sistema de construcción creo puede llegar a ser sumamente expedito y económico, cuando experimentos repetidos, hechos por personas ilustradas, fijen, ayudados de la teoría, los espesores mínimos de esta clase de bóvedas”.

Así, D. Adolfo Ibarreta, en 1860, proyectó las obras que faltaban para completar la carretera que ya había sido explanada para 1861 con unos puentes de ladrillo, pues era la solución más económica para hacer las bóvedas sobre las que iba a descansar el firme. No obstante, el ladrillo se encontraba a un precio desorbitado al estar construyéndose, por entonces, el ferrocarril Tudela-Bilbao.

Sin embargo, el propio D. Ricardo se ve forzado, por motivos también económicos, a fabricar su propio cemento en una instalación provisional cerca del tajo. De ese modo, convierte un molino harinero situado en Torrecilla de Cameros en una fábrica artesanal de cemento Portland. Comprobó que una vez cocida la piedra caliza, más bien margosa, triturada, poseía buenas cualidades hidráulicas. Como curiosidad, decir que no se atrevieron a descimbrar los arcos hasta pasados ocho meses, aunque mucho antes ya se había separado la bóveda del encofrado por sí sola.

Hablar de los inicios del hormigón armado en España es hablar de dos personajes muy diferentes que pueden considerarse los verdaderos impulsores del hormigón armado en España: José Eugenio Ribera  y Juan Manuel de Zafra y Esteban, pero eso ya requiere otro post.

Sin embargo, para tener una visión completa de este nuestro protagonista, os dejo la referencia del propio Ricardo Bellsolá, que en la Revista de Obras Públicas del año 1867 publicó una memoria sobre estos puentes. Una mención muy especial requiere las 15 recomendaciones prácticas que D. Ricardo nos deja en sus memorias, relativas a la fabricación y puesta en obra del hormigón, pues sorprende lo acertado que para su época fueron estas conclusiones (criterios de descimbrado, hormigonado en tiempo demasiado caluroso o frío, reducir al máximo el agua de amasado, cubrir y proteger con tierra la bóveda de hormigón recién vertida, etc. También es muy aconsejable el reciente artículo del profesor L.J. Sanz sobre el mismo tema.

Referencias:

Arenas, J.J. (2002) Caminos en el aire. Los puentes. Tomos I y II. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

Bellsolá, R. (1867). Memoria relativa a los arcos de hormigón hidráulico construidos en la carretera de primer orden de Soria a Logroño. Revista de Obras Públicas, 15, tomo I (2): 13-17; tomo I (3): 25-26 y tomo I (4): 37-43

Revista de Obras Públicas (1862). Puente de Villanueva de Cameros, en la carretera de rpimer orden de Soria a Logroño, y noticia de esta carretera y otras de la provincia. Revista de Obras Públicas, 10, Tomo I (24):288-294.

Rubiato, F.J. (2009). Los puentes de Cenicero-Elciego y Baños de Ebro. El tránsito en la utilización de la bóveda de sillería a la de hormigón en masa. Sexto Congreso Nacional de la Historia de la Construcción, Valencia, 21-24 de octubre (link)

Sanz, L.J. (2011). Ricardo Bellsolá y los primeros puentes de hormigón en España. Revista de Obras Públicas, 158 (3524): 25-40.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Prueba de carga en puentes

Prueba de carga del puente Príncipe de Viana (Lérida), de Javier Manterola
Prueba de carga del puente Príncipe de Viana (Lérida), de Javier Manterola

Las pruebas de carga en los puentes tratan de comprobar que el proyecto y su ejecución se ha realizado de forma adecuada. Para ello se evalúa el comportamiento estructural comparando la respuesta real a la esperada según el modelo de cálculo empleado para su diseño y comprobación. También se realizan pruebas en el caso de puentes de servicio. En este último caso se trata de ampliar el conocimiento del estado de la estructura mediante la evaluación de su comportamiento estructural, bien periódicamente o como consecuencia de inspecciones que así lo aconsejen. Para ello, se obtendrán los desplazamientos y deformaciones en determinados elementos relevantes de la misma, bajo la acción de las cargas de prueba, comparándolas con las obtenidas en pruebas anteriores.

Os paso a continuación algunos vídeos sobre este tema. En el primero vemos un reportaje sobre la prueba de carga del viaducto del embalse de Contreras, en la Línea Ferroviaria de Alta Velocidad Madrid-Levante. Se colocaron sobre el tablero 54 camiones de 38 toneladas; en total, más de 2.000 toneladas.

En este otro vídeo vemos cómo se mide la deformación del puente ante las cargas.

 

El Ponte Rotto (Roma)

El Puente Emilio (Pons Aemilius) o Ponte Rotto. Imagen: V. Yepes
El Puente Emilio (Pons Aemilius) o Ponte Rotto. Imagen: V. Yepes

El Puente Emilio, llamado también Lapideo, o como se le conoce de forma más popular, el Ponte Rotto (en ruinas), fue probablemente el primer arco de piedra sobre de Roma sobre el Tíber. Este puente se construyó para apoyar al Puente Sublicio, dado que éste no era adecuado para soportar el paso de carros y material pesado. El puente se construyó por encargo de los censores Marco Emilio Lepido y Marco Fulvio Nobiliore, en el 179 a.C. El puente se ha destruido y reconstruido en numerosas ocasiones durante los primeros días de la República Romana, y sufrió daños a lo largo de su historia debido a las crecidas del río, siendo reconstruido muchas veces. Sin embargo, la gran inundación de 1598 hizo desaparecer tres de los seis arcos y el puente nunca más se reconstruyó. Aunque en el siglo XIX los restos del puente se unieron con pasarelas metálicas, al final se eliminaron las pasarelas y los dos arcos más cercanos a la orilla para construir los diques modernos del río. Hoy quedan sólo uno de los tres arcos del siglo XVI, de 24 m de luz, con bóveda de ladrillo de tardía restauración renacentista, que se apoya posiblemente en los pilones originales del siglo II a.C.

Os dejo algunos vídeos de las ruinas del puente.

Montaje de un arco flexible de hormigón prefabricado

puente-prefabricado-hormigon-armado-59280-3586967En un artículo reciente del blog Fieras de la Ingeniería, tuvimos ocasión de ver un sistema ingenioso de construcción de arcos flexibles de hormigón prefabricado. Este sistema, denominado FlexiArch, fue desarrollado por los ingenieros de la Escuela de Ingeniería Civil de la Universidad de Belfast. Se trata de unos arcos flexibles de hormigón prefabricado que permite agilizar enormemente las labores de construcción de puentes en arco, de modo sencillo y rápido. El concepto fue patentado en la década del 2000, y gracias a la colaboración con Macrete Ireland, pudo finalmente llevarse a la realidad por primera vez en septiembre de 2007 durante la construcción de un puente cerca de Belfast.

Os dejo un vídeo explicativo de la técnica. Espero que os guste.