Un depósito de relave se puede definir como un potencial yacimiento de origen minero secundario, residual, proveniente de un yacimiento geológico de minerales que han sido explotados para recuperar elementos tales como cobre, hierro, plata, oro, plomo, etc.
Os paso a continuación un manual de uso público que trata sobre las técnicas de perforación, muestreo y caracterización de estos depósitos publicado recientemente por Irene Aracena y Tania Triviño, en el contexto de Chile. Agradezco a Tania que me haya facilitado este documento para compartir con todos vosotros.
Una solución habitual y eficiente cuando se pretenden alcanzar grandes profundidades de excavación de forma sencilla y económica consiste en arriostrar pantallas de tablestacas mediante perfilería metálica. Este sistema permite limitar las deformaciones de dichas tablestacas, lo cual permite proteger edificaciones o infraestructuras anexas a la excavación. Este procedimiento constructivo precisa realizar la excavación en más de una fase, pues es necesario realizar el montaje del arriostramiento. Este procedimiento es alternativo al anclaje de pantallas al terreno.
Un compresor de pistón, compresor volumétrico alternativo o compresor de émbolo es un compresor de gases que funciona por el desplazamiento de un émbolo dentro de un cilindro (puede tener varios) movido por un cigüeñal para obtener gases a alta presión. El gas a comprimir entra, a presión ambiental, por la válvula de admisión en el cilindro, donde se comprime con el pistón, que tiene un movimiento alternativo mediante un cigüeñal y un biela, y se descarga, comprimido, por la válvula de descarga.
Es uno de los compresores más antiguos y conocidos, aunque hoy se emplean especialmente los compresores rotativos. El principio de funcionamiento del compresor alternativo, basado en el desalojamiento del aire por el émbolo, permite fabricar máquinas con pequeño diámetro y un recorrido insignificante del pistón, que desarrollan alta presión con un caudal relativamente pequeño.
Los compresores de pistones pueden clasificarse atendiendo a distintas características:
Por el número de cilindros:
Monocilíndricos.
Bicilíndricos.
Policilíndricos
Por la forma de trabajar el émbolo:
De simple efecto: la compresión se efectúa por una cara del pistón.
De doble efecto: la compresión se realiza por las dos caras del pistón
Por el número de etapas empleadas en la compresión:
Monoetápico.
Bietápicos.
Polietápicos.
Por la disposición de los pistones:
Horizontales.
Verticales.
En V.
A escuadra.
Los compresores monoetápicos son de poca potencia. La presión final alcanzada es de 4 a 5 bares, con una temperatura de salida entorno a los 180ºC (±20ºC). La refrigeración es por aire. Los compresores bietápicos son los más utilizados. Primero se llega de 2 a 3 bares para luego alcanzar unos 8 bares, con una temperatura de salida de 150ºC (±15ºC). La refrigeración puede ser por aire con un ventilador o por una corriente de agua.
Algunos de los compresores más habituales en el mercado presentan las siguientes características:
De simple efecto, monoetápicos y refrigeración por aire: capacidad hasta 1 m3/min, relación potencia (CV)/capacidad (m3/min) inferior a 10.
De simple efecto, bietápicos y refrigeración por aire: capacidad de 2 a 10 m3/min, relación potencia (CV)/capacidad (m3/min) de 7,5 a 8,5.
De doble efecto, bietápicos y refrigeración por agua: capacidad de 10 a 100 m3/min, relación potencia (CV)/capacidad (m3/min) de 6,5 a 7,5.
En la Figura siguiente se representan las cuatro fases del ciclo termodinámico que se desarrollan en el caso más simple de un compresor monoetápico de un cilindro de simple efecto.
Fase 1, admisión (4-1): Con la válvula de aspiración abierta, el pistón situado en el punto 4 inicia su avance hasta el 1 en el que se cierra la válvula. Entra aire a una presión P1.
Fase 2, compresión (1-2): Al cerrarse la válvula de admisión, el pistón retrocede hasta 2 y el aire se comprime hasta la presión P2.
Fase 3, expulsión (2-3): En 2 se abre la válvula de expulsión y el pistón al seguir retrocediendo hasta 3 va expulsando el aire y dejando el volumen V3 correspondiente al espacio muerto del cilindro.
Fase 4, expansión (3-4): En 3 se cierra la válvula de expulsión y el aire encerrado en el cilindro se expansiona haciendo avanzar el pistón hasta 4. En ese instante se abre la válvula de admisión, reiniciándose de nuevo el ciclo.
Os dejo a continuación una animación sobre un compresor de pistón de doble efecto:
También os dejo una presentación del profesor Pedro Loja sobre el compresor de pistón:
Referencias:
YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.
Existen seis tipos básicos de mantenimiento: mantenimiento correctivo, mantenimiento preventivo, mantenimiento conductivo, mantenimiento predictivo, mantenimiento cero horas y mantenimiento modificativo. Este vídeo de Renovetec analiza las características principales de cada uno de estos tipos de mantenimiento.
YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5. Ref. 402.
Las voladuras y demoliciones constituyen temas clásicos explicados en la asignatura de Procedimientos de Construcción en el ámbito de la ingeniería civil. A continuación se da una pincelada sobre aspectos básicos de los explosivos.
Los explosivosson sustancias químicas (sólidas o líquidas) que por efecto de un estímulo térmico o mecánico se transforman por reacción química exotérmica en gas. Lo característico de esta transformación es que puede producirse en un tiempo brevísimo (fracciones de milésimas de segundo), con fuertes aumentos de temperatura (hasta 4.500 ºC), de volumen (»10.000 veces el inicial) y de presión (hasta 200.000 atmósferas), pudiendo provocar la rotura violenta del medio que rodea al explosivo, efecto que es ampliamente aprovechado en minería y obra civil para la voladura de rocas o para la demolición de estructuras.
Conviene aclarar que aunque durante la explosión tenga lugar un importante aumento de temperatura, la energía calorífica liberada no es de gran magnitud. Productos combustibles como el carbón o la gasolina desarrollan, a igualdad de peso durante su combustión, una energía mayor que la que se libera en la detonación de un producto explosivo. La razón por la que la potencia del explosivo resulta millones de veces superior a la de aquellos, se debe simplemente al brevísimo tiempo en el que se desarrolla esa energía
Esto explica la fuerte influencia que la velocidad de detonación de un explosivo, tiene sobre su potencia o “poder rompedor”. En función de esta velocidad de detonación, el conjunto de productos explosivos puede dividirse en dos grupos:
(1) Deflagrantes: cuya velocidad de detonación se mide en m/s.
(2) Detonantes: en los que esta velocidad es del orden de Km/s.
La velocidad de detonación junto con las restantes propiedades que se enumeran más adelante, caracterizan un producto explosivo, pero su comportamiento en la práctica dependerá además de las condiciones del medio en que tenga lugar la explosión, especialmente del grado de confinamiento y de la posible existencia de agua o humedad en el barreno en que se coloque el explosivo.
Os dejo el siguiente vídeo explicativo realizada por un estudiante donde se recoge una introducción a este tema. Espero que os sea útil.
Referencias:
MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Editorial de la Universitat Politècnica de València. Ref. 530, 165 pp.
La distribución se puede definir como el conjunto de elementos necesarios para regular la entrada y la salida de gases del cilindro de los motores de cuatro tiempos. Generalmente se trata de un conjunto de piezas que, accionadas por el mismo motor, abren y cierran las válvulas de entrada y salida de gases.
Los sistemas de distribución se pueden clasificar dependiendo de la localización del árbol de levas. Hasta los años 80 los motores estaban configurados con el árbol de levas situado en el bloque motor. Actualmente prácticamente todos los motores tienen el árbol de levas montado en la culata.
El sistema consta de una serie de piezas que pueden variar dependiendo del motor. Generalmente podemos encontrar:
Engranaje de mando, cadena o correa: Se encuentra conectado al cigüeñal. Recibe el movimiento de este y lo transmite al árbol de levas. Los engranajes de mando solo se encuentra en los vehículos antiguos o con grandes motores porque son menos eficientes que las cadenas y correas porque pierden energía en forma de calor.
Árbol de levas: Es un eje con protuberancias, llamadas levas, que al girar activan en su momento justo el taqué. Debido a las condiciones que debe soportar lleva un tratamiento térmico especial llamado cementación.
Taqué o botador: Es un empujador que, movido por el árbol de levas, empuja la válvula. Pueden ser mecánicos (comunes o con un regulador de la luz de válvula) o hidráulicos (regulan la luz de válvula automáticamente).
Válvula: Es la parte fundamental del sistema. Accionada por el botador, se abre o cierra permitiendo el paso de los gases al cilindro.
Os dejo varios vídeos explicativos. El primero es de la Universidad de La Laguna y en él se explica el funcionamiento del sistema de distribución de un motor de combustión interna.
Referencias:
YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.
El profesor Miguel Ángel del Val, de la Universidad Politécnica de Madrid, nos explica en este vídeo la extensión de las mezclas asfálticas. Espero que os sea de utilidad.
Referencia:
YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.
Previo a la aplicación de cualquiera de un riego de imprimación o de adherencia, es imprescindible limpiar perfectamente la superficie que haya de recibirlos de partículas sueltas, polvo, barro seco o cualquier material que perjudique la perfecta unión con la capa de aglomerado. En efecto, el polvo y el agua pueden formar una película alrededor de los áridos que impida la adhesión del ligante bituminoso.
La limpieza de las superficies que van a recibir la capa de aglomerado asfáltico la realizan las escobas o barredoras mecánicas. Son máquinas autopropulsadas o remolcadas dotadas de unos brazos hidráulicos con rodillos de fibra que puede ser de púas de alambre acerado, nylon o vegetales. En el caso de que sólo existiera polvo o partículas sueltas, bastaría un pequeño compresor portátil para soplar la suciedad fuera del tajo.
La acción mecánica de los cepillos permite la eliminación de la suciedad. Para ello el rodillo gira en sentido contrario a la marcha del vehículo, produciendo este giro el barrido del polvo. La velocidad de trabajo de la máquina es del orden de 3 a 4 km/h, siendo normal de 2 a 3 pasadas para completar la limpieza.
La albañilería es el arte de construir edificios y obras en los que se emplean piedra, ladrillos, cal, etc., siendo el albañil el maestro u oficio de albañilería. Este oficio tiene una gran importancia en cualquier obra, y por ello, debe poseer una serie de conocimientos que le permitan ejercer su trabajo con la máxima autonomía, interpretar las órdenes de sus superiores, organizar el trabajo, realizar cálculos sencillos, así como interpretar los planos sobre los que realizar replanteos.
Cualquier tarea de albañilería, por sencilla que parezca, requiere de unas medidas de seguridad para evitar algún disgusto. En el desarrollo de este tipo de actividad, las personas se exponen a una serie de riesgos que a veces pasan desapercibidos o que no son suficientemente valorados, pero que en realidad entrañan peligros que pueden llegar a tener desenlaces desagradables. La información sobre ellos se puede consultar en numerosos enlaces en internet y existe una legislación precisa en cada país al respecto. Os dejo un vídeo explicativo que espero sea de interés.
Es una mezcladora de hormigón que también recibe el nombre de “mezcladora de tren bailarín”. Es una hormigonera típica de las industrias de prefabricados y para mezclas muy secas. Consta de una cuba fija, de mayor diámetro que altura, con su eje vertical. En el interior gira suspendido un reductor con un eje de salida de tipo planetario, al que está acoplado un conjunto de paletas. Su capacidad oscila entre 1 y 4 metros cúbicos. Una duración típica de un ciclo de amasado, llenado y vaciado es de 90 segundos, pudiendo ser reducido cuando se trata de alimentar camiones-hormigonera y ligeramente aumentado para mezclas especiales.
La velocidad de las paletas debe ser tal que la fuerza centrífuga resultante no produzca la separación de los elementos constituyentes del hormigón. Las paletas tienen un doble movimiento de rotación, de forma que la partícula ligada a las paletas describe un movimiento epicicloidal:
Alrededor de su eje.
Alrededor del eje de la máquina.
El motor es vertical, montado sobre un cárter cilíndrico colocado por encima de la cuba. La carga se realiza por la parte superior y la descarga por una compuerta abatible en el fondo, bien en uno de sus laterales, o bien en el centro del mismo.
Os paso algunos vídeos donde podéis ver el funcionamiento.
Referencias:
MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014).Fabricación, transporte y colocación del hormigón.Apuntes de la Universitat Politècnica de València. 189 pp.