El artículo, denominado “Teoría del valor extremo como criterio de parada en la optimización heurística de bóvedas de hormigón estructural” establece un criterio de parada para un algoritmo multiarranque de búsqueda exhaustiva de máximo gradiente basado en una codificación Gray aplicado a la optimización de bóvedas de hormigón. Para ello se ha comprobado que los óptimos locales encontrados constituyen valores extremos que ajustan a una función Weibull de tres parámetros, siendo el de posición, γ, una estimación del óptimo global que puede alcanzar el algoritmo. Se puede estimar un intervalo de confianza para γ ajustando una distribución Weibull a muestras de óptimos locales extraídas mediante una técnica bootstrap de los óptimos disponibles. El algoritmo multiarranque se detendrá cuando se acote el intervalo de confianza y la diferencia entre el menor coste encontrado y el teórico ajustado a dicha función Weibull.
YEPES, V.; CARBONELL, A.; GONZÁLEZ-VIDOSA, F. (2010). Teoría del valor extremo como criterio de parada en la optimización heurística de bóvedas de hormigón estructural. Actas del VII Congreso Español sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados MAEB 2010, Valencia, 8-10 septiembre, pp. 553-560. Garceta Grupo Editorial. ISBN: 978-84-92812-58-5.
Los problemas de decisión están presentes en todos los ámbitos del ser humano: finanzas, empresa, ingeniería, salud, etc. Una de las grandes dificultades al tomar una decisión ocurre cuando queremos conseguir varios objetivos distintos, muchos de ellos incompatibles o contradictorios. Por ejemplo, si queremos un vehículo que sea muy veloz, debería tener un perfil aerodinámico que a veces es incompatible con la comodidad de los usuarios; si queremos hacer un negocio con grandes beneficios, a veces tenemos que asumir ciertos riesgos, etc. Una herramienta que permite afrontar este tipo de problemas de decisión es el denominado “óptimo de Pareto“. A continuación os paso un vídeo explicativo de este tema. Espero que os guste.
¿Cómo se podrían optimizar en tiempos de cálculo razonable problemas complejos de redes de transporte, estructuras de hormigón (puentes, pórticos de edificación, túneles, etc.) y otro tipo de problemas de decisión empresarial cuando la dimensión del problema es de tal calibre que es imposible hacerlo con métodos matemáticos exactos? La respuesta son los métodos aproximados, también denominados heurísticas. Este artículo divulgativo trata de ampliar otros anteriores donde ya hablamos de los algoritmos, de la optimización combinatoria, de los modelos matemáticos y otros temas similares. Para más adelante explicaremos otros temas relacionados específicamente con aplicaciones a problemas reales. Aunque para los más curiosos, os paso en abierto, una publicación donde se han optimizado con éxito algunas estructuras de hormigón como muros, pórticos o marcos de carretera: (González et al, 2008).
Desde los primeros años de la década de los 80, la investigación de los problemas de optimización combinatoria se centra en el diseño de estrategias generales que sirvan para guiar a las heurísticas. Se les ha llamado metaheurísticas. Se trata de combinar inteligentemente diversas técnicas para explorar el espacio de soluciones. Osman y Kelly (1996) nos aportan la siguiente definición: “Los procedimientos metaheurísticos son una clase de métodos aproximados que están diseñados para resolver problemas difíciles de optimización combinatoria, en los que los heurísticos clásicos no son ni efectivos ni eficientes. Los metaheurísticos proporcionan un marco general para crear nuevos algoritmos híbridos combinando diferentes conceptos derivados de la inteligencia artificial, la evolución biológica y la mecánica estadística”.
Aunque existen diferencias apreciables entre los distintos métodos desarrollados hasta el momento, todos ellos tratan de conjugar en mayor o menor medida la intensificación en la búsqueda –seleccionando movimientos que mejoren la valoración de la función objetivo-, y la diversificación –aceptando aquellas otras soluciones que, aun siendo peores, permiten la evasión de los óptimos locales-.
Las metaheurísticas son susceptibles de agruparse de varias formas. Algunas clasificaciones recurren a cambios sucesivos de una solución a otra en la búsqueda del óptimo, mientras otras se sirven de los movimientos aplicados a toda una población de soluciones. El empleo, en su caso, de memoria que guíe de la exploración del espacio de elecciones posibles permite otro tipo de agrupamiento. En otras circunstancias se emplean perturbaciones de las opciones, de la topología del espacio de soluciones, o de la función objetivo. En la Figura se recoge una propuesta de clasificación de las heurísticas y metaheurísticas empleadas en la optimización combinatoria (Yepes, 2002), teniendo en común todas ellas la necesidad de contar con soluciones iniciales que permitan cambios para alcanzar otras mejores. Es evidente que existen en este momento muchas más técnicas de optimización, pero puede ser dicha clasificación un punto de partida para una mejor taxonomía de las mismas.
Las metaheurísticas empleadas en la optimización combinatoria en podrían clasificarse en tres grandes conjuntos. Las primeras generalizan la búsqueda secuencial por entornos de modo que, una vez se ha emprendido el proceso, se recorre una trayectoria de una solución a otra vecina hasta que éste concluye. En el segundo grupo se incluyen los procedimientos que actúan sobre poblaciones de soluciones, evolucionando hacia generaciones de mayor calidad. El tercero lo constituyen las redes neuronales artificiales. Esta clasificación sería insuficiente para aquellas metaheurísticas híbridas que emplean, en mayor o menor medida, estrategias de unos grupos y otros. Esta eventualidad genera un enriquecimiento deseable de posibilidades adaptables, en su caso, a los diferentes problemas de optimización combinatoria.
Referencias
GONZÁLEZ-VIDOSA-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; CARRERA, M.; PEREA, C.; PAYÁ-ZAFORTEZA, I. (2008) Optimization of Reinforced Concrete Structures by Simulated Annealing. TAN, C.M. (ed): Simulated Annealing. I-Tech Education and Publishing, Vienna, pp. 307-320. (link)
YEPES, V. (2002). Optimización heurística económica aplicada a las redes de transporte del tipo VRPTW. Tesis Doctoral. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Universitat Politècnica de València. 352 pp. ISBN: 0-493-91360-2. (pdf)
La optimización significa hallar el valor máximo o mínimo de una cierta función, definida en un dominio. En los problemas de decisión que generalmente se presentan en la vida empresarial existen una serie de recursos escasos (personal, presupuesto, tiempo), o de requisitos mínimos a cumplir (producción, horas de descanso), que condicionan la elección de la solución adecuada, ya sea a nivel estratégico, táctico e incluso operativo. Por lo general, el propósito perseguido al tomar una decisión consiste en llevar a cabo el plan propuesto de una manera óptima: mínimos costos o máximo beneficio.
Desgraciadamente, la complejidad de las situaciones reales es de tal magnitud que en numerosas ocasiones son inviables los métodos matemáticos de resolución exactos, de modo que los problemas de optimización planteados frecuentemente se resuelven con métodos aproximados que proporcionan soluciones factibles que sean satisfactorias.
Os dejamos aquí un pequeño vídeo para divulgar lo que significa un modelo matemático de optimización. Espero que os guste.