Plantas desarenadoras para la reutilización de los fluidos estabilizadores

Figura 1. Desarenador de lodos. ttps://maquinariacimentaciones.wordpress.com

En artículos anteriores hemos descrito los fluidos estabilizadores de excavaciones. Dentro de este uso, la estabilización de excavaciones de muros pantalla esta ampliamente difundida en España. Los fluidos bentoníticos se utilizan también habitualmente para estabilizar las paredes de la excavación de pilotes excavados de cierto diámetro e incluso en los de pequeño diámetro en competencia con las entibaciones recuperables. También se usan en estos fluidos de perforación en la Perforación Horizontal Dirigida. En cualquier caso, uno de los problemas a resolver es separar las partículas de la excavación del fluido para que pueda ser reutilizado. Para ello se describe a continuación brevemente el funcionamiento de una planta desarenadora.

La misión de las plantas desarenadoras es la de separar las partículas de suelo (sólidos) que se encuentran en suspensión en los fluidos estabilizadores. Son necesarias para la reutilización de los lodos (circuito de recirculación). Además de en cimentaciones profundas se utilizan también en plantas de tratamiento de áridos, obras de túneles, etc.

El contenido de arena y otras partículas en suspensión en los lodos minerales debe ser inferior al 4% del volumen antes de volver a verterlo en la excavación. En el caso de polímeros este porcentaje debe ser inferior al 1%. Antes del hormigonado se permite máximo hasta el 10%.

Figura 2. Salida de sólidos de una desarenadora (Bauer)

Se pueden distinguir en el mercado dos tipos de desarenadoras; aquellas por las que el fluido a limpiar pasa una única vez por un hidrociclón y las que pasan dos. El de simple ciclonado está recomendado para terrenos poco arenosos o con arenas poco finas; en este caso, los lodos solo pasan una vez por el ciclón tras pasar por una o varias fases de criba con el objeto de eliminar el material de mayor tamaño. El desarenador de doble ciclonado es más eficaz, pues presentan una mayor capacidad de regeneración del fluido, siendo necesario para terrenos arenosos o con muchas arenas finas, incluso limos; normalmente tras pasar a través del ciclón principal pasan por una serie de hidrociclones más pequeños.

Figura 3. Esquema de la recirculación de fluidos (Caltrans)

 

En la Figura 4 se muestra el esquema de una desarenadora con un solo paso a través del ciclón, en el que se distinguen los siguientes elementos:

(1) Motores para las cribas vibratorias.

(2) Criba de gruesos que realiza funciones de “precribado”, retiene partículas > 5mm.

(3) Tanque de almacenamiento del material procedente de la criba de gruesos.

(4) Bomba de alimentación del ciclón a 2-3 bar.

(5) Hidrociclón;.

(6) Salida de sólidos del hidrociclón.

(7) Cribas separadoras del agua del material grueso procedente del hidrociclón.

(8) Salida superior del hidrociclón, con el fluido “limpio”.

(9) Depósito de regulación

(10) Control automático de nivel.

Figura 4. Esquema de funcionamiento de una desarenadora (Bauer)

El rendimiento de una desarenadora se mide en m3/h de fluido estabilizador regenerado. Para determinar la eficiencia se mide a través del punto de corte o “cut point”, que es el d50, que mide el menor tamaño de partícula en suspensión que al menos el 50% puede ser separado del fluido. Se mide en 1/1000 mm o micras.

Referencia:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Fluido de perforación en la Perforación Horizontal Dirigida (PHD)

Fluido de perforación. Imágen de Catalana de Perforacions
Fluido de perforación. Imagen de Catalana de Perforacions

El procedimiento habitual es la perforación asistida con fluidos. En este caso, la cabeza se empuja por una sarta de perforación a través del terreno. El fluido se bombea por el interior de la tubería que forma la sarta de perforación y retorna por el espacio que existe entre la sarta y las paredes de la perforación, con el detritus correspondiente, por lo que debe reciclarse para volver a utilizarse. Hay máquinas autónomas que llevan consigo los tanques de mezcla y las bombas del fluido, aunque en otras son sistemas independientes.

El uso de la perforación con lodos es frecuente, pues además de contener las paredes, permite el transporte del detritus en suspensión al exterior, además de la lubricación y refrigeración de la cabeza de corte. Asimismo, estabilizan la perforación piloto hasta que se inicia su ensanche. Los fluidos de perforación suelen ser mezclas de bentonita y agua, aunque hoy existe una tendencia creciente en el uso de polímeros. Hay que prever en suelos porosos o fracturados una pérdida de fluidos significativa. Cuando se trata de perforar terrenos duros y roca, se pueden utilizar conjuntos de fondo, BHA (bottom hole assembly), que es la parte inferior de la sarta de perforación que se extiende desde un tricono de perforación al varillaje. El BHA se acciona mediante un motor de lodos, que utiliza la potencia hidráulica del fluido de perforación.

Central de tratamiento de lodos. Imagen de Catalana de Perforacions
Central de tratamiento de lodos. Imagen de Catalana de Perforacions

En el vídeo que os dejo a continuación se profundiza en el uso de los lodos como fluido de perforación. Espero que os sea de utilidad.

Referencias:

  • IbSTT Asociación Ibérica de Tecnología SIN Zanja (2013). Manual de Tecnologías Sin Zanja.
  • Yepes, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia, 89 pp.
  • Yepes, V. (2015). Aspectos generales de la perforación horizontal dirigida. Curso de Postgrado Especialista en Tecnologías Sin Zanja, Ref. M7-2, 10 pp.

Pilote de extracción con fluidos estabilizadores

CPI-6Los pilotes perforados sin entubación con fluidos estabilizadores, denominados CPI-6 en la nomenclatura de las NTE-1977, permiten excavar en terrenos inestables o con nivel freático alto, debido a las propiedades expansivas y tixotrópicas de los fluidos empleados, que ayudan a contener las paredes. Estos fluidos presentan propiedades tixotrópicas en la bentonita y propiedades iónicas en los polímeros.

Los fluidos estabilizadores pueden ser utilizados para estabilizar la excavación en toda su altura o bien una parte. Durante la construcción del pilote, el nivel de lodos debe mantenerse en un nivel apropiado, siempre por encima del nivel freático al menos de 1,0 a 1,5 m. Este procedimiento es aplicable de preferencia en terrenos finos sin estratos granulares gruesos libres de matriz fina o grandes bloques.

Una vez acabada la perforación, se introduce la armadura y se hormigona utilizando la tubería tremie hasta el fondo de la perforación. La tubería se va subiendo a medida que se hormigona, procurando que su boca inferior esté embebida un mínimo de 4 m dentro de la columna ya hormigonada para evitar posibles cortes durante el hormigonado. La consistencia del hormigón debe ser fluida. Durante el hormigonado deben controlarse nuevamente las características de los lodos de bentonita para evitar contaminaciones en el hormigón. Los diámetros empleados en este tipo son, según la NTE, de 45 a 125 cm, aunque la maquinaria actual permite pilotes de diámetros mayores.

Se pueden alcanzar profundidades superiores a 50 m, en función de las características del Kelly telescópico que sostiene la herramienta de perforación. Sin embargo, hay que tener en cuenta la complicación que supone el uso de lodos bentoníticos a medida que aumenta la profundidad.

Su uso es habitual como pilotaje trabajando por punta, apoyado en roca o capas duras de terreno. Cuando se atreviesen capas blandas que se mantengan sin desprendimientos por efecto de los lodos.

Fases de ejecución:

  1. Excavación con cuchara y vertido de lodo en la excavación para extracción de la tierra.
  2. Cambio de lodo contaminado y limpieza del fondo del pilote
  3. Introducción de las armaduras.
  4. Hormigonado desde el fondo mediante tubo Tremie y recuperación del lodo.
  5. Pilote terminado.

 

Para garantizar la estabilidad de la perforación, el nivel del lodo debe estar siempre próximo al nivel de coronación del murete-guía, debiéndose mantener constante, por lo que es preciso aportar lodos a medida que se excava el terreno. Además, se precisa una central de tratamiento de lodos que permita el control de la calidad de los lodos (mediante su viscosidad y contenido en finos) y la regeneración de los lodos contaminados.

https://www.pileingenieria.com.co/content/lodos-de-perforaci%C3%B3n-en-ingenier%C3%ADa-civil

 

Para la perforación y extracción de tierras se utilizan cucharas, barrenas cortas o buckets. Los restos de la excavación se van depositando en el fondo de la misma, por lo que es fundamental la limpieza de la punta del pilote. Para su limpieza se emplean bombas de fondo que permiten la extracción del lodo contaminado y la incorporación de lodo regenerado. Pueden utilizarse para ello sistemas de circulación directa que introducen lodos frescos por la punta que desplazan al lodo contaminado, que sale por la cabeza, o sistemas de circulación inversa que lo hacen aspirando el fango contaminado del fondo y alimentan con fango fresco por la cabeza.

A continuación os dejo un vídeo explicativo de la construcción de este tipo de pilotes.

Referencia:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.