¿Por qué es tan difícil asignar recursos a la conservación de las carreteras?

Figura 1. Conservación de carretera Guayaquil-Santa Elena.

En muchos foros se repite, a modo de mantra, que la falta de conservación de nuestras carreteras (y calles, en el caso de las ciudades) se debe fundamentalmente a un problema de orden económico. Por algún motivo u otro (crisis económica, dificultad para aprobar presupuestos, falta de voluntad política, etc.), la falta aparente de recursos obliga a realizar una conservación correctiva o reactiva de las carreteras, como ya se justificó en un artículo anterior, provoca estados subóptimos en la infraestructura y tiene como consecuencia el incremento del riesgo de accidentes, la reducción de la velocidad de los vehículos, las restricciones de paso y la elección por los usuarios de itinerarios alternativos con mayor tiempo de recorrido. Conviene insistir, en este punto, una conservación deficiente genera mayores costes a los usuarios relacionados con el valor del tiempo de viaje, con el vehículo y con los accidentes de tráfico. La justificación económica de las restricciones presupuestarias queda en entredicho cuando se consideran los costes totales del transporte.

Sin embargo, en nuestro grupo de investigación hemos desarrollado modelos que, incluso en el caso de disponer de presupuestos restrictivos, pueden optimizar el estado o condición no de una carretera, sino de una red completa, considerando, además, distintas funciones objetivo (costes económicos, sociales y medioambientales). Para entender mejor el problema, expongo a continuación la dificultad intrínseca de este tipo de problemas y justificaré las razones por las que muchos gestores del mantenimiento de carreteras toman decisiones que se alejan de ser óptimas.

La clave para entender la magnitud del problema radica en la dificultad que tienen los gestores de la red de carreteras para tomar decisiones debido a la explosión combinatoria de las soluciones posibles al tener en cuenta distintos tipos de tratamientos de preservación, mantenimiento y rehabilitación (P+M+R), y los periodos de aplicación. Dicho de otra forma, en una red de carreteras se trata de decidir en qué tramo de la red se aplica un tratamiento de los múltiples posibles y cuándo se debe realizar. Las decisiones tomadas conforman el programa de conservación de la red de carreteras.

En la Figura 2 se representan las variables fundamentales que conforman el problema. En una red de carreteras tenemos N activos (tramos considerados), S posibles tratamientos, cada uno de los cuales se aplicará en el instante t en los T años considerados en el programa de conservación.

Figura 2. Programa de conservación (Torres-Machí, 2015)

El programa de conservación resultante de las decisiones tomadas para un horizonte de T años nos dirá para cada uno de los años dónde actuar y qué tipo de tratamiento se deberá efectuar. En la Figura 3 queda representada un posible programa fruto de las decisiones tomadas.

Figura 3. Ejemplo de programa de conservación (Torres-Machí, 2015)

Lo difícil de este problema, como hemos dicho anteriormente, es acertar con el mejor programa de conservación. No hay más remedio que aplicar técnicas de optimización para resolver el problema si los presupuestos son limitados. Existen dos enfoques: el secuencial y el holístico. El primero se centra en un activo (un tramo de carretera o una calle de una ciudad) y decide qué tratamientos se van a aplicar y en qué momento. En este caso el problema tiene N·S^T soluciones. En cambio, el enfoque holístico considera toda la red: se trata de elegir qué activo tiene prioridad en la red y luego decidir qué tratamiento y cuándo se aplica. Aquí se dispara el número de posibles soluciones a S^(N·T). A modo de ejemplo, teniendo en cuenta solo dos tratamientos (S=2), un horizonte de 10 años (T=10) y 7 tramos diferentes de carretera (N=7), el número de posibles soluciones es de 1,18E+21.

La única forma de abordar este problema es con algoritmos heurísticos de optimización multiobjetivo. Os dejo algunas referencias de cómo hemos resuelto en nuestro grupo de investigación este problema y en un artículo posterior os explico cómo formular el problema de optimización (funciones objetivo, restricciones, etc.). Como ya dije en artículos anteriores, la puerta está abierta a quien quiera participar en nuestro grupo.

Referencias:

  • SALAS, J.; YEPES, V. (2019). MS-ReRO and D-ROSE methods: assessing relational uncertainty and evaluating scenarios’ risks and opportunities on multi-scale infrastructure systems. Journal of Cleaner Production, (accepted, in press).
  • SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017). Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65:41-53.
  • SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176:521-534.
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review, 67:61-72.
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513.
  • TORRES-MACHÍ, C. (2015). Optimización heurística multiobjetivo para la gestión de activos de infraestructuras de transporte terrestre. Tesis doctoral. Universitat Politècnica de València – Pontificia Universidad Católica de Chile.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E.; YEPES, V.; VIDELA, C. (2015). Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making. Transportation Research Record, 2523:56-63.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; VIDELA, C.; PELLICER, E.; YEPES, V. (2014). An iterative approach for the optimization of pavement maintenance management at the network level. The Scientific World Journal, Volume 2014, Article ID 524329, 11 pages.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; YEPES, V.; PELLICER, E. (2014). Current models and practices of economic and environmental evaluation for sustainable network-level pavement management. Revista de la Construcción, 13(2): 49-56.
  • TORRES-MACHI, C.; PELLICER, E.; YEPES, V.; CHAMORRO, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Journal of Cleaner Production, 148:90-102.
  • YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Indicadores de estado y de prestaciones de las infraestructuras

En una entrada anterior vimos las distintas estrategias de conservación de las infraestructuras y cómo estas influían en el coste que debían pagar los usuarios. Estas estrategias pueden modificar el estado o las prestaciones de la infraestructura, que sin duda se degradan con el tiempo. Llegado a este punto, conviene diferenciar los conceptos de «estado» y «prestaciones» de una infraestructura.

La gestión de las infraestructuras (carreteras, puentes, etc.) supone un proceso en el que se deben asignar de forma eficiente los recursos limitados, en la dirección marcada por los objetivos estratégicos de la organización responsable de dicha gestión. Para ello, es necesario contar con una serie de indicadores que permitan medir de forma cuantitativa o cualitativa los resultados derivados de las acciones realizadas sobre dichos activos en relación con los objetivos.

Dichos indicadores pueden ser de estado o de prestaciones. El estado o condición de una infraestructura se define como su estado físico, que puede afectar o no a sus prestaciones. En cambio, la prestación o rendimiento se define como la capacidad de la infraestructura para proveer un determinado nivel de servicio a los usuarios. Se pueden llamar también prestaciones funcionales, pues indican el nivel de habilitación de una infraestructura para desarrollar su función principal, que es la prestación del servicio, aunque también podrían incluir otras características o efectos no directamente relacionados con el servicio a los usuarios.

Saber diferenciar ambos conceptos es básico para cualquier organización responsable de la gestión de una infraestructura. Así, por ejemplo, las prestaciones de un puente pueden no verse afectadas por el estado hasta que se produzca un fallo. Es fácil encontrar un puente de hormigón con defectos superficiales (corrosión de armaduras, desconchados, etc.) que mantiene intacta su funcionalidad y su integridad estructural. También podría darse el caso de un puente en muy buen estado que no sea capaz de soportar determinadas cargas de tráfico o que imponga restricciones de gálibo que afecten al tráfico.

Puente “traga camiones” de Leganés. https://www.lavanguardia.com

Pero, ¿cuáles son las razones para disponer de indicadores en la gestión de las infraestructuras? Son imprescindibles para tomar decisiones que afectan a estos activos. Permiten identificar las necesidades de intervención, proporcionan una guía para los procesos y criterios en la toma de decisiones y son los elementos que permiten controlar el progreso hacia los objetivos y metas trazados por la organización responsable de la gestión.

En el caso de una carretera, los indicadores utilizados en su gestión se suelen agrupar en diferentes categorías que corresponden a los objetivos de la organización responsable de dicha gestión. Se podrían considerar, entre otros, los siguientes: conservación de la carretera, seguridad vial, movilidad y accesibilidad, medioambiente, operaciones y mantenimiento, y eficiencia económica.

Si se dispone de mediciones de dichos indicadores, estos permiten comparar sus valores con determinados estándares, umbrales o niveles mínimos. Esta información es determinante para identificar las necesidades de intervención y, por tanto, cataliza todo el proceso posterior de selección de intervenciones y asignación de recursos económicos.

En artículos posteriores hablaremos de cómo podremos utilizar estos índices para el caso particular de las carreteras y de cómo aplicar técnicas procedentes de la optimización multiobjetivo y de la toma de decisiones multicriterio para asignar los presupuestos restrictivos de los que dispone una organización, de modo que la condición de las carreteras sea la máxima posible. Ya adelantamos que el problema no es sencillo, pero afortunadamente nuestro grupo de investigación ya dispone de las herramientas necesarias para planificar el mantenimiento y la conservación de una red de carreteras o de calles en una ciudad con presupuestos muy restrictivos.

Referencias:

  • CLEMENTE, J.J. (2012). La toma de decisión en el marco de la gestión de activos de infraestructuras de transporte terrestre. Trabajo de investigación. Universitat Politècnica de València.
  • SALAS, J.; YEPES, V. (2019). MS-ReRO and D-ROSE methods: assessing relational uncertainty and evaluating scenarios’ risks and opportunities on multi-scale infrastructure systems. Journal of Cleaner Production, (accepted, in press).
  • SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017). Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65:41-53.
  • SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176:521-534.
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review, 67:61-72.
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513.
  • TORRES-MACHÍ, C. (2015). Optimización heurística multiobjetivo para la gestión de activos de infraestructuras de transporte terrestre. Tesis doctoral. Universitat Politècnica de València – Pontificia Universidad Católica de Chile.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E.; YEPES, V.; VIDELA, C. (2015). Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making. Transportation Research Record, 2523:56-63.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; VIDELA, C.; PELLICER, E.; YEPES, V. (2014). An iterative approach for the optimization of pavement maintenance management at the network level. The Scientific World Journal, Volume 2014, Article ID 524329, 11 pages.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; YEPES, V.; PELLICER, E. (2014). Current models and practices of economic and environmental evaluation for sustainable network-level pavement management. Revista de la Construcción, 13(2): 49-56.
  • TORRES-MACHI, C.; PELLICER, E.; YEPES, V.; CHAMORRO, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Journal of Cleaner Production, 148:90-102.
  • YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Cómo influyen las estrategias de conservación y el coste que pagan los usuarios de las carreteras?

Figura 1. Las generaciones futuras tendrán que pagar por unas infraestructuras deterioradas

En esta entrada, vamos a justificar cómo ciertas estrategias de gestión del mantenimiento y conservación de las carreteras pueden aumentar significativamente los costos para los usuarios. Para lograrlo, en primer lugar, definiremos las diferentes estrategias disponibles, y posteriormente analizaremos cuál de ellas tiene un impacto negativo en los costos que deben asumir los usuarios.

Si bien es cierto que estas nuevas infraestructuras nacen con un periodo de vida relativamente largo, no menos cierto es que una parte significativa de dicha infraestructura está empezando a notar el paso del tiempo; es más, parece que podemos vivir dentro de un horizonte no tan lejano, un verdadero colapso en los niveles de servicio prestados por estos activos. Lo peor de todo ello es que estas infraestructuras se financiaron a largo plazo y la siguiente generación (Figura 1) se encontrará con la sorpresa de tener que pagar por infraestructuras con niveles de servicio pésimos. Es lo que en otro artículo califiqué como la “crisis de las infraestructuras”. Todo esto nos lleva a la cuestión central del problema: la necesidad urgente de contar con un plan racional y recursos suficientes para mantener las infraestructuras básicas de un país.

En la Figura 2 podemos ver una gráfica donde se representa no solo la degradación del estado o de las prestaciones de la carretera, sino las distintas estrategias que se tienen al alcance para modificar dicho deterioro.

Figura 2. Estrategias de conservación (Clemente, 2012)

Así, la estrategia preventiva o proactiva tiene como objetivo mantener en el tiempo el estado físico del elemento en un nivel adecuado, evitando que alcance elevados niveles de deterioro que puedan afectar a su funcionalidad y disparar los costes de reparación. Estas actuaciones son normalmente de alcance y coste limitado y se realizan con cierta periodicidad en función de la evolución observada o incluso de manera programada antes de que el defecto se llegue a manifestar. La estrategia correctiva o reactiva es la que deja al elemento que se deteriore al límite, en cuyo momento se efectúan intervenciones de gran calado, como por ejemplo grandes rehabilitaciones integrales o estructurales, que lo devuelven, o lo intentan devolver, a su estado original. Sin embargo, son actuaciones de mayor coste, aunque más separadas en el tiempo. Por último, se podría optar por un deterioro controlado hasta la retirada. En este caso se pasa directamente a retirar el elemento cuando se ha alcanzado su vida útil de servicio y se sustituye por otro similar. Durante este periodo no se interviene, o se hace mínimamente para no afectar la funcionalidad.

Por tanto, la estrategia óptima no es evidente, pues depende tanto de factores endógenos (características constructivas de la carretera, edad, etc.) y exógenos (condiciones del clima, nivel de tráfico, etc.) y en consecuencia no se pueden generalizar las conclusiones. Este problema, por consiguiente, es uno de los focos más importantes de nuestro grupo de investigación. Os he puesto referencias de algunas de nuestras publicaciones.

Pero el problema se hace más complejo cuando se tienen en cuenta los costes de los usuarios. En efecto, las características de la carretera y el nivel y la composición de la demanda de tráfico influyen en los costes de los usuarios. Un mal estado del pavimento, incrementa claramente el coste soportado por el usuario. Y lo que es peor, un estado subóptimo de la infraestructura debido a una estrategia de conservación reactiva, tiene como consecuencia el incremento del riesgo de accidentes, la reducción de la velocidad de los vehículos, las restricciones de paso y la elección por los usuarios de itinerarios alternativos con mayor tiempo de recorrido. Insisto en este punto. Una conservación deficiente genera mayores costes a los usuarios relacionados con el valor del tiempo de viaje, con el vehículo y con los accidentes de tráfico.

En la Figura 3 se puede ver que existe un hipotético nivel de conservación óptimo que minimiza los costes totales del transporte, teniendo en cuenta el coste del usuario, el coste de conservación y el coste de construcción. Sin una estrategia clara de conservación, los responsables de una red de carreteras suelen realizar una conservación correctiva, que tiene un aparente ahorro económico en el corto plazo, pero que traslada al futuro unos costes que pueden ser muy elevados tanto para los contribuyentes que sufragan la inversión como para los usuarios.

Figura 3. Costes totales del transporte

A continuación os dejo algunas de las referencias y de los trabajos que se han publicado al respecto. Todo lo que estamos haciendo ahora se encuentra dentro de un proyecto de investigación competitivo al que hemos denominado DIMALIFE (BIA2017-85098-R): Diseño y mantenimiento óptimo, robusto y basado en fiabilidad de puentes e infraestructuras viarias de alta eficiencia social y medioambiental bajo presupuestos restrictivos”. Si alguien se anima trabajar en estos temas de investigación con nosotros o hacer una tesis doctoral, tiene las puertas abiertas.

Además, igual os interesa leer los enlaces que publicamos en una entrada anterior: ¿Qué hemos hecho para conservar nuestras carreteras?

Referencias:

  • CLEMENTE, J.J. (2012). La toma de decisión en el marco de la gestión de activos de infraestructuras de transporte terrestre. Trabajo de investigación. Universitat Politècnica de València.
  • SALAS, J.; YEPES, V. (2019). MS-ReRO and D-ROSE methods: assessing relational uncertainty and evaluating scenarios’ risks and opportunities on multi-scale infrastructure systems. Journal of Cleaner Production, (accepted, in press).
  • SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017). Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65:41-53.
  • SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176:521-534.
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review, 67:61-72.
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513.
  • TORRES-MACHÍ, C. (2015). Optimización heurística multiobjetivo para la gestión de activos de infraestructuras de transporte terrestre. Tesis doctoral. Universitat Politècnica de València – Pontificia Universidad Católica de Chile.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E.; YEPES, V.; VIDELA, C. (2015). Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making. Transportation Research Record, 2523:56-63.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; VIDELA, C.; PELLICER, E.; YEPES, V. (2014). An iterative approach for the optimization of pavement maintenance management at the network level. The Scientific World Journal, Volume 2014, Article ID 524329, 11 pages.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; YEPES, V.; PELLICER, E. (2014). Current models and practices of economic and environmental evaluation for sustainable network-level pavement management. Revista de la Construcción, 13(2): 49-56.
  • TORRES-MACHI, C.; PELLICER, E.; YEPES, V.; CHAMORRO, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Journal of Cleaner Production, 148:90-102.
  • YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La “crisis” de las infraestructuras

Preservar las infraestructuras en un estado mínimamente adecuado de conservación y mantenimiento es una necesidad de primer orden en cualquier sociedad. Sin embargo, por motivos que a veces son estructurales y otras coyunturales, los responsables de esta tarea no prestan la atención y los recursos necesarios para este cometido. Parece que la inversión en conservación de los activos siempre ha sido insuficiente incluso en países desarrollados.

En efecto, parece evidente que el desarrollo económico que tuvo lugar en países como el nuestro en la última parte del siglo XX se centró, en el caso por ejemplo de las carreteras, en ampliar la red para apoyar dicho desarrollo. Si bien es cierto que estas nuevas infraestructuras nacen con un periodo de vida relativamente largo, también es cierto que una parte nada desdeñable de dicha infraestructura está empezando a notar el paso del tiempo, y lo que es peor, parece que podemos vivir dentro de un horizonte no tan lejano, a un verdadero colapso en los niveles de servicio prestados por estos activos. Lo peor de todo ello es que estas infraestructuras se financiaron a largo plazo y la siguiente generación se va a encontrar con la sorpresa de tener que pagar Continue reading “La “crisis” de las infraestructuras”

Optimización de la gestión sostenible de pavimentos con presupuestos restrictivos

carretera_deterioradaNo resulta nada fácil realizar el mantenimiento de una red de carreteras durante un horizonte, digamos de 20 años, cuando los presupuestos son muy restrictivos. Las consecuencias son nefastas para la calidad del servicio prestado por dicha infraestructura. El problema deriva del hecho de tener que elegir la mejor opción de mantenimiento, en el momento adecuado, con un presupuesto mínimo, de forma que todo ello permita maximizar la condición de servicio de la infraestructura. ¡Un problema nada fácil!

Para solucionar este tipo de problemas hemos propuesto un algoritmo heurístico novedoso capaz de generar soluciones óptimas en casos tan complicados como el que se presenta.

Os dejo el resumen, las palabras clave y la referencia por si queréis citar el artículo.

tcem20.v022.i04.coverAbstract. Insufficient investment in the public sector together with inefficient maintenance infrastructure programs lead to high economic costs in the long term. Thus, infrastructure managers need practical tools to maximize the Long-Term Effectiveness (LTE) of maintenance programs. This paper describes an optimization tool based on a hybrid Greedy Randomized Adaptive Search Procedure (GRASP) considering Threshold Accepting (TA) with relaxed constraints. This tool facilitates the design of optimal maintenance programs subject to budgetary and technical restrictions, exploring the effect of different budgetary scenarios on the overall network condition. The optimization tool is applied to a case study demonstrating its efficiency to analyze real data. Optimized maintenance programs are shown to yield LTE 40% higher than the traditional programs based on a reactive strategy. To extend the results obtained in this case study, a set of simulated scenarios, based on the range of values found in the real example, are also optimized. This analysis concludes that this optimization algorithm enhances the allocation of maintenance funds over the one obtained under a traditional reactive strategy. The sensitivity analysis of a range of budgetary scenarios indicates that the funding level in the early years is a driving factor of the LTE of optimal maintenance programs.

Keywords: Maintenance program; Network management; Heuristic optimization; Asset management; Infrastructure management; Pavement.

Referencia:

YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550. DOI: 10.3846/13923730.2015.1120770

También os podéis descargar la versión autor:

Descargar (PDF, 568KB)

ICITECH (Instituto de Ciencia y Tecnología del Hormigón)

2013-05-03 09.20.32

El Instituto ICITECH (Instituto de Ciencia y Tecnología del Hormigón) es un Centro de Investigación de la Universidad Politécnica de Valencia creado en 2005, que agrupa a los profesores e investigadores cuya actividad investigadora se centra en el hormigón. Actualmente forman parte del instituto un total de 63 miembros, de los cuales 32 son profesores, 14 son investigadores contratados y el resto personal técnico de apoyo a la investigación y de administración.

La finalidad del Instituto es la investigación del hormigón, tanto desde el punto de vista de los materiales constituyentes como el de las estructuras, en una amplia gama de aspectos como el proceso de fabricación, el comportamiento fisco-químico, mecánico o medioambiental, la sostenibilidad o el comportamiento, diseño, construcción y mantenimiento de las estructuras.
Los objetivos son fomentar y promover la investigación de calidad a través de la realización de proyectos de I+D, potenciar la investigación aplicada, la transferencia de tecnología y de conocimiento a las empresas afines y la participación de socios industriales.

Las instalaciones de ICITECH se ubican en un nuevo edificio que alberga una gran losa de carga de 500 m2 junto con un muro de reacción horizontal en L de 14×6 m y 13 m de altura y con puntos de anclaje tanto en la losa como en el muro de 500 kN situados a un metro de distancia entre sus ejes. Además, dispone de una instalación oleohidráulica constituida por 6 grupos motobomba que proporcionan 250 bares un caudal de 1560 litros/min y dos puentes grúa de 10 t cada uno que permite manejar elementos de hasta 20 t por toda la superficie de la nave. Este conjunto permite realizar ensayos a escala real de estructuras con muy diversas tipologías de carga. Además de esta gran instalación, el edificio incluye laboratorios de química y de materiales con un total de 175 m2, tres cámaras húmedas: una de 117 m3 y dos de 57 m3, central de aire comprimido, gas natural, dióxido de carbono y aire seco.

 

Os paso a continuación un pequeño dossier que hemos preparado para explicar lo que hace nuestro grupo de investigación sobre optimización heurística relacionado con temas de hormigón (proyecto HORSOST) y con el mantenimiento de activos e infraestructuras. Esta actividad se encuentra enmarcada dentro del ICITECH, del Máster Oficial en Ingeniería del Hormigón (acreditado con el sello EUR-ACE)  y del Programa de Doctorado en Ingeniería de la Construcción de la Universidad Politécnica de Valencia (verificado por ANECA).

Descargar (PDF, 5.75MB)

Optimización de la gestión del mantenimiento de una red de carreteras bajo restricciones presupuestarias

El mantenimiento de las carreteras constituye uno de los mayores problemas que debe abordar cualquier administración pública. Una inversión insuficiente o una estrategia ineficiente en el mantenimiento provocan unos costes económicos muy altos a medio y largo plazo. Cuando existen restricciones presupuestarias, como es el caso habitual, la asignación óptima de los recursos escasos se convierte en un aspecto crucial. La pregunta clave es, para un horizonte temporal determinado, contestar dónde, cuándo y de qué forma se debe abordar un tratamiento que sea capaz de maximizar los indicadores de prestación de la infraestructura sin sobrepasar las previsiones presupuestarias.

Un ejemplo de colaboración entre grupos de investigación de la Universidad Politécnica de Valencia y la Pontificia Universidad Católica de Chile se plasma en una serie de artículos de investigación conjunta donde se aborda el problema de la optimización del mantenimiento de las infraestructuras, en particular, de redes de carreteras. En concreto, la colaboración se está llevando a cabo entre los departamentos de ingeniería y gestión de la construcción de ambas universidades. Este es un ejemplo donde la investigación aplicada tiene un campo claro de trabajo conjunto con las administraciones públicas en la gestión de los activos públicos.

No cabe duda que el esfuerzo por mantener los niveles de servicio de las infraestructuras básicas (hospitales, carreteras, puertos, ferrocarriles, presas, etc.) con las restricciones presupuestarias cada vez mayores va a constituir uno de los mayores retos a los que se enfrenta la sociedad actual.

A continuación os dejo este artículo editado en abierto, que también podéis encontrar directamente en este enlace. Espero que sea de interés.