La Instrucción de Hormigón Estructural EHE-08 indica claramente la necesidad de planificar y prevenir aspectos relacionados con los procedimientos constructivos, con la seguridad, con los impactos ambientales, con la trazabilidad de los materiales, entre otros. Se trata de evitar imprevistos durante la ejecución de las estructuras de hormigón. Hay que tener presente que el propio procedimiento constructivo (descimbrado, pretensado, etc.) pueden inducir acciones que pueden superar incluso las solicitaciones que tendrá la estructura durante su vida de servicio. Os dejo un objeto de aprendizaje donde explicamos brevemente este tipo de cuestiones. Espero que os sea de interés.
A continuación te presentamos un problema resuelto de neumática, muy sencillo, que sirve de introducción a los conceptos básicos de los circuitos neumáticos aprovechando la capacidad de un pistón de simple efecto conectado a un motor con pérdidas mecánicas. Se trata de aprender cómo calcular la fuerza de avance y aplicar la Ley de Boyle al cálculo del volumen de aire en condiciones normales.
El enunciado del problema sería el siguiente: Un cilindro neumático de simple efecto, de 63 cm de diámetro y 10 cm de carrera, trabaja a una presión de 6 bares. Sabiendo que la fuerza neta ejercida en el vástago del cilindro es el 90% de la fuerza teórica, se pide:
Fuerza neta ejercida por el cilindro en su carrera de avance.
Consumo de aire medido en condiciones normales en una hora, si ese cilindro completa 6 ciclos de trabajo cada minuto.
Para ello os dejo el siguiente vídeo de Javier Luque que espero os sea útil.
Referencias:
YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.
Figura 1. Pasadores en una junta de construcción de un pavimento rígido
Una junta de construcción es una superficie plana, intercalada entre dos elementos de hormigón, de modo que el segundo se coloca contra o sobre el primero una vez que este último ha endurecido y sale a la vista cuando finaliza una zona de la estructura que requiere una interrupción del hormigonado por razones constructivas. Estas juntas son prácticamente inevitables, salvo en estructuras de muy pequeñas dimensiones. Pueden ser horizontales, como en el caso de los pilares, o verticales, como en el de las losas, y su situación debe indicarse en los planos del proyecto. A diferencia de las juntas frías, que se producen por interrupciones involuntarias, las juntas de construcción se realizan deliberadamente, pero siguen una planificación previa según la programación de vaciado. Cuando se debe interrumpir el hormigonado al finalizar la jornada laboral, la junta de hormigonado se denomina junta de trabajo.
Los aspectos más importantes de las juntas de construcción tienen que ver con su posición, rugosidad, tratamiento y la duración de la interrupción del hormigonado. A pesar de su importancia en el ritmo de construcción y en la resistencia de la estructura, no siempre se les presta la atención que merecen, especialmente en lo que respecta a su disposición y su técnica de ejecución.
Cuando sea necesario disponer una junta de construcción, esta debe situarse en un plano normal a la dirección de la armadura y en la zona de esfuerzo cortante mínima. En las losas o vigas simplemente apoyadas, el mínimo de los esfuerzos cortantes se encuentra en la proximidad del centro del vano. La armadura debe disponerse de forma continua a través de las juntas de construcción, previéndose conectadores en caso contrario.
Figura 2. Junta de construcción en centro de vanoFigura 3. Elemento de encofrado para junta de construcción. http://www.maxfrank.com/
Una vez que el hormigón haya alcanzado suficiente resistencia, se retirará el encofrado y se tratará la junta. El tratamiento puede realizarse cepillando la junta o bien con chorro de agua de caudal y presión suficientes para eliminar la pasta de cemento de la superficie, o bien con chorro de arena húmeda. Estos tratamientos deberán realizarse cuando se espere que los áridos no se desprendan del hormigón. También es muy interesante utilizar elementos de encofrado especiales, como rejillas de acero, que permiten el paso de la lechada de cemento, lo que da lugar a una superficie rugosa para la segunda capa. Igualmente, se podría usar una imprimación con resinas, aunque estas técnicas son muy costosas y solo se utilizan en casos especiales. En cambio, está totalmente desaconsejado el «picado» de la junta con medios mecánicos, pues los ensayos realizados demuestran que produce una microfisuración del hormigón, lo que debilita la adherencia de la junta.
Las cualidades de una buena junta son la regularidad y la rugosidad de la superficie, y se deben evitar los resaltes y depresiones producidos por los áridos. El mejor tratamiento de limpieza antes de verter el nuevo hormigón consiste en retirar el polvo y la suciedad con aspiradoras, aunque es una técnica que solo se aplica en presas. No se aconseja la limpieza con chorro de aire comprimido, salvo en superficies verticales. Si no es posible utilizar una aspiradora, debería usarse un chorro de agua a baja presión. Por último, es muy importante realizar una vibración enérgica y cuidadosa del hormigón vertido sobre la junta, así como un curado cuidadoso para evitar reducir la resistencia estructural en dicha zona.
A continuación, os dejo algunos vídeos sobre juntas de construcción.
Referencias:
MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014).Fabricación, transporte y colocación del hormigón.Apuntes de la Universitat Politècnica de València.
La pérdida de carga en un circuito de transporte de hormigón (igual a la presión necesaria a la salida de la bomba) depende de una combinación de factores como son las propiedades del hormigón, el desnivel a salvar, la longitud del circuito, el caudal necesario, los diámetros de tubería y el material en que están construidas. El objetivo es encontrar una solución óptima, de modo que, por ejemplo, un menor diámetro equivale a un menor coste y menos desperdicio de mezcla durante la limpieza, pero requiere una presión de bombeo superior que, en algunos casos, puede ser inaceptable.
El hormigón fresco se comporta esencialmente como un fluido de Bingham y, por tanto, su flujo en tubería sigue la ley de Buckingham. Sin embargo, normalmente se acepta que existe una relación lineal entre la pérdida de carga y el caudal, en lugar de la relación cuadrática que establece la ecuación empírica de Darcy-Weisbach. Esta simplificación en el cálculo la asume el ACI (ACI 304.2r-96) y algunos fabricantes de bombas de hormigón (Putzmeister) al utilizar una fórmula empírica que indica que la relación presión-caudal (p–q) durante el bombeo es lineal, siendo el coeficiente de la ecuación que las vincula igual a una constante que depende de la geometría del circuito (cuantificada por su longitud L y diámetro D) y de las propiedades de la mezcla, expresadas en función de su asentamiento medido mediante el cono de Abrams a través del parámetro b.
Con las siguientes unidades: q (m3/h), L (m), D (m) y b (10-6·bar·h/m), entonces p (bar). Además, b se puede obtener de la tabla siguiente en función del cono de Abrams:
Esta fórmula se ha utilizado ampliamente en la generación de ábacos o programas de cálculo de pérdidas de carga. Sin embargo, Putzmeister solo tabula el coeficiente b para valores de asentamiento menores de 12 cm, es decir, para hormigones relativamente consistentes, lo que deja fuera de su campo de aplicación a los hormigones fluidos. Si observamos, la pérdida de carga no depende de la presión existente en la tubería, hipótesis que algunos autores han comprobado. Esta aproximación empírica es útil desde el punto de vista práctico, pero no es satisfactoria desde un punto de vista teórico. Si bien proporciona buenos resultados en mezclas tradicionales, no resulta tan adecuada para los nuevos hormigones más fluidos como los autocompactantes o los de alta resistencia (Rodríguez López, 2015).
Para calcular la potencia de la bomba debemos considerar la presión originada por la pérdida de carga, más la presión necesaria para subir el hormigón a cierta altura. Dicha presión total se multiplicará por el caudal y se dividirá por el rendimiento η de la bomba para obtener la potencia N necesaria. La fórmula que hay que emplear es la siguiente:La presión en la conducción y la potencia de bombeo necesaria para transportar un determinado caudal de hormigón, puede calcularse por medio de ábacos como el de la figura en el que estos parámetros se relacionan con las características de la tubería y del hormigón de la siguiente forma: La escala vertical y horizontal del ábaco representa respectivamente en el caudal (m3/h) y la presión (bar) (en bombeo con altura de elevación, la presión total añadiendo a la presión indicada en el ábaco la presión en altura de la columna de hormigón). Además, en cada cuadrante figura el diámetro de la tubería, la longitud equivalente (longitud real + longitud añadida por pérdidas), la consistencia del hormigón y la potencia necesaria de la bomba. El resultado es aproximado y para un hormigón de buena dosificación. En este tipo de nomogramas se obtiene la potencia necesaria de la bomba, suponiendo un rendimiento de η=0,7. Este rendimiento puede caer a η=0,6 al sobrepasar los 50 bar.
Ejemplo: 40 m3/h de hormigón con un cono de Abrams de 60 mm deben bombearse a través de una tubería de 125 mm de diámetro a una distancia horizontal de 220 m y vertical de 73 m. Con el uso del nomograma de la Figura es fácil deducir la presión del hormigón y el rendimiento.
Fuente: Bombas de hormigón estacionarias, Putzmeister
Para elegir bien el equipo, debemos tener en cuenta algunos aspectos:
En primer lugar, debemos elegir el caudal de hormigón que vamos a bombear. Para ello, se parte del volumen de hormigón que se debe colocar y del tiempo del que se dispone. Además, hay que tener en cuenta que la bomba tiene tiempos muertos, por lo que es habitual suponer un rendimiento de 45 minutos por cada hora.
Para un caudal determinado, el diámetro de la tubería debe ser un compromiso entre los menores rozamientos, menor velocidad y mayor presión de los diámetros grandes, frente a la facilidad de montaje y de operaciones de bombeo de los diámetros menores.
Hay que calcular las pérdidas en la tubería que se añaden a la longitud real para calcular la longitud equivalente. Los codos de 30º, 60º y 90º equivalen a 1, 2 y 3 m de tubería. Si la manguera es flexible, la longitud hay que multiplicarla por 2. El conducto en vertical hay que multiplicarlo por 1,1.
No hay que olvidarse de sumar la presión necesaria para el bombeo en altura. En el caso de un peso específico del hormigón de 25 kN/m³, supone añadir 1 bar por cada 4 m de altura.
MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014).Fabricación, transporte y colocación del hormigón.Apuntes de la Universitat Politècnica de València.
RODRÍGUEZ-LÓPEZ, A.J. (2015). Determinación automática de la eficiencia volumétrica y otros parámetros de operación de bombas alternativas de hormigón mediante análisis de los pulsos de presión en su salida. Tesis doctoral. Universidad Politécnica de Madrid.
El artículo 71 de la Instrucción de Hormigón Estructural EHE-08 trata sobre la elaboración y puesta en obra del hormigón. Leyendo su articulado tienes las respuestas a estas preguntas típicas que me hacen los alumnos:
¿Qué diferencia existe entre la homogeneidad y la uniformidad del hormigón? ¿Cómo se evalúa normalmente la uniformidad?
La homogeneidad del hormigón consiste en el mantenimiento de características similares dentro de una misma amasada. En cambio la uniformidad consiste en el mantenimiento de características similares entre distintas amasadas.
La uniformidad se analiza evaluando, mediante el coeficiente de variación, la dispersión que existe entre características análogas de distintas amasadas. Para ello, normalmente, se utilizan los valores de la resistencia a compresión a 28 días.
¿Qué se entiende por “hormigón preparado”?
Se entiende, en el marco de la Instrucción de Hormigón Estructural EHE-08, que el hormigón preparado es aquel que se fabrica en una central que no pertenece a las instalaciones propias de la obra y que está inscrita en el Registro Industrial según el Título 4º de la Ley 21/1992, de 16 de julio, de Industria y el Real Decreto 697/1995, de 28 de abril, estando dicha inscripción a disposición del peticionario y de las Administraciones competentes.
¿En qué consiste la segregación de los áridos?
La segregación de los áridos consiste en la separación de sus partículas de forma que no presenten una distribución uniforme. De forma análoga, se entiende que la segregación del hormigón es la separación de sus componentes una vez amasado provocando que la mezcla de hormigón fresco presente una distribución de sus partículas no uniforme.
Imagen de planta de hormigón
¿Qué se debe hacer cuando cambiamos de aditivo y utilizamos el mismo dosificador?
En el caso de que no tengamos un dosificador diferente para cada aditivo, antes de hacer el cambio de aditivo, deberá limpiarse el sistema dosificador, excepto en el caso en que los diferentes aditivos sean compatibles entre sí, de acuerdo con la documentación aportada por el Suministrador del aditivo.
¿Cómo se comprueba la homogeneidad del hormigón?
La homogeneidad se analiza evaluando la dispersión que existe entre características de diversas muestras tomadas de la misma amasada, lo que permite comprobar la idoneidad del proceso de dosificación, amasado y transporte. Deben comprobarse siempre el índice de consistencia y la resistencia a compresión a 7 días, y, al menos, dos de las siguientes: densidad del hormigón, contenido de aire, contenido de árido grueso y módulo granulométrico del árido.
¿Qué datos técnicos deben estar visibles en una placa referidos a una amasadora móvil?
Volumen total del tambor, su capacidad máxima en términos de volumen de hormigón amasado, y las velocidades máxima y mínima de rotación.
¿Por qué se recomienda que se almacenen los áridos bajo techado?
Se recomienda almacenar los áridos bajo techado, en recintos convenientemente protegidos y aislados, con el fin de evitar el empleo de áridos excesivamente calientes durante el verano o saturados de humedad en invierno o en época de lluvia.
¿Cuál es la cantidad mínima de cemento que se puede utilizar en la fabricación dedicada a hormigón armado? ¿En qué caso se puede utilizar dicho mínimo?
El contenido mínimo de cemento para el hormigón armado es de 250 kg/m3, siempre y cuando la clase de exposición sea I y no se supere una relación agua/cemento de 0,65. Para otras clases de exposición este mínimo puede subir hasta 350 kg/m3, en el caso de clases de exposición IIIc, Qb y Qc.
¿Cuál es la cantidad máxima de cemento que podemos utilizar en la fabricación de 1 m3 de hormigón? ¿Por qué se limita?
La cantidad máxima de cemento por metro cúbico de hormigón será de 500 kg. En casos excepcionales, previa justificación experimental y autorización expresa de la Dirección de Obra, se podrá superar dicho límite. Aún en los casos excepcionales, no es aconsejable una dosificación de cemento superior a los 500 kg/m3. El peligro de emplear mezclas muy ricas en cemento, reside en los fuertes valores que, en tales casos, pueden alcanzar la retracción y el calor de fraguado en las primeras edades.
¿Cómo influye la cantidad de cemento a utilizar en función del tamaño de los áridos?
Con carácter general, la cantidad mínima de cemento por metro cúbico de hormigón depende, en particular, del tamaño de los áridos, debiendo ser más elevada a medida que disminuye dicho tamaño, y más reducida a medida que aumenta el tamaño de éstos.
¿Cuántas fracciones granulométricas de áridos, al menos, se deben utilizar en la fabricación del hormigón?
El árido deberá componerse de al menos dos fracciones granulométricas, para tamaños máximos iguales o inferiores a 20 mm, y de tres fracciones granulométricas para tamaños máximos mayores.
¿Cuáles son las fuentes de donde procede el agua de amasado y que deben tenerse en cuenta para calcular el total de agua empleado en una amasada?
El agua de amasado está constituida, fundamentalmente, por la directamente añadida a la amasada, la procedente de la humedad de los áridos y, en su caso, la aportada por aditivos líquidos.
¿Qué diferencia existe en el amasado de un hormigón de alta resistencia respecto a uno convencional?
Se recomienda el empleo de amasadoras fijas en la central de hormigón, así como incrementar, como mínimo, en un 50% el tiempo de amasado respecto al empleado en hormigones convencionales con los medios usuales.
¿Cuánto tiempo puede pasar entre la adición de agua de amasado al cemento y a los áridos y la colocación del hormigón? ¿Qué factores pueden hacer cambiar esta prescripción?
El tiempo transcurrido entre la adición de agua del amasado al cemento y a los áridos y la colocación del hormigón, no debe ser mayor de hora y media, salvo que se utilicen aditivos retardadores de fraguado. Dicho tiempo límite podrá disminuirse, en su caso, cuando el Fabricante del hormigón considere necesario establecer en su hoja de suministro un plazo inferior para su puesta en obra. En tiempo caluroso, o bajo condiciones que contribuyan a un rápido fraguado del hormigón, el tiempo límite deberá ser inferior, a menos que se adopten medidas especiales que, sin perjudicar la calidad del hormigón, aumenten el tiempo de fraguado.
¿Cuánto podemos llenar el tambor de una amasadora móvil durante el transporte?
Cuando el hormigón se amasa completamente en central y se transporta en amasadoras móviles, el volumen de hormigón transportado no deberá exceder del 80% del volumen total del tambor. Cuando el hormigón se amasa o se termina de amasar, en amasadora móvil, el volumen no excederá de los dos tercios del volumen total del tambor.
¿Se puede adicionar agua u otras sustancias una vez se ha fabricado la masa fresca? ¿Qué podemos hacer si el asentamiento es menor que el especificado?
Queda expresamente prohibida la adición al hormigón de cualquiera cantidad de agua u otras sustancias que puedan alterar la composición original de la masa fresca. No obstante, si el asentamiento es menor que el especificado, el suministrador podrá adicionar aditivo plastificante o superplastificante para aumentarlo hasta alcanzar dicha consistencia, sin que ésta rebase las tolerancias indicadas por la Instrucción EHE-08 y siempre que se haga conforme a un procedimiento escrito y específico que previamente haya sido aprobado por el Fabricante del hormigón. Para ello, el elemento de transporte o, en su caso, la central de obra, deberá estar equipado con el correspondiente sistema dosificador de aditivo y reamasar el hormigón hasta dispersar totalmente el aditivo añadido. El tiempo de reamasado será de al menos 1 min/m3, sin ser en ningún caso inferior a 5 minutos.
¿Por qué no es recomendable el vertido del hormigón en grandes montones y su posterior distribución por medio de vibradores?
El vertido en grandes montones y su posterior distribución por medio de vibradores no es, en absoluto, recomendable, ya que produce una notable segregación en la masa del hormigón.
¿Qué ocurre si se vierte el hormigón desde una altura superior a 2 m?
Si se realiza un vertido del hormigón en caída libre, con una altura superior a 2 m, se produce inevitablemente, la disgregación de la masa, y puede incluso dañar la superficie de los encofrados o desplazar éstos y las armaduras o conductos de pretensado, debiéndose adoptar las medidas oportunas para evitarlo.
¿Cuándo se puede decir que un hormigón está bien compactado?
El proceso de compactación deberá prolongarse hasta que refluya la pasta a la superficie y deje de salir aire. De este modo se eliminan los huecos y se obtiene un perfecto cerrado de la masa, sin que llegue a producirse segregación.
¿Cuál es el espesor de la tongada de hormigón a compactar, en situaciones normales?
El espesor de las capas o tangadas en que se extienda el hormigón estará en función del método y eficacia del procedimiento de compactación empleado. Como regla general, este espesor estará comprendido entre 30 y 60 cm.
¿Qué puede ocurrir si hemos realizado una compactación del hormigón excesiva?
Una excesiva compactación del hormigón en obra puede conducir a defectos como la formación de una capa superficial débil que no se reflejen suficientemente en el valor de la resistencia a compresión.
¿Qué tipo de compactación se utilizará para un hormigón de consistencia fluida?
A título informativo, la EHE-08 recomienda un picado con barra cuando la consistencia es fluida.
¿Cuál es el límite inferior de temperatura de la masa de hormigón en el momento de verterla en el molde o encofrado?
La EHE-08 indica que la temperatura de la masa de hormigón, en el momento de verterla en el molde o encofrado, no será inferior a 5ºC.
¿Qué efectos tiene el tiempo frío sobre el hormigón en fase de endurecimiento?
La hidratación de la pasta de cemento se retrasa con las bajas temperaturas. Además, la helada puede dañar de manera permanente al hormigón poco endurecido si el agua contenida en los poros se hiela y rompe el material.
¿Bajo qué condiciones se suspenderá el hormigonado en tiempo caluroso?
Si la temperatura ambiente es superior a 40ºC o hay un viento excesivo, salvo que, previa autorización expresa de la Dirección Facultativa, se adopten medidas especiales.
Si se está hormigonando una gran masa, ¿qué temperatura como máximo deberá tener la masa de hormigón fresco?
Se debe asegurar que la temperatura en el momento del vertido sea inferior a 15ºC en el caso de grandes masas de hormigón.
¿Dónde se deben disponer las juntas de hormigonado?
Las juntas de hormigonado, que deberán, en general, estar previstas en el proyecto, se situarán en dirección lo más normal posible a la delas tensiones de compresión, y allí donde su efecto sea menos perjudicial, alejándolas, con dicho fin, de las zonas en las que la armadura esté sometida a fuertes tracciones. Se les dará la forma apropiada que asegure una unión lo más íntima posible entre el antiguo y el nuevo hormigón. Cuando haya necesidad de disponer juntas de hormigonado no previstas en el proyecto se dispondrán en los lugares que apruebe la Dirección Facultativa, y preferentemente sobre los puntales de la cimbra.
¿Qué debe hacerse al reanudar el hormigonado sobre una junta de hormigonado previa?
Antes de reanudar el hormigonado, se retirará la capa superficial de mortero, dejando los áridos al descubierto y se limpiará la junta de toda suciedad o árido que haya quedado suelto. En el caso de que el hormigón antiguo esté seco, es necesario humedecer antes de proceder al vertido del hormigón fresco. En cualquier caso, el procedimiento de limpieza utilizado no deberá producir alteraciones apreciables en la adherencia entre la pasta y el árido grueso. Expresamente se prohíbe el empleo de productos corrosivos en la limpieza de juntas.
Imagine que existe contacto entre dos hormigones con resistencias características muy distintas, como es el caso de edificios con pilares de hormigón de alta resistencia y formados de hormigón convencional. ¿Qué medidas deberemos adoptar?
En tal caso, se puede adoptar una de las siguientes medidas:
Disponer, en la zona de forjado ocupada por el pilar, hormigón de la resistencia característica de éste. Esta superficie debería extenderse 600 mm más allá de la cara del pilar. Es importante disponer en primer lugar el hormigón de alta resistencia, para prevenir posibles caídas de hormigón convencional en la posición del pilar. Es responsabilidad del proyectista definir en planos las zonas donde el hormigón de alta resistencia y el hormigón convencional van situaos.
Ejecutar todo el forjado con hormigón convencional. En tal caso, el hormigón del pilar en el canto del forjado tiene una resistencia menor que en el resto del pilar pero mayor que la del forjado por estar confinado por éste. Conviene estudiar específicamente la resistencia de esta zona.
¿Cuáles son los principales métodos de curado del hormigón?
Los principales método para el curado del hormigón son los siguientes: protección con láminas de plástico, protección con materiales humedecidos (sacos de arpillera, arena, paja, etc.), riego con agua, aplicación de productos de curado que formen membranas de protección.
PROBLEMA: Determinar la duración mínima, en días, del curado de un hormigón con una clase de exposición normal, con una temperatura media durante el curado de 10ºC, no expuesta ni al sol ni al viento, con una humedad relativa del 85%, con una clase del cemento 42,5 R CEM II y una relación a/c = 0,55.
Para una estimación de la duración mínima de curado D, en días, se puede aplicar la siguiente expresión de la EHE-08:
D=K·L·D0 +D1
K es el coeficiente de ponderación ambiental. Según la Tabla 71.6.d, K=1,00.
L es el coeficiente de ponderación térmica. Según la Tabla 71.6.e, L=1,30.
D0 es el parámetro básico de curado. Según la Tabla 71.6.a y la Tabla 71.6.b, D0=3.
D1 es un parámetro función del tipo de cemento. Según la Tabla 71.6.c, D1=1.
Con los datos anteriores, D=1,00·1,30·3+1 = 4,9. Adoptamos 5 días como duración mínima de curado.
By Farina Destil (Farinacasseforme) [Public domain], via Wikimedia Commons
El peso y la presión del hormigón fresco son los factores que condicionan el dimensionamiento de los encofrados, por encima de los efectos del peso propio, el viento, la nieve y las sobre carga de uso, entre otros. No obstante, el establecimiento de las solicitaciones del hormigón antes de su endurecimiento requiere un apartado para entender los factores básicos que permiten cuantificar, aunque sea de forma aproximada, estas acciones.
Al igual que ocurre con los áridos sin cohesión (arena, grava, etc.), al verterse el hormigón fresco sobre un plano vertical, éste adoptará una forma de cono de revolución con un ángulo de talud natural o ángulo de rozamiento interno. Si se trunca dicho cono con un encofrado, las paredes se ven sometidas a lo que se llamará presión granulostática.
Si se anula dicho ángulo de rozamiento interno mediante el proceso del vibrado del hormigón, éste se comporta paulatinamente como un fluido imperfecto, ejerciendo una presión distinta que se denominará presión hidrostática. Entre una capa ya vibrada, que ha recuperado su ángulo de rozamiento interno, y que ejerce una presión sobre las paredes de tipo granulostática, y la siguiente capa que está en proceso de vibración, -y por tanto con presión hidrostática- debe existir una zona de transición para que se mantenga la continuidad de las leyes de presiones.
Os dejo a continuación unos pequeños apuntes que permiten aclarar conceptos y proporcionan herramientas para el cálculo, utilizando distintos procedimientos, de la presión del hormigón fresco. Espero que os sea útil.
Un muro pantalla o pantalla de hormigón in situ es un tipo de cimentación profunda, o estructura de contención flexible, empleado habitualmente en ingeniería civil. Funciona como un muro de contención que se construye antes de efectuar el vaciado de tierras y que transmite los esfuerzos al terreno. En algunos posts anteriores ya hemos descrito este elemento constructivo.
En este artículo nos vamos a centrar en los aspectos de seguridad. Para ello os dejamos un vídeo descriptivo de la ejecución de muros pantalla en seguridad realizado por el Comité de Seguridad de AETESS para la Guía técnica audiovisual para la promoción de la Seguridad Laboral en el sector de las Cimentaciones Especiales (www.aetess.com), así como un enlace a la guía técnica de seguridad AETESS de muros pantalla (link). Espero que os sea el material de utilidad.
Springsol es una técnica especialmente útil en el tratamiento del terreno en trabajos de rehabilitación o refuerzo de estructuras, terrenos bajo losas de naves industriales, terraplenes en infraestructuras de comunicación, etc. Se encuentra a medio camino entre el pilote de mortero, las columnas de suelo-cemento realizadas mediante jet grouting y las columnas de mortero inyectado a presión controlada ejecutadas mediante intrusiones rígidas o compaction grouting.
Se trata de un procedimiento donde se crea una columna de suelo-cemento por medios mecánicos, con unas aspas o alas que giran y amasan el suelo. Utiliza equipos de tamaño reducido realizando perforaciones de pequeños diámetros (de 100 a 150 mm). Esta característica permite minimizar el efecto sobre losas, soleras o zapatas, siendo posible perforar estratos intermedios no perforables con barrenas, dejando los primeros metros sin tratamiento. Además, evita la inyección a altas presiones, susceptibles de afectar a las estructuras. Además, permite ejecutar la columna a partir de una profundidad concreta (con, por ejemplo tapones, de fondo).
Una aplicación especialmente interesante es el tratamiento de taludes ferroviarios atravesando el balasto, evitando su contaminación, con una mínima afección al servicio.
Figura 2. Aspecto de la columna formada. http://www.rodiokronsa.es/Figura 3. A- Perforación con ligante. B- Mezcla suelo-ligante (rechazo). C- Apertura de alas bajo tubería. D- Perforación, mezcla suelo-ligante. Diámetro de columna 400 mm. http://www.tectonica-online.com/Figura 4. http://actions-incitatives.ifsttar.fr/
Os paso a continuación una animación donde se puede ver con mayor claridad cómo funciona este tratamiento.
Por su interés, os recomiendo el decálogo que Juan José Rosas, ingeniero de caminos consultor en geotecnia aplicada, nos ofrece en relación con la rehabilitación y refuerzo de cimentaciones. Este decálogo lo hizo público en un curso sobre reparación y refuerzo de cimentaciones en rehabilitación de edificios, del cual os dejo el vídeo.
DECÁLOGO:
Antes de actuar, se ha de estabilizar.
No confundas la enfermedad con los síntomas.
Un minuto o un euro en fase de diagnóstico (establecer el o los escenarios que explican los hechos así como los riesgos e incertidumbres soportadas) son horas y cientos de euros en fase de proyecto (determinación de protocolos de actuación y dimensionado de elementos) así como días y miles de euros en fase de construcción.
Enfoca tus prospecciones a descartar escenarios no a buscarlos. Contempla como posibles todos los escenarios que no hayas descartado.
Establece protocolos de actuación que analicen y gestionen los riesgos en todas las fases constructivas siendo éstos suficientemente flexibles para adaptarse a cambios de escenarios.
Si no has acertado en el diagnóstico, al menos, que tu actuación no empeore la situación (anclaje pasivo y activo).
Lo que ha funcionado suele tener tendencia a seguir funcionando, por ende, lo que no ha funcionado difícilmente pasará a funcionar.
La conexión de los elementos nuevos y los antiguos es el punto más crítico de la actuación, trátalo como tal.
Todo lo que puedas medir, mídelo. De las pocas cosas que puedes fiarte es de los datos de pruebas de carga y de la auscultación, luego ausculta.
A veces únicamente puedes optar por soluciones paliativas.
Los muros de gaviones propiamente dichos consisten en un recipiente de forma prismática rectangular, relleno de material granular de distintos tamaños, de enrejado metálico de malla hexagonal, que puede ser de triple torsión o electrosoldada dependiendo de las características de la obra.
Sin embargo, se pueden fabricar muros flexibles utilizando la misma idea pero con otros materiales. Son los llamados muros de gaviones flexibles. Consisten en unas celdas realizadas con materiales geosintéticos, que permiten su relleno con tierras u otros materiales como mezclas de grava-cemento, de tierras con cal, etc. Se obtiene de esta forma un muro de tierra sostenida, que funciona por gravedad. Además, constituyen barreras de contención muy flexibles que pueden resultar de gran interés en actuaciones de emergencia como ante desbordamiento de ríos. También pueden ser de gran interés como complemento de obras civiles o ambientales.
Os dejo unos vídeos de la empresa Contflexdique gaviones flexibles donde se puede ver cómo se monta un muro flexible de estas características. Espero que os gusten:
Os dejo un documento que creo de interés sobre el tema.