¿Cuándo se inventó el primer cemento artificial?

Pont du Gard, Francia

Los datos históricos nos indican que ya se emplearon diversos morteros y hormigones en civilizaciones tan antiguas como la egipcia o la china hacia el 3000 A.C. Sin embargo, fueron los romanos los que utilizaron su famoso mortero formado de cal y adiciones de tierra volcánica abundante en Puzzoli, a las faldas del Vesubio. Con este material se construyeron numerosas obras, entre las que podemos destacar el teatro de Pompeya, los baños públicos de Roma, el Pont du Gard o el Panteón.

Hubo que esperar a 1756 cuando John Smeaton empleó morteros obtenidos por calcinación de mezclas de calizas y arcillas para reconstruir el faro de Eddystone. Años más tarde, en 1796, James Parker patenta un cemento hidráulico natural al calcinar caliza con impurezas de arcilla, denominándolo «Cemento Parker» o «Cemento Romano». Son en estos años, a caballo entre el final del siglo XVIII y el principio del XIX cuando se registran numerosas patentes de cementos naturales, detacándose el cemento de Luois Vicat, fruto de la mezcla de cales y arcillas en proporciones adecuadas y molidas de forma conjunta. Ello permitió proyectar al propio Vicat el primer puente construido con hormigón en masa, el puente de Souillac, entre 1812 y 1824.

Puente de Souillac (1812-1824), sobre el río Dordogne. Louis Vicat. Primer puente construido con hormigón en masa.
Joseph Aspdin (1778-1855)

Sin embargo, el denominado como cemento Portland es el que supone la aparición del cemento artificial propiamente dicho, patentado en 1824 por Joseph Aspdin. El invento consistió en cocer en un horno a elevadas temperaturas una mezcla molida de creta calcinada y arcilla, de una forma muy similar a la actual. El nombre se debió a que el color era parecido a la piedra natural de la localidad inglesa de Portland. Con este nuevo cemento, en 1828 Isambard K. Brunel obtuvo un hormigón con el que se repararon varias brechas aparecidas en el famoso túnel del Támesis en Londres.

La producción de este cemento artificial a escala industrial tuvo que esperar. Fue Isaac Jonson el que, en 1840, puso en marcha la primera cementera del mundo, logrando cinco años más tarde la temperatura suficientemente elevada como para clinkerizar la mezcla de cales y arcillas empleadas como materia prima. En España tuvimos que esperar más, hasta 1899, para tener la primera fábrica de cemento Portland, que se creó en Tudela Veguín (Asturias), con accionariado íntegramente español.

¿Por qué los romanos fueron grandes ingenieros?

El puente de Alcántara sobre el Río Tajo.

A lo largo de estos meses hemos repasado aspectos históricos y constructivos de la ingeniería de todos los tiempos (Egipto, Mesopotamia, Grecia, por ejemplo), sin embargo aún no hemos dicho nada de Roma. Ello merece no sólo un post, sino varios (el puente de Alcántara debería contar, por méritos propios, con un post de oro). Es más, yo diría que es un atrevimiento por mi parte intentar contar en tan breve espacio  lo más relevante de la ingeniería romana, puesto que, con total seguridad nos dejaremos cosas por el camino. Grandes ingenieros españoles como Fernández Casado abordaron con gran interés estos temas, y hoy día hay verdaderos especialistas en el tema, publicaciones, congresos, páginas web, etc. El propio arquitecto e ingeniero de Julio César, Marco Vitruvio nos ha legado el tratado sobre construcción más antiguo que se conserva De Architectura, en 10 libros (probablemente escrito entre los años 23 y 27 a. C.).  Para resolver cómo abordar el problema de divulgar aspectos de interés sobre la ingeniería romana, lo mejor será hacer varias entregas, dejar cuestiones abiertas, dar enlaces a otras páginas web y recibir todas las sugerencias habidas y por haber de los amables lectores. Vamos allá.

La ingeniería tiene un gran desarrollo y perfección en Roma como lo demuestra la construcción de abastecimientos de agua o poblaciones con toda la infraestructura de canales y acueductos que ello conlleva, el saneamiento de las ciudades, las defensas y las vías de comunicación (calzadas y puentes) que tanta importancia tuvieron en el Imperio. Puede decirse que mientras Grecia fue Arquitectura, Roma fue Ingeniería (Fernández, 2001).

Sin embargo, los ingenieros romanos tuvieron más que ver con sus antiguos colegas de Egipto y Mesopotamia que con sus predecesores griegos.  Los romanos tomaron ideas de los países conquistados para usarlas en la guerra y las obras públicas. Fueron pragmáticos, empleando esclavos y tiempo para sus obras. Las innovaciones romanas en ciencia fueron, comparativamente, más limitadas que las de los griegos; sin embargo, contaron con abundantes soldados, administradores, dirigentes y juristas de gran nivel. Los romanos fueron capaces de poner en práctica muchas de las ideas que les habían precedido y se convirtieron, con toda probabilidad, en los mejores ingenieros de la antigüedad. Quizá no fueron originales, pero aplicaron su técnica ampliamente a lo largo de todo un imperio.  Los ingenieros romanos fueron superiores en la aplicación de las técnicas, entre las cuales son notables los puentes que usaron en vías y acueductos. Para juzgar la extensión de los conocimientos técnicos entre las legiones romanas basta leer en los Comentarios de César la descripción de la construcción de puentes de pilotes que tendían sus ejércitos sobre los ríos helados y los terrenos pantanosos.

Existen datos históricos que prueban el conocimiento y empleo de diversos tipos de hormigones en civilizaciones tan antiguas como la egipcia (3000 a.C.), la griega o la cartaginesa. Sin embargo, como en tantas otras ocasiones, es con los romanos cuando la utilización del hormigón en sus más variadas aplicaciones ha dado lugar a innumerables obras, muchas de las cuales -o sus vestigios- han alcanzado nuestro siglo dando fe de ello. Este material les permitía levantar estructuras laminares monolíticas de gran luz, para cúpulas y bóvedas. El hormigón romano se hacía a base de cal mezclada con arena volcánica, llamada puzolana. Se aplicaba en capas, con un material de relleno o árido, como tejas rotas, entre dos superficies de ladrillo que formaban la cara exterior e interior. Al contrario que el hormigón moderno, no iba armado y requería contrafuertes exteriores, al no poder resistir esfuerzos de tracción. Además, no era tan fluido como el actual, lo cual limitaba la complejidad de los encofrados. El hormigón romano constituía un sistema constructivo económico, rápido y eficaz. El encofrado lo construían grupos reducidos de carpinteros expertos; el hormigón se fabricaba y ponía en obra mediante grandes grupos de trabajadores no especializados.

El Puente del Diablo, en Martorell.

Pasemos ahora, brevemente, a los puentes. Una palabra tan familiar hoy día como «Pontífice» tiene su origen en la designación de los ingenieros constructores de puentes, carácter semántico que insiste en el contenido sagrado del trabajo de estos técnicos. Los romanos construyeron muchos puentes de caballete con madera, uno de los cuales se describe con detalle en la obra citada anteriormente de Julio César. Sin embargo, los puentes romanos que se mantienen en pie suelen sustentarse en uno o más arcos de piedra, como el puente de Martorell cerca de Barcelona, en España y el Ponte di Augusto en Rímini, Italia. El Pont du Gard en Nimes, Francia, tiene tres niveles de arquerías que elevan el puente a 48 m sobre el río Gard, con una longitud de 261 m; es el ejemplo mejor conservado de gran puente romano y fue construido en el siglo I a.C. La utilización de arcos de medio punto derivó más tarde en la de arcos apuntados.

Puente de Tiberio de Rímini

Ningún ingeniero hispanorromano excede en renombre al autor del puente de Alcántara. Por la importancia de su obra, de filiación incontrovertible, y por el monumento que honra su memoria, Cayo Julio Lacer ha quedado como representante arquetípico de los antiguos ingenieros españoles. La inscripción que dejó en el arco conmemorativo situado sobre la calzada es explícita acerca de sus intenciones: Pontem Perpetui Mansurum in Saecula: Dejo un puente que permanecerá por los siglos.

Pont du Gard, Francia.

Además de los notables puentes de los acueductos, visibles en Europa y Asia y de los cuales son ejemplos famosos el acueducto de Segovia, y el Pont du Gard, cerca de Nimes, con 50 m de altura y 300 de largo, son altamente notables las famosas vías imperiales como la Via Appia y la Via Flaminia, que atraviesan Italia longitudinalmente. La Vía Appia, que se inicio en 312 a.C., y fue la primera carretera importante recubierta de Europa. Al principio, la carretera medía 260 km e iba desde Roma hasta Capua, pero en 244 a.C., se alargó hasta Brindisi, siendo entonces una obra de prestigio tal, que la aristocracia flanqueó con monumentos funerarios ambos lados del camino a la salida de Capua. Además, tal era la densidad de tráfico pesado en aquella época que el propio Julio César prohibió que ningún vehículo de cuatro ruedas circulara por las calles de Roma, medida moderna a la vista de nuestros problemas actuales. En la cumbre del poder romano la red de carreteras cubría 290,000 km. desde Escocia hasta Persia.

Los ingenieros romanos mejoraron significativamente la construcción de las carreteras, tanto como herramienta al servicio del mantenimiento del poder imperial como por el hecho de que una carretera bien construida implicaba menores costes de mantenimiento a largo plazo. Esta idea de coste del ciclo de vida, tan vigente hoy día, ya era sobradamente conocida por los ingenieros romanos, pues sus carreteras podían durar cien años sin necesitar grandes reparaciones. Es apenas hasta fechas recientes que la construcción de carreteras ha vuelto a la base de “alto costo inicial – poco mantenimiento”.

Las calzadas romanas podía estar enlosadas (stratus lapidibus), afirmadas (iniecta glarea) o simplemente explanadas y sin firme (terrenae). Las sucesivas capas de firme: el statumen o cimiento de piedra gruesa, el rudus, de piedra machacada y el nucleus, de tierra. En ocasiones se disponía de la suma cresta, de grava cementada con cal, o incluso con enlosado. En este tipo de secciones se constata muchas veces una capa inicial compuesta de canto grueso, con grandes bolos en los flancos, a modo de caja y asiento de las capas superiores. Las calzadas romanas eran construidas con zahorras naturales como material básico. Cada capa tiene en torno a 15 cm, entre otras razones porque la energía de compactación que podía aplicarse en aquella época era casi nula y se reduciría al uso del agua sumado a un simple planchado con un rodillo más o menos pesado. El empleo de cal en la estabilización de suelos, terraplenes y capas de firme es también frecuente, y se debería sobre todo a la imposibilidad de dotar al material de la densidad adecuada con aporte exterior de energía de compactación. Era el factor tiempo y el agua los que realizaban la compactación. Las vías romanas estaban dotadas sistemáticamente de firme, y además adecuado tanto al tráfico rodado como al de caballerías. Incluso cuando se asentaban directamente sobre el sustrato rocoso debían de disponer de una capa mínima de rodadura compuesta por material pétreo de grano fino. Según Moreno (2001), muchos de los caminos empedrados que se imputan a los romanos no poseen las características técnicas que las vías romanas poseían, infravalorándose en numerosas ocasiones la capacidad técnica de los ingenieros romanos. Para aquellos que queráis profundizar más en la ingeniería y técnica constructiva de las vías romanas, os recomiendo la referencia de Moreno (2004)  y la página: http://www.viasromanas.net/

Nos dejamos para otros artículos aspectos de la ingeniería romana relacionados con la hidráulica, las obras marítimas, las cimentaciones o los grandes edificios.

Referencias:

ADAM, J.P. (2002).  La construcción romana. Materiales y técnicas. Editorial de los Oficios, 2ª edición, León.

FERNÁNDEZ, M. (2001). Ingeniería militar e ingeniería civil, dos ingeniería íntimamente vinculadas. Revista de Obras Públicas, 3.413: 47-57.

FERNÁNDEZ CASADO, C. (1983). Ingeniería hidráulica romana. Colegio de Ingenieros de Caminos, Canales y Puertos. Madrid.

MORENO, I. (2001). Características de la infraestructura viaria romana. OP ingeniería y territorio, 56: 4-13.

MORENO, I. (2004). Vías romanas. Ingeniería y técnica constructiva. Ed. Ministerio de Fomento CEDEX-CEHOPU.

YEPES, V. (2009). Breve historia de la ingeniería civil y sus procedimientos. Universidad Politécnica de Valencia.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Precedentes de los explosivos actuales: el fuego griego

Uso del fuego griego, según un manuscrito bizantino.

Un explosivo es una sustancia o mezcla de sustancias que, al recibir un estímulo externo, pueden transformarse repentinamente en un gran volumen de gases y sustancias volátiles a gran temperatura. Pueden considerarse sistemas químicos en equilibrio inestable, de forma que un impulso de energía inicial suministrado debidamente da lugar a la explosión.

Pero, ¿quién inventó los explosivos? Parece ser que los chinos ya utilizaron la pólvora negra o pírica en el siglo I d. de J.C., una sustancia con combustión lo suficientemente rápida como para constituir una explosión, que probablemente utilizaban con fines pirotécnicos. Fue a partir del siglo XII cuando los árabes empezaron a usarla como explosivo propulsor de los fusibles, si bien los bizantinos ya la habían utilizado antes en el llamado “fuego griego”.

El «fuego griego», también conocido como «fuego marino», era el nombre que recibía en la antigüedad una mezcla muy inflamable e incendiaria compuesta, al parecer, de petróleo, azufre, carbón, salitre, pescado y quizá también fósforo y otros elementos, aunque sus ingredientes son motivo de gran debate. Se cree que la mezcla fue inventada por un refugiado cristiano sirio llamado Calínico, originario de Heliópolis. Algunos autores piensan que Calínico recibió el secreto del fuego griego de los alquimistas de Alejandría. Lanzaba un chorro de fluido ardiente que podía emplearse tanto en tierra como en el mar, aunque preferentemente en este último. Su nombre proviene del uso que dieron los griegos del Bajo Imperio, siguiendo una fórmula procedente de los pueblos orientales.

Su composición se consideró un secreto militar y, gracias a su utilización, consiguieron grandes victorias, tanto en tierra como en el mar. El poder del arma no solo residía en el hecho de que ardía en contacto con el agua, sino también debajo de ella. En las batallas navales era, por ello, un arma de gran eficacia, causando grandes destrozos materiales y personales, y extendiendo, además, el pánico entre el enemigo: el miedo a morir ardiendo se unía al temor supersticioso que esta arma infundía a muchos soldados, ya que creían que una llama que se volvía aún más intensa en el agua tenía que ser producto de la brujería.

Fue creada en el siglo VI, aunque no sería hasta las primeras cruzadas (siglo XIII) cuando alcanzaría su mayor uso y difusión. Suponía una ventaja tecnológica y fue responsable de varias importantes victorias militares bizantinas, especialmente la salvación de Bizancio en dos asedios árabes, lo que aseguró la continuidad del Imperio y constituyó un freno a las intenciones expansionistas del Islam, evitando así la posible conquista de la Europa occidental desde el este. La impresión que el fuego griego produjo en los cruzados fue de tal magnitud que el nombre pasó a utilizarse para todo tipo de arma incendiaria, incluidas las usadas por los árabes, chinos y mongoles. Lo que distinguió a los bizantinos en el uso de mezclas incendiarias fue la utilización de sifones presurizados para lanzar el líquido al enemigo. La mezcla incendiaria se empleó con éxito contra los cruzados en San Juan de Arce (año 1101) y en Damieta (año 1281). Más tarde pasó a Europa, pero pronto se abandonó ante la invención de la pólvora. El fuego griego, que ardía sobre el agua gracias al petróleo, se lanzaba mediante unos aparatos de proyección que contenían tubos que, al romperse sobre el blanco, vertían líquido inflamable.

Os paso algunos vídeos y entradas de blog donde se explica el origen y la composición de este producto inflamable. Espero que os gusten.

https://www.youtube.com/watch?v=3POFmZXLZvI

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La ingeniería de caminos en el siglo XXI ¿quo vadis?

En un momento como el actual, donde parece que el ingeniero de caminos, canales y puertos, es una titulación académica con horizonte borroso, no está de más seguir con algunos artículos adicionales a otros anteriores relacionados con el origen de la profesión. Todo el prestigio y el esfuerzo desarrollado por generaciones anteriores recaen en este momento en nuestras manos. Depende de nosotros acertar o errar en las decisiones que afectarán a nuestra profesión en el futuro.

Nos habíamos quedado a finales del siglo XIX, ¿qué pasó en el siglo XX? En el año 1926 se concedió a la Escuela (la única en ese momento, en Madrid) la autonomía respecto del Estado, a la que se había hecho acreedora en su fructífera y larga vida. Hasta 1933, la Escuela se convirtió en un centro de referencia para personalidades científicas españolas y extranjeras, que acudían a impartir numerosas conferencias. La independencia económica, consecuente con la obtención de personalidad jurídica, permitió mejorar la enseñanza, modernizar los medios docentes y potenciar los trabajos de investigación. En cursos posteriores se produjeron leves modificaciones en la estructura del plan de estudios, aunque este seguía teniendo una duración de cinco años con examen de ingreso previo. En 1953 se crea el Colegio de Ingenieros de Caminos, Canales y Puertos.

En 1957 desaparecieron todas las Escuelas Especiales y pasaron a formar parte de la estructura universitaria general, dependiente del Ministerio de Educación y Ciencia, con la denominación de Escuelas Técnicas. Esto dio lugar a la definición de un nuevo plan de estudios en el que se sustituyó el ingreso por un curso selectivo, seguido de un curso de iniciación y cinco cursos más. El objetivo era mejorar la enseñanza y dotar al país de un mayor número de técnicos con la sólida formación que exigía la moderna tecnología para cumplir el programa de industrialización en el que España estaba inmersa. También se pretendía una mayor dedicación y una mejora de las tareas de investigación, por lo que se establecía que la escuela ofreciera una formación complementaria que permitiera obtener el título de doctor, que hasta entonces no existía.

La Ley de Reordenación de las Enseñanzas Técnicas de 1964 estructura la enseñanza de las carreras técnicas en dos niveles: las Escuelas Técnicas Superiores de Ingeniería y las Escuelas de Ingeniería Técnica, en las que se realizan los estudios y se obtienen las titulaciones de Ingeniero o de Ayudante y Perito (posteriormente, Ingeniero Técnico), respectivamente. En lo que respecta a la titulación de Caminos, el plan de estudios resultante de esta estructura comprende cinco años, de los cuales los dos primeros son selectivos y se pueden realizar en cualquier Escuela de Ingeniería o incluso en las Facultades de Ciencias. Una vez superados, se puede continuar los estudios en la Escuela correspondiente. Sin embargo, la Escuela de Madrid pronto contará con nuevos competidores. En 1966, la Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos de Santander; en 1968, la de Valencia, y en 1973, la de Barcelona.

En el curso 1975/76 se definió un nuevo plan de estudios que, esencialmente, distribuía las materias que se impartían en cinco años en el plan de 1964 en seis. Este plan de estudios ha estado en vigor, con pequeñas modificaciones, en todas las escuelas hasta la aparición de la reforma de planes de estudios definida en el R.D. 1497/1987, de 27 de noviembre (publicado en el BOE el 14 de diciembre), modificado posteriormente por el R.D. 1267/1994, de 10 de junio (BOE del día 11) y matizado por diversas órdenes ministeriales y acuerdos del Consejo de Universidades.

Hasta hace bien poco, las enseñanzas universitarias oficiales se encontraban reguladas por el Real Decreto 1393/2007 (BOE del 30 de octubre) del Ministerio de Educación y Ciencia por el que se establece la ordenación de las enseñanzas universitarias oficiales. Este Real Decreto establece los estudios en grado, máster y doctorado; haciendo, por tanto, desaparecer la actual titulación de ingeniero de caminos, canales y puertos. Sin embargo, según la postura del Consejo General de Colegio de Ingenieros de Caminos, en su reunión extraordinaria celebrada el día 20 de marzo de 2007, se recuerda que la profesión no desaparece, pues es una “profesión regulada” que reúne los requisitos establecidos en la Directiva 2005/36 de Cualificaciones Profesionales y en los Reales Decretos 1665/1991 y 1754/1998, entendida como “actividad o conjunto de actividades profesionales para cuyo acceso, ejercicio o alguna de sus modalidades de ejercicio se exija directa e indirectamente un título”. Todo parece conducir a que el acceso a la profesión requerirá de la posesión de un título de segundo ciclo, que debería denominarse “Máster en Ingeniería de Caminos, Canales y Puertos”.

Quedan muchas preguntas en el aire. El actual panorama de recesión económica, la práctica paralización de la construcción en España, la proliferación de escuelas de ingeniería civil y la falta de homologación de titulaciones anteriores y posteriores a la reforma dibujan un panorama algo complejo para la titulación en este siglo XXI, al menos en España. Pero este será el tema de otro artículo.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Quién inventó los motores?

Hoy os paso una entrada sugerente, pues es difícil dar nombres y apellidos al inventor del primer motor conocido. El tema de los motores es muy importante en la ingeniería civil en tanto que las obras actuales no se pueden concebir sin el uso de máquinas. Veamos pues, una pequeña definición de lo que es un motor y luego un vídeo explicativo, bueno para verlo si tenéis un rato en estas vacaciones.

Un motor es la parte de una máquina capaz de hacer funcionar el sistema transformando algún tipo de energía (eléctrica, de combustibles fósiles, etc.), en energía mecánica capaz de realizar un trabajo. En los automóviles este efecto es una fuerza que produce el movimiento.

Figura. Máquina de vapor en funcionamiento

Los orígenes de los motores son muy remotos. Especialmente si se consideran los inicios o precedentes de algunos elementos constitutivos de los motores, imprescindibles para su funcionamiento como tales. Considerados como máquinas completas y funcionales, y productoras de energía mecánica, hay algunos ejemplos de motores antes del siglo XIX. A partir de la producción comercial de petróleo a mediados del siglo XIX (1850) las mejoras e innovaciones fueron muy importantes. A finales de ese siglo había una multitud de variedades de motores usados en todo tipo de aplicaciones.

En el siguiente enlace de Wikipedia tenéis las fechas más interesantes relacionadas con la historia de los motores: http://es.wikipedia.org/wiki/Historia_del_motor_de_combusti%C3%B3n_interna.

¿Quién fue Juan Bautista Corbera?

Figura 1. Puente de Serranos, Valencia. Fotografía de V. Yepes.

Seguimos en este artículo descubriendo a maestros de obras y constructores desconocidos para muchos, pero que en su época fueron capaces de realizar obras que hoy nos asombran. Hoy le toca el turno a Juan Bautista Corbera. Aquí aporto algunos datos, pero dejo la puerta abierta a los amables lectores para que participen con datos o comentarios sobre este personaje.

Juan Bautista Corbera fue maestro de obras que practicó el gusto y las formas provenientes de la Italia renacentista. Asumió la construcción del actual Puente de Serranos, que se gestó en el acuerdo adoptado el 22 de junio de 1518 por la Junta Vella de Murs e Valls. Esculpió para este puente, en piedra azul y siguiendo la probable traza del maestro imaginero Joan Gilart, la Cruz Patriarcal cobijada en el primer casalicio construido sobre los puentes de Valencia, según acuerdo tomado por los Jurados de la ciudad un 6 de octubre de 1538. Corbera también debió labrar un ángel que se colgaría de un perno realizado por Pere Olives, adorando la Cruz, y tres infantes que rematarían las columnas. Tras la muerte de Pere Compte, dirigió las obras de la Lonja de Mercaderes hasta 1536. Asimismo, diseñó y dirigió la construcción de las ventanas de la casa de la Diputación, actual Palacio de la Generalitat, e intervino también en la construcción de la torre.

Figura 2. Puente de Serranos, a finales del siglo XIX.

 

Figura 3. Lonja de la Seda de Valencia o Lonja de los Mercaderes

 

Referencias:

BOSCH, L.;  MARCENAÇ, V.; LUJÁN, N.S.; BOSCH, I. (2009). Las claves de la construcción del puente de Serranos en Valencia. Actas del 6º Congreso Nacional de Historia de la Construcción, Valencia. Madrid, Instituto Juan de Herrera.

YEPES, V. (2010).  Puentes históricos sobre el viejo cauce del Turia. Un análisis histórico, estético y constructivo a las obras de fábrica. Inédito.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Quién fue Francisco Figuerola?

Figura 1. Puente del Mar, Valencia (1592-1596). Fotografía de V. Yepes.

En una serie de artículos que empezamos ahora, vamos a rendir desde estas líneas un pequeño homenaje a una serie de maestros que, prácticamente desde lo más profundo del anonimato, fueron en su época grandes constructores que, en la medida de sus fuerzas y posibilidades, fueron capaces de construir grandes obras y que, con el paso del tiempo, han pasado al más profundo de los olvidos.  A veces es muy difícil encontrar información sobre la vida y obra de estos personajes, por lo que animo a quien lea estas líneas a investigar y aportar aquello que encuentre para conocer mejor a estos personajes olvidados de la historia de la ingeniería civil y la arquitectura.

Empecemos por Francisco Figuerola. Maestro cantero de Xàtiva y “lapicida sive architector”, del que sabemos que ya había trabajado en Montesa en 1586, donde colaboró con su padre, del mismo nombre. En documento fechado el 14 de mayo de 1592, reconoció haber recibido cerca de cinco libras, igual que el cantero Joan Inglés, por realizar las trazas del actual Puente del Mar de Valencia: “per les trases que fiu per a la edificació del pont del riu de la dita ciutat de Valencia, dit de la Mar, per a enviar a Sa Magestad”. Sus planos fueron supervisados por el propio Felipe II, aconsejado por su arquitecto, Juan de Herrera, y se reconoció que la ubicación propuesta para el citado puente era la más conveniente para la estructura, tanto por su firmeza como por el bien público.

También realizó, según consta en una lápida conmemorativa, la denominada Cruz del Puente del Mar en 1596 —fecha de terminación del puente—, con piedra de la sierra de Agullent, cerca de la Verge d’Agres, para arrancar “sis pedres de pedra franca para les imagens y creu ques te de fer en lo pont de la Mar del dit riu”. El casalicio estaba coronado en su tejado por las imágenes de San Vicente Mártir, San Vicente Ferrer y San Juan Bautista. La calidad artística y las mejoras introducidas por Figuerola en la cruz motivaron un abono adicional de 34 libras a finales de septiembre del mismo año, que había que sumar a las 144 libras y 10 sueldos previstos inicialmente como coste.

Figura 2. Acceso al Puente del Mar, sobre el Turia.

En el año 1596, nuestro personaje se estableció en Valencia, donde examinó el Puente del Real. El 16 de junio de 1610 Figuerola contrató la obra del Colegio de Corpus Christi por 4100 libras valencianas, aunque “conforme a la traça que un frayle francisco de Denia hizo, la qual está firmada de nuestro padre prior, proponiente, y de dicho Figuerola, aceptante”. Figuerola, junto con Joan Baixet, construyó la escalera adulcida en cercha de acceso a la biblioteca de dicho Colegio del Patriarca entre 1599 y 1602, siguiendo la tradición gótica, pero incorporando prácticas arquitectónicas divulgadas en los tratados del siglo XVI.

Figura 3. Claustro del Real Colegio de Corpus Christi durante La Exposición de 1895

Podemos encontrar más referencias de nuestro maestro, con posterioridad a las obras del Corpus Christi, en la zona de su procedencia natal, puesto que se le documenta en la colegiata de Xàtiva, pudiendo ser el sucesor de Pedro Ladrón de Arce en la dirección de dicha obra. En dichas obras trabajó entre los años 1600 y 1610, coincidiendo con la expulsión de los moriscos y con la fecha en la que se detuvieron las obras. Este trabajo recibió los elogios en el siglo XVIII de Joan Baptista Coratjà, matemático novator, experto en arquitectura, por la excelente montea de la fábrica.

En 1619 visuró la iglesia de El Palomar y poco tiempo después se encargó de las obras de la Murta, y prácticamente coincidiendo con su marcha en 1619, trazó las líneas maestras del segundo cuerpo de la portada de la iglesia de la Asunción de Almansa, en Albacete, que se finaliza en 1624.  Resulta curioso destacar que para acceder a las obras de la iglesia de Almansa, nuestro maestro de obras informa que había hecho la iglesia Mayor de Xàtiva, pero ocultó la escalera “gótica” del Patriarca porque en aquella época se consideraba dicho estilo como arcaico, siendo el renacentista el estilo moderno imperante.

Figura 4. Vista de la fachada de la Iglesia Arciprestal de la Asunción, en Almansa.

Referencias:

ARCINIEGA, L. (2001). El monasterio de San Miguel de los Reyes. Tomo I. Biblioteca Valenciana. Conselleria de Cultura i Educació. Generalitat Valenciana.

ARCINIEGA, L. (2009). El saber encaminado. Caminos y viajeros por tierras valencianas de la Edad Media y Moderna. Valencia, Generalitat Valenciana, Conselleria d’Infraestructures i Transport.

CARRERES DE CALATAYUD, F. (1935). Els Casilicis del Pont del Real. Anales del Centro de Cultura Valenciana, 22-23.

DE LAS HERAS, E. (2003). La escultura pública en Valencia. Estudio y catálogo. Tesis doctoral. Departamento de Historia del Arte, Universitat de Valencia, 511 pp.

YEPES, V. (2010).  Puentes históricos sobre el viejo cauce del Turia. Un análisis histórico, estético y constructivo a las obras de fábrica. Inédito.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.