Capas y bases tratadas: Gravaceniza

Figura 1. Cenizas volantes. https://ceramica.fandom.com/wiki/Cenizas_volantes

Las cenizas volantes son residuos sólidos de las centrales térmicas que utilizan carbón pulverizado como combustible. Los filtros antipolvo electrostáticos, por donde el humo antes de salir por la chimenea, captan estas partículas. Presentan un diámetro de 1 a 200 µm, son ligeras, friables y están dotadas de propiedades puzolánicas en la mayoría de los casos. Se trata de un subproducto industrial poco aprovechado, cuyo almacenamiento puede dar lugar a problemas ambientales.

Las cenizas procedentes de la combustión de la hulla y la antracita presentan altos contenidos en sílice y alúmina, y una proporción débil de cal y sulfuros. Son las cenizas sílico-aluminosas, que representan la mayor parte de la producción de cenizas volantes. En las centrales alimentadas con lignitos, las cenizas presentan menor porcentaje de cal y sulfuros, siendo cenizas sulfo-cálcicas.

Parte de este subproducto se emplea como adición para ciertos cementos, usado en carreteras para hormigones y otras mezclas con cemento. También pueden estabilizar arenas finas y limos agregando una pequeña adición de cal o cemento. Su uso también es habitual como polvo mineral de aportación en las mezclas bituminosas.

Figura 2. Central térmica de Puertollano. https://es.wikipedia.org/wiki/Central_t%C3%A9rmica_de_Puertollano

Pero su uso más reciente es en bases para los firmes. Se usan con áridos similares a los de gravacemento. El conglomerante hidráulico se usa en un 10% respecto al peso de los áridos y está constituido por un 80% de cenizas sulfoaluminosas y un 20% de cemento Portland o de cal viva o apagada. La cal y el cemento actúan como activadores de las cenizas. A menudo tiene más garantía utilizar de cementos especiales con solo un 20% de clinker.

Las bases y subbases realizadas con grava, ceniza y cal presentan elevada facilidad de compactación por el efecto lubricante de los granos de ceniza, un endurecimiento lento con bajas rigideces a corto plazo, una disminución del agrietamiento originado por asientos diferenciales y retracciones térmicas producidas a corto plazo y la posibilidad de apertura al tráfico tras ser compactada.

La cantidad de agua de amasado necesaria se encuentra entre el 5 y el 8%, siendo algo superior a la humedad óptima de compactación. La gravaceniza se coloca en obra de forma similar a la gravacemento. Se transporta a obra en camiones y se coloca mediante una extendedora, que realiza una compactación previa. Posteriormente se compacta energéticamente con maquinaria pesada, con una densidad superior al 100% del Proctor Modificado. La superficie de la capa se debe sellar para evitar la pérdida de humedad y para permitir, con una pequeña adición de árido fino de cubrición, dejar la capa compactada abierta al tráfico de forma inmediata.

La resistencia mecánica de las bases de gravaceniza son más bajas al principio que las realizadas con conglomerantes con elevado contenido de clinker. Sin embargo, las reacciones puzolánicas elevan esta resistencia al cabo de algunos meses, pudiéndose llegar o superar dichas resistencias, pudiéndose llegar hasta 20 MPa.

Se considera que el radio de acción técnico y económico para el uso de las cenizas volantes es de 100 km alrededor de una central térmica.

 

Referencias:

JOFRE, C.; KRAEMER, C. (dir.) (2008). Manual de estabilización de suelos con cemento o cal. Instituto Español del Cemento y sus Aplicaciones (IECA), 217 pp.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Curso en línea de “Compactación superficial y profunda de suelos en obras de ingeniería civil y edificación”

La Universitat Politècnica de València, en colaboración con la empresa Ingeoexpert, ha elaborado un Curso online sobre “Compactación superficial y profunda de suelos en obras de ingeniería civil y edificación”. El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante. Empieza próximamente. Hay plazas limitadas.

Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-compactacion-superficial-y-profunda-de-suelos-en-obras-de-ingenieria-civil-y-edificacion/

Os paso un vídeo explicativo y os doy algo de información tras el vídeo.

Este es un curso básico de técnicas y equipos de compactación superficial y profunda de suelos en obras civiles y de edificación. Se trata de un curso que no requiere conocimientos previos especiales y está diseñado para que sea útil a un amplio abanico de profesionales con o sin experiencia, estudiantes de cualquier rama de la construcción, ya sea universitaria o de formación profesional. Además, el aprendizaje se ha escalonado para que el estudiante pueda profundizar en aquellos aspectos que les sea de interés mediante documentación complementaria y enlaces de internet a vídeos, catálogos, etc.

En este curso aprenderás los conceptos básicos de las técnicas y equipos necesarios para la compactación de suelos, así como para su control, rendimientos y costes. El curso se centra especialmente en la comprensión de los procedimientos constructivos y la maquinaria específica necesaria para la compactación, tanto superficial como profunda. Es un curso de espectro amplio que incide en el conocimiento de la maquinaria y procesos constructivos. Resulta de especial interés desarrollar el pensamiento crítico del estudiante en relación con la selección de las mejores soluciones constructivas para un problema determinado. El curso trata llenar el hueco que deja la bibliografía habitual, donde los aspectos de proyecto, geotecnia, hidrogeología, estructuras, etc., oscurecen los aspectos puramente constructivos. Asimismo, está diseñado para que el estudiante pueda ampliar por sí mismo la profundidad de los conocimientos adquiridos en función de su experiencia previa o sus objetivos personales o de empresa.

El contenido del curso se organiza en 50 lecciones, que constituyen cada una de ellas una secuencia de aprendizaje completa. La dedicación aproximada para cada lección se estima en 1-2 horas, en función del interés del estudiante para ampliar los temas con el material adicional. Al finalizar cada unidad didáctica, el estudiante afronta una batería de preguntas cuyo objetivo fundamental es afianzar los conceptos básicos y provocar la duda o el interés por aspectos del tema abordado. Al final se han diseñado tres unidades adicionales para afianzar los conocimientos adquiridos a través del desarrollo de casos prácticos, donde lo importante es desarrollar el espíritu crítico y la argumentación a la hora de decidir la conveniencia de un procedimiento de control del agua u otro. Por último, al finalizar el curso se realiza una batería de preguntas tipo test cuyo objetivo es conocer el aprovechamiento del estudiante, además de servir como herramienta de aprendizaje.

El curso está programado para 75 horas de dedicación por parte del estudiante. Se pretende un ritmo moderado, con una dedicación semanal en torno a las 10-15 horas, dependiendo de la profundidad requerida por el estudiante, con una duración total de 6 semanas de aprendizaje.

Este curso único, impartido Víctor Yepes, Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València, se presenta mediante contenidos multimedia interactivos y de alta calidad dentro de la plataforma virtual Moodle, combinado con la realización de ejercicios prácticos. Así mismo, se realizarán clases en directo mediante videoconferencias, que podrán ser vistas en diferido en caso de no poder estar presente en las mismas.

Objetivos

Los objetivos de aprendizaje son los siguientes:

  1. Comprender la utilidad y las limitaciones de la maquinaria y de las técnicas de compactación superficial y profunda de terrenos
  2. Evaluar y seleccionar la mejor maquinaria y técnica de compactación en unas condiciones determinadas, considerando la economía, la seguridad y los aspectos medioambientales

Programa

  • – Lección 1. Composición y clasificación de suelos
  • – Lección 2. Materiales de terraplén
  • – Lección 3. Efectos de la compactación y deformaciones
  • – Lección 4. Porosidad y permeabilidad
  • – Lección 5. La curva de compactación
  • – Lección 6. Densidad de los suelos granulares
  • – Lección 7. Ensayo Proctor
  • – Lección 8. Sistemas de compactación: compactación normal y seca
  • – Lección 9. Ensayos de resistencia del suelo
  • – Lección 10. Fundamentos de las técnicas de compactación
  • – Lección 11. Clasificación de los equipos de compactación mecánica
  • – Lección 12. Apisonadoras estáticas de rodillos lisos
  • – Lección 13. Compactadores estáticos de patas apisonadoras
  • – Lección 14. Compactadores estáticos de ruedas neumáticas
  • – Lección 15. Rodillos de malla y compactador por impactos con rodillo lobular
  • – Lección 16. Introducción a la compactación vibratoria
  • – Lección 17. Compactadores vibratorios cilíndricos
  • – Lección 18. Compactadores de pequeño tamaño y de tracción manual
  • – Lección 19. Compactadores de zanja
  • – Lección 20. Selección del equipo y método de compactación
  • – Lección 21. Espesor de tongada y número de pasadas óptimo: tramo de prueba
  • – Lección 22. Normas y recomendaciones de trabajo
  • – Lección 23. El control de la compactación
  • – Lección 24. Condiciones de seguridad de los compactadores
  • – Lección 25. Costes y productividad de la compactación
  • – Lección 26. Compactación de aglomerado asfáltico
  • – Lección 27. Mejora del terreno mediante vibrocompactación
  • – Lección 28. Mejora del terreno mediante Terra-Probe
  • – Lección 29. Método vibroalas para mejora de suelos no cohesivos
  • – Lección 30. Compactación por resonancia de suelos
  • – Lección 31. Compactación dinámica
  • – Lección 32. Compactación dinámica rápida
  • – Lección 33. Sustitución dinámica
  • – Lección 34. Compactación con explosivos
  • – Lección 35. Compactación por impulso eléctrico
  • – Lección 36. Refuerzo del terreno mediante inclusiones rígidas
  • – Lección 37. Pilotes de compactación
  • – Lección 38. Columna de grava mediante vibrodesplazamiento
  • – Lección 39. Columna de grava mediante vibrosustitución
  • – Lección 40. Columnas de grava ejecutadas por medios convencionales
  • – Lección 41. Columnas de grava compactada
  • – Lección 42. Columnas de arena compactada
  • – Lección 43. La estabilización de suelos
  • – Lección 44. Estabilización de suelos con cal
  • – Lección 45. Estabilización de suelos con cemento
  • – Lección 46. Estabilización de suelos con ligantes bituminosos
  • – Lección 47. Problema resuelto sobre rendimientos y costes
  • – Lección 48. Problema resuelto sobre curva de compactación
  • – Lección 49. Problema resuelto sobre tramo de prueba
  • – Lección 50. Problema resuelto sobre control de calidad
  • – Supuesto práctico 1.
  • – Supuesto práctico 2.
  • – Supuesto práctico 3.
  • – Batería de preguntas final

Profesorado

Víctor Yepes Piqueras

Doctor Ingeniero de Caminos, Canales y Puertos. Universitat Politècnica de València

Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València y profesor, entre otras, de las asignaturas de Procedimientos de Construcción en los grados de ingeniería civil y de obras públicas. Su experiencia profesional se ha desarrollado como jefe de obra en Dragados y Construcciones S.A. (1989-1992) y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 5 proyectos de investigación competitivos. Ha publicado más de un centenar artículos en revistas indexadas en el JCR. Autor de 8 libros, 22 apuntes docentes y más de 250 comunicaciones a congresos. Ha dirigido 16 tesis doctorales, con 8 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos.

Referencias:

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Materiales que se pueden emplear en un terraplén

Figura 1. Terraplén de acceso a paso superior

Las dos condiciones esenciales que tiene que cumplir un suelo para que sea utilizable son:

  • Que sea posible su puesta en obra en las debidas condiciones.
  • Que la obra sea estable y las deformaciones que se produzcan durante su vida resulten tolerables.

Estas dos condiciones dependen, por un lado, de las características intrínsecas del material y por otro, del estado natural en que se encuentre, influido primordialmente por su contenido de humedad.

Los materiales a utilizar en un terraplén son aquellos fáciles de apisonar y que una vez compactados son resistentes a la deformación y poco sensibles a los cambios de humedad o a las heladas.

En España, el Pliego de Prescripciones Técnicas Generales establece, en su artículo 330 “Terraplenes”, distintos tipos de suelos, en función de su granulometría, plasticidad, capacidad de soporte o resistencia a la deformación, posibilidad de entumecimiento, densidad máxima Proctor y contenidos de materia orgánica. Se dividen en suelos intolerables, tolerables, adecuados y seleccionados.

El Pliego distingue en los terraplenes cuatro zonas: cimiento, núcleo, espaldón y coronación. El cimiento lo define “la parte inferior de un terraplén en contacto con la superficie de apoyo, siendo su espesor mínimo de un metro” y la coronación sería la “la parte superior del relleno tipo terraplén, sobre la que se apoya el firme, con un espesor mínimo de dos tongadas y siempre mayor de cincuenta centímetros”. El espaldón es “la parte exterior de relleno tipo terraplén que, ocasionalmente, formará parte de los taludes del mismo. No se considerarán parte del espaldón los revestimientos tipo vegetal, encachados, protecciones antierosión, etc.” El núcleo es la “parte del terraplén comprendida entre el cimiento y la coronación”. Se nombra explanada al nivel del asiento del firme.

Figura 2. Zonificación bajo la explanada de una carretera

Sin embargo, hay que matizar al respecto que, una vez eliminada la cobertura vegetal, puede existir una zona, en contacto con el firme, —que es la parte superior del terraplén, y, por tanto, debería ser coronación—, pese a “estar por debajo de la superficie original del terreno”, y en segundo lugar, que si hay que hacer excavación adicional por presencia de material inadecuado, se ejecuta un “cajeado de desmonte”, que es una unidad de obra que debe cumplir especificaciones distintas a las exigidas al cimiento, por lo que deberemos diferenciarla. Por tanto, se propone definir el cimiento como “aquella parte del terraplén por debajo de la superficie original del terreno, que no corresponde a coronación ni a cajeado de desmonte”.

Los suelos inadecuados no cumplen las condiciones mínimas exigidas a los tolerables, y no pueden usarse en ninguna zona del terraplén. En núcleos y cimientos pueden emplearse los tolerables, adecuados o seleccionados. Los núcleos sujetos a inundación se formarán solo con suelos granulares (adecuados o seleccionados). En coronación deberán utilizarse suelos adecuados o seleccionados, aunque se pueden admitir los tolerables mejorados o estabilizados con cemento o cal.

Figura 3. Uso de suelos en función de la zonificación del terraplén, según PG-3

A efectos del artículo 330 del PG-3, los rellenos tipo terraplén estarán constituidos por materiales que cumplan alguna de las dos condiciones granulométricas siguientes:

  • Cernido, o material que pasa por el tamiz de 20 mm mayor del 70%
  • Cernido por el tamiz 0,080 mm mayor o igual al 35%

Se considerarán como suelos seleccionados aquellos que cumplen las siguientes condiciones:

  • Contenido en materia orgánica inferior al cero con dos por ciento (MO < 0,2%), según UNE 103204.
  • Contenido en sales solubles en agua, incluido el yeso, inferior al cero con dos por ciento (SS < 0,2%), según NLT 114.
  • Tamaño máximo no superior a cien milímetros (Dmax # 100 mm).
  • Cernido por el tamiz 0,40 UNE menor o igual que el quince por ciento (# 0,40 ≤ 15%) o que en caso contrario cumpla todas y cada una de las condiciones siguientes:
    • Cernido por el tamiz 2 UNE, menor del ochenta por ciento (# 2 < 80%).
    • Cernido por el tamiz 0,40 UNE, menor del setenta y cinco por ciento (# 0,40 < 75%).
    • Cernido por el tamiz 0,080 UNE inferior al veinticinco por ciento (# 0,080 < 25%).
    • Límite líquido menor de treinta (LL < 30), según UNE 103103.
    • Índice de plasticidad menor de diez (IP < 10), según UNE 103103 y UNE 103104.

Se considerarán como suelos adecuados los que, no pudiendo ser clasificados como suelos seleccionados, cumplan las condiciones siguientes:

  • Contenido en materia orgánica inferior al uno por ciento (MO < 1%), según UNE 103204.
  • Contenido en sales solubles, incluido el yeso, inferior al cero con dos por ciento (SS < 0,2%), según NLT 114.
  • Tamaño máximo no superior a cien milímetros (Dmax ≤ 100 mm).
  • Cernido por el tamiz 2 UNE, menor del ochenta por ciento (# 2 < 80%).
  • Cernido por el tamiz 0,080 UNE inferior al treinta y cinco por ciento (# 0,080 < 35%).
  • Límite líquido inferior a cuarenta (LL < 40), según UNE 103103.
  • Si el límite líquido es superior a treinta (LL > 30) el índice de plasticidad será superior a cuatro (IP > 4), según UNE 103103 y UNE 103104.

Se considerarán como suelos tolerables los que, no pudiendo ser clasificados como suelos seleccionados ni adecuados, cumplen las condiciones siguientes:

  • Contenido en materia orgánica inferior al dos por ciento (MO < 2%), según UNE 103204.
  • Contenido en yeso inferior al cinco por ciento (yeso < 5%), según NLT 115.
  • Contenido en otras sales solubles distintas del yeso inferior al uno por ciento (SS < 1%), según NLT 114.
  • Límite líquido inferior a sesenta y cinco (LL < 65), según UNE 103103.
  • Si el límite líquido es superior a cuarenta (LL > 40) el índice de plasticidad será mayor del setenta y tres por ciento del valor que resulta de restar veinte al límite líquido (IP > 0,73 (LL-20)).
  • Asiento en ensayo de colapso inferior al uno por ciento (1%), según NLT 254, para muestra remoldeada según el ensayo Proctor normal UNE 103500, y presión de ensayo de dos décimas de megapascal (0,2 MPa).
  • Hinchamiento libre según UNE 103601 inferior al tres por ciento (3%), para muestra remoldeada según el ensayo Proctor normal UNE 103500.

Se considerarán como suelos marginales los que no pudiendo ser clasificados como suelos seleccionados, ni adecuados, ni tampoco como suelos tolerables, por el incumplimiento de alguna de las condiciones indicadas para estos, cumplan las siguientes condiciones:

  • Contenido en materia orgánica inferior al cinco por ciento (MO < 5%), según UNE 103204.
  • Hinchamiento libre según UNE 103601 inferior al cinco por ciento (5%), para muestra remoldeada según el ensayo Proctor normal UNE 103500.
  • Si el límite líquido es superior a noventa (LL > 90) el índice de plasticidad será inferior al setenta y tres por ciento del valor que resulta de restar veinte al límite líquido (IP < 0,73 (LL-20)).

Se considerarán suelos inadecuados:

  • Los que no se puedan incluir en las categorías anteriores.
  • Las turbas y otros suelos que contengan materiales perecederos u orgánicos tales como tocones, ramas, etc.
  • Los que puedan resultar insalubres para las actividades que sobre los mismos se desarrollen.

Referencias:

ABECASIS, J. y ROCCI, S. (1987). Sistematización de los medios de compactación y su control. Vol. 19 Tecnología carreteras MOPU. Ed. Secretaría General Técnica MOPU. Madrid, diciembre.

ROJO, J. (1988): Teoría y práctica de la compactación. (I) Suelos. Ed. Dynapac. Impresión Sanmartín. Madrid.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Capas y bases tratadas: Gravacemento

En España es habitual el empleo de la gravacemento en las capas de base de los denominados firmes semirrígidos. También se puede emplear bajo pavimentos de hormigón, aunque su función es diferente respecto al caso anterior. El artículo 513 del PG3 define gravacemento como una mezcla homogénea de áridos, cemento, agua y eventualmente adiciones que, convenientemente compactada, se utiliza en la construcción de firmes de carretera. Su origen se corresponde a las mezclas de granulometría gruesa utilizadas en California.

Figura 1. Gravacemento. https://www.promsa.com/es/productos/p/grava-cemento

Los áridos utilizados serán naturales o procedentes del machaqueo y trituración de piedra de cantera o grava natural. Serán limpios, sólidos y resistentes, de uniformidad razonable, exentos de polvo, suciedad, arcilla y otros materiales extraños. El desgaste de Los Ángeles debe ser inferior a 30 y el equivalente de arena mayor a 30. Los husos granulométricos deben ser estrictos (GC-1 y GC2). El contenido en cemento en masa varía entre el 3% y el 5%. Se exige una resistencia a compresión a los 7 días de 4,5 MPa y, a largo plazo, que supere los 8 MPa. Si el contenido de cemento supera el 5-7%, entonces se puede hablar de gravacemento de altas prestaciones.

Las características del cemento empleado para la gravacemento se recogen en el artículo 202 del PG3. Su clase resistente es 32,5N. En el caso de existir sulfatos solubles en el suelo, se deberá emplear un cemento sulforresistente. El principio del fraguado debe ser posterior a las 2 horas. El contenido de agua se selecciona mediante un Proctor Modificado, de forma que la humedad óptima proporcione la densidad máxima. No obstante la humedad suele ser un 0,5% inferior a la óptima para alcanzar la máxima resistencia. Se utilizan retardadores de fraguado para ampliar la trabajabilidad del material, siendo obligatorio cuando la temperatura durante la extensión de la mezcla supera los 30ºC.

El cemento proporciona resistencia a la capa resultante. Se exige una densidad superior o igual al 98% del Proctor Modificado, y una resistencia mínima de 4,5 MPa a siete días. La resistencia máxima a siete días será de 7,0 MPa en calzada y 6,0 MPa en arcenes. Estas resistencias son medias sobre, al menos tres probetas de la misma amasada.

Figura 2. Descarga de gravacemento en obra. https://conorsa.es/catalog/gravacemento/

La mezcla del material se realiza en central, se transporta en volquetes y se extiende con extendedoras. Las extendedoras proporcionan una mayor regularidad que las motoniveladoras, que se podrían emplear si la mezcla presentan suficiente trabajabilidad. La fabricación en central permite un porcentaje homogéneo y controlado de humedad y cemento.

El proceso de ejecución será el siguiente:

  • Preparación de la superficie
  • Fabricación de la mezcla
  • Transporte de la mezcla
  • Vertido y compactado de la mezcla
  • Ejecución de las juntas
  • Curado

La terminación de la capa debe presentar una textura uniforme, exenta de segregaciones y ondulaciones. La rasante no superará la teórica en ningún punto y no debe quedar por debajo de la teórica en más de 15 mm. La anchura de la capa no será inferior a la definida en planos, ni superarla en más de 10 cm. El espesor no deber ser, en ningún punto, menor al previsto. En tiempo caluroso se aconseja no solo un retardador de fraguado, sino un riego con emulsión bituminosa de rotura rápida para garantizar el curado. Por otra parte, aunque se aconsejan varios días para permitir la circulación de vehículos sobre la gravacemento, parece ser que solo sería necesaria una protección superficial.

En los firmes semirrígidos, la capa de gravacemento es estructural, absorbiendo la mayor parte de las tensiones del tráfico. El principal problema a resolver es el agrietamiento por retracción, que puede reflejarse a través del pavimento bituminoso en función de los gradientes termohigrométricos y el espesor del pavimento. Por dicho motivo, el espesor del pavimento para tráfico pesado no suele bajar de 12-15 cm. Las grietas pueden solucionarse conjuntas en fresco, antes de la compactación, separadas unos 3 m. También se pueden interponer capas o membranas que absorban las tensiones concentradas.

Cuando la capa de gravacemento sirve de apoyo a un firme rígido, los requerimientos estructurales pasan a segundo plano, siendo más importante la formación de una buena plataforma de trabajo y de apoyo estable a largo plazo. En este caso, la gravacemento puede apoyarse directamente sobre una zahorra natural o sobre la propia explanada si ésta es de cierta calidad. Basta en este caso que la capa de gravacemento presente un ancho mínimo constructivo de 15 cm.

Os dejo un vídeo de la profesora Ana María Pérez, de la Universitat Politècnica de València, que explica las características más relevantes del gravacemento utilizado en las capas de base de las carreteras.

En esta ponencia, Amaia Lisbona, de Tecnalia, explica cómo fabricar suelocemento y gravacemento a partir de áridos reciclados procedentes de los residuos de la construcción y demolición.

Os dejo a continuación el artículo 513 del PG3 donde se regulan los materiales tratados con cemento (suelocemento y gravacemento).

Descargar (PDF, 534KB)

Referencias:

JOFRE, C.; KRAEMER, C. (dir.) (2008). Manual de estabilización de suelos con cemento o cal. Instituto Español del Cemento y sus Aplicaciones (IECA), 217 pp.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Compactación por hidrovoladura

La compactación por hidrovoladura (“hydroblasting“) es una técnica de mejora que es diferente de la compactación clásica por explosivos, aunque de diseño similar. En primer lugar, el agua se introduce en el terreno y luego se detonan explosivos en profundidad. Es una técnica que se ha demostrado eficaz en el tratamiento de suelos colapsables tipo loess en Bulgaria.

El procedimiento constructivo se desarrolla en tres fases (Bielza, 1999):

  • En primer lugar, se inunda el suelo hasta que sobrepasa su Límite Líquido. Para ello se excavan zanjas de 20 a 40 cm de anchura y 4 a 5 m de profundidad alrededor del área a tratar (Figura 1). Con este drenaje se evita inundar las capas superiores del terreno adyacente. Esta inundación se realiza en varios días y se ayuda por drenes separados unos metros de las barrenas de los explosivos. Los cartuchos superiores quedan a solo 500-700 mm por debajo de la parte superior de cada perforación.
  • A continuación se colocan las cargas en barrenos separados entre 3 y 6 m, procediéndose a continuación a la voladura. Las cargas se detonan por separado en cada barreno, con intervalos entre las explosiones de al menos un minuto.
  • Por último, se consolida el suelo tras la salida inmediata y drenaje posterior del agua intersticial.
Figura 1. Compactación de suelos colapsables no saturados por hidrovoladura (Bell, 1993)

Inmediatamente después de la voladura, la superficie del suelo se levanta y se fractura. El aire y el agua escapan por las aberturas que aparecen en la superficie. Este efecto puede durar desde minutos a horas. Ocurre primero un asentamiento inicial y luego otro continuo durante algún tiempo. Como la compactación del metro superior es escasa, hay que compactarla con un compactador vibratorio pesado.

La diferencia fundamental entre la compactación por explosivos y la hidrovoladura se encuentra en el momento en que tiene lugar el asiento. Con los explosivos, la totalidad de la compactación ocurre durante la explosión. Sin embargo, en la hidrovoladura, los asientos ocurren durante todo el proceso: tanto en la inundación como en la explosión y posteriormente durante la consolidación.

Bell (1993) informa que la velocidad de compactación conseguida mediante hidrovoladura es unas 12 veces más rápida que una simple inundación de un loess, siendo su grado de compactación 3 o 4 veces superior. Asimismo, el suelo consigue una compactación uniforme, con una disminución de la porosidad entre un 33% y un 50%.

REFERENCIAS:

  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Ed. Carlos López Jimeno. Madrid, 432 pp.
  • BELL, F.G. (1993). Engineering Treatment of Soils. Ed. E & FN Spon, Londres.
  • LÓPEZ JIMENO, C. et al. (1995). Manual de perforación y voladuras de rocas. Instituto Tecnológico Geominero de España.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Inyecciones de compactación

Figura 1. Inyección de compactación. https://www.keller.com.es/experiencia/tecnicas/inyeccion-de-compactacion

La inyección de compactación (“compaction grouting“) constituye un método que mejora el terreno por desplazamiento, sin impregnarlo o fracturarlo. Se inyecta material con un elevado ángulo de rozamiento interno que impide que el material inyectado se mezcle con el propio suelo. Normalmente es mortero seco de alta viscosidad, morteros de baja movilidad o resinas expansivas. También se conoce como inyección de desplazamiento o de baja movilidad. Se forma un bulbo más o menos esférico que compacta el terreno y lo desplaza hacia el exterior.

Es una técnica adecuada en suelos no cohesivos de baja compacidad. También se utiliza en los cohesivos para crear inclusiones de mayor resistencia y capacidad portante. La técnica corrige asientos diferenciales, eleva la capacidad portante bajo estructuras o en pilotes, es una alternativa a la cimentación, sirve como pretratamiento antes del jet-grouting, disminuye el riesgo de licuación del terreno, permite inyecciones de compensación en la excavaciones de túneles y sirve de relleno en  cavidades en terrenos kársticos, entre otras aplicaciones.

El mortero utilizado como mezcla es muy viscoso, espeso y grueso que, en primer lugar, comprime el terreno suelto, desplazándolo a continuación. Son necesarias presiones elevadas, de 4 a 6 MPa. La movilidad se limita de uno a dos metros. El mortero, una vez fragua, alcanza una resistencia a compresión simple de unos 3 MPa.

El procedimiento consiste en la perforación de un taladro que alcance la profundidad especificada para, seguidamente, inyectar a presión desde el fondo un mortero seco, pero que sea bombeable. La tubería se levanta en tramos de 30 a 60 cm de forma que se superponen los bulbos de mortero seco hasta alcanzar el nivel necesario. Si se trata de arcillas saturadas, la compactación aumenta las presiones intersticiales que se disipan con lentitud. Ello implica muchas fases de inyección con tiempos de espera importantes, salvo que exista un drenaje eficaz entre taladros.

La inyección de compactación es efectiva en suelos granulares sueltos, saturados y no saturados, y también en suelos de granos finos blandos no saturados, tal y como se observa en la Figura 2.

Figura 2. Aplicabilidad de las inyecciones de compactación (Armijo, 2004)

La inyección finaliza cuando se producen movimientos en la estructuras (mayores de unos 2 mm), se superan los 4 MPa a profundidades menores a 15 m o a 6 MPa en otros casos, o bien se supera un volumen máximo, generalmente 2,5 m3 cada 0,5 m en el caso de terrenos con cavidades (Armijo, 2004). También se termina cuando hay reflujo de mortero por la boca del taladro.

En esta animación de Keller podemos ver cómo se realiza una inyección de compactación

Aquí podéis ver una explicación de la inyección de compactación.

Este otro vídeo, de Geotecnia-ONLINE, tienes una explicación en detalle de la técnica.

Referencias:

  • ARMIJO, G. (2004). Inyecciones de baja movilidad en terrenos kársticos. Jornadas Técnicas SEMSIG-AETESS 4ª Sesión: Mejora del terreno mediante inyecciones y jet grouting, Madrid.
  • BELL, F.G. (1993). Engineering treatment of soils. E & F Spon, Londres.
  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Carlos López Jimeno, Madrid, 432 pp.
  • CAMBEFORT, H. (1968). Inyección de suelos. Omega, Barcelona.
  • KUTZNER, C. (1996). Grouting of rock and soil. A.A. Balkema, Rotterdam.
  • MINISTERIO DE FOMENTO (2005). Recomendaciones Geotécnicas para Obras Marítimas y Portuarias. ROM 0.5-05. Puertos del Estado, Madrid.
  • SANZ, J.M. (1981). Procedimientos generales de construcción. Sondeos y perforaciones, inyecciones, pilotes, pantallas continuas. E.T.S. Ingenieros de Caminos, Madrid.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Curso:

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

 

Estabilización de suelos con cloruros

Figura 1. Control de polvo y estabilización de caminos con cloruros. https://www.youtube.com/watch?v=kr99E6NkwV4

El polvo que se desprende en vías terrestres no pavimentadas pueden impactar significativamente en la salud, la seguridad y en el coste de su mantenimiento. Este problema se da especialmente en terrenos arcillosos y climas áridos y semiáridos. En estos casos, se puede utilizar cloruros para reducir la cantidad de polvo.

La adición de cloruro disminuyen las fuerzas de atracción entre las arcillas, incrementando notablemente la cohesión aparente. Las propiedades higroscópicas de estos productos mantienen la humedad en la superficie, reduciendo el punto de evaporación, si bien esta sal es fácilmente lavable. Con todo, se reduce la evaporación y es capaz de absorber hasta diez veces su propio peso cuando la humedad ambiental es alta. Dicha humedad puede mantenerse en sus dos terceras partes durante un día de calor seco, lo que justifica su eficacia en reducir la formación de polvo.

Son muchas las sales que se pueden utilizar para la estabilización de suelos, especialmente aquellos arcillosos. Destacan el cloruro de potasio, el cloruro de magnesio, el nitrato de sodio, el cloruro de bario, el carbonato de sodio, el cloruro de calcio y el cloruro de sodio, entre otros. Sin embargo, por razones económicas, es el cloruro de sodio es que más se ha empleado en carreteras, y en otros casos, se han utilizado con mayor o menor éxito en función de las condiciones de cada caso.

Agregar cloruro de sodio a una arcilla reduce su contracción volumétrica, forma una costra superficial y disminuye los cambios en la humedad. Asimismo, mantienen unidas las partículas no arcillosas y que se encuentran en la superficie, se desprenden con menor facilidad cuando sufren los ataques abrasivos del tránsito. El poder coagulante de la sal supone un menor esfuerzo mecánico en la compactación, debido a que el intercambio iónico con los minerales de los finos del suelo produce un efecto cementante.

No obstante, para que los cloruros sean eficaces, la humedad relativa ambiental debe ser superior al 3% y el suelo debe tener minerales que pasen por la malla 200 y que reaccionen favorablemente con la sal.

Lo habitual es aplicar una disolución del cloruro en agua mediante riego al comenzar la temporada seca. La dosificación del cloruro oscila entre 0,5 y 1,0 kg/m2. En zonas próximas al mar, el tratamiento puede sustituirse por un riego con agua de mar.

En el siguiente vídeo se puede ver cómo se puede controlar el polvo con cloruro de calcio.

A continuación, un par de vídeos sobre estabilización de caminos con sal.

Os dejo a continuación una publicación del Instituto Mexicano del Transporte sobre la estabilización de suelos con cloruros.

Descargar (PDF, 418KB)

Referencias:

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El ensayo que inventó Ralph R. Proctor, ¿por qué es tan importante?

Figura 1. Ralph Roscoe Proctor (1894-1962) https://www.eng.hokudai.ac.jp/labo/geomech/ISSMGE%20TC202/proctor.html

El peso específico seco es un índice que evalúa la eficiencia de un proceso de compactación, pero debido al diferente comportamiento de los distintos rellenos, suele utilizarse el denominado grado de compactación o porcentaje alcanzado respecto a un peso unitario patrón, obtenido con cada suelo en un ensayo normalizado.

El ingeniero Ralph Roscoe Proctor inició en 1929 una serie de trabajos, publicados en 1933, en los cuales se constató la relación entre humedad-peso específico seco y la influencia de la energía de compactación. Propuso un ensayo normalizado con el cual obtener la curva de ensayo Proctor correspondiente a una determinada energía, comunicada a una muestra del terreno mediante la caída desde altura fija de una pesa y un determinado número de veces. Por cierto, a pesar de que la palabra Proctor es llana y en castellano debería acentuarse, por respeto al apellido del autor, se mantiene este sin modificarlo. Esta es la tradición que han seguido los libros de texto españoles en carreteras en el ámbito universitario.

Con posterioridad, el Corps of Engineers de la U. S. Army propuso el Proctor Modificado, con una aplicación de energía unas cuatro veces y media superior al Proctor Normal. El ensayo Proctor Modificado consume una energía de 0,75 kWh/m3, mientras que el Proctor Normal equivale a 0,16 kWh/m3. Estos ensayos se encuentran normalizados en España por las normas UNE 103-500-94 y UNE 103-501-94 (ASTM D-698 o ASTM D-1557, en normas americanas).

Para realizar el ensayo, además del equipamiento de laboratorio común a muchos ensayos como son una báscula, una estufa de secado o pequeño material (bandejas, mazo de goma, palas, etc.), se requiere un equipamiento específico tal y como muestra la Figura 2.

Hay que hacer notar que el procedimiento para realizar tanto el Proctor Normal como el Proctor Modificado es el mismo, siendo sus diferencias principales los parámetros básicos del ensayo. En particular, las diferencias relevantes son el tipo de maza y molde de las probetas.

Figura 2. Molde del ensayo del Proctor Modificado

El experimento consiste en introducir capas sucesivas, con una humedad conocida, en el interior de un cilindro y golpear cada una con idéntico número de golpes mediante una maza que cae desde una altura normalizada. Se trata de medir el peso específico seco de la muestra y construir una curva para cada humedad diferente tomada. Son suficientes en general cuatro o cinco operaciones para trazar dicha curva y determinar el peso específico máximo y su humedad óptima correspondiente. No hay una relación definida entre las densidades máximas obtenidas en los ensayos Proctor Normal y Modificado, aunque a modo orientativo podemos decir que en éste último la densidad oscila entre el 5 y 10% de incremento según sean suelos granulares a cohesivos. Se debe considerar que las curvas Proctor obtenidas reutilizando el terreno ofrecen pesos específicos máximos algo superiores a las que se obtienen con muestras de terrenos nuevas.

Figura 3. Curva de compactación del Proctor Modificado. http://www2.caminos.upm.es/departamentos/ict/lcweb/ensayos_suelos/proctor_modificado.html

El ensayo Proctor origina una compactación por impacto, en tanto que en obra no siempre son habituales los compactadores de este estilo. Así existen otros ensayos en laboratorio, como NLT-311/96 que determina la densidad máxima y humedad óptima de compactación, mediante martillo vibrante, de materiales granulares con o sin productos de adición. Sería adecuado este ensayo cuando se utilizasen en obra rodillos vibratorios.

Las normas PG3 fijan como límites inferiores de la densidad máxima Proctor Normal 1,45 t/m3 para los suelos tolerables y 1,75 t/m3 para los suelos adecuados y seleccionados. En el lenguaje coloquial a veces se confunden pesos específicos con densidades, aunque son conceptos distintos. La unidad de masa común en laboratorio de 1 g/cm3 se debe multiplicar por la aceleración de 9,81 para convertirlo en kN/m3, que es la unidad correcta en el Sistema Internacional. A efectos prácticos suelen usarse indistintamente dichos conceptos, aunque es recomendable el uso del Sistema Internacional.

Raras veces de admite un peso específico seco inferior al 95% del máximo Proctor Normal obtenido en laboratorio, ya que un material suelto, sin apisonar, presenta un valor próximo al 85%. La normativa limita (ver Tabla 1) los valores para carreteras en función de la Intensidad Media Diaria (IMD) de vehículos pesados. De esta forma, para la zahorra artificial y tráficos T00 y T2, se exige un mínimo del 100% PM; para zahorra artificial y tráficos T3, T4 y arcenes, un mínimo del 98% PM. En cambio, para la zahorra natural, que suele colocarse en las capas inferiores (subbase), la densidad mínima es del 98% PM.

Es importante indicar que a veces es posible superar el 100% del Proctor correspondiente sin que por ello se pueda afirmar que la capa está suficientemente compactada. Ello es posible, entre otras posibles causas, cuando la capa ensayada presenta gran cantidad de gruesos cuyo elevado peso específico respecto al promedio del resto de la capa hace subir el valor del peso específico in situ. Tengamos presente que el ensayo en laboratorio se realiza sobre la fracción de suelo inferior a 20 mm. En estos casos es necesario realizar una corrección.

El proyecto (o Director de las obras) debe definir el ensayo de referencia: el ensayo Proctor Normal o Proctor Modificado. En la mayoría de los casos, el ensayo de referencia es el Proctor Modificado, pues puede reproducir con mayor fidelidad las condiciones de compactación de la obra, que emplea compactadores más pesados debido al aumento de la carga por eje experimentado por los vehículos. Sin embargo, en suelos expansivos se recomienda el Proctor Normal. Este ensayo también es más útil en compactaciones menores, como son las correspondientes a relleno de zanjas o ejecución de caminos.

Os dejo un vídeo elaborado por los alumnos de Ingeniería Civil de la Universidad de Granada donde nos cuentas cómo realizar el ensayo Proctor.

Aquí tenéis una explicación del profesor Agustín Rodríguez, que igual os puede complementar ideas.

Referencias:

ABECASIS, J. y ROCCI, S. (1987). Sistematización de los medios de compactación y su control. Vol. 19 Tecnología carreteras MOPU. Ed. Secretaría General Técnica MOPU. Madrid, diciembre.

ROJO, J. (1988): Teoría y práctica de la compactación. (I) Suelos. Ed. Dynapac. Impresión Sanmartín. Madrid.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5. Ref. 402.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Introducción a los equipos de compactación mecánica

Figura 1. https://www.noticiasmaquinaria.com/nuevos-modelos-de-la-serie-de-rodillos-tandem-de-hamm-en-conexpo/

Existe una amplia variedad de equipos capaces de compactar, pero la naturaleza del terreno y su humedad condicionarán la máquina y método empleado. La elección también depende de la función que desempeñe el relleno compactado.

La compactación en obra se basa en hacer circular cargas elevadas sobre capas de suelo el número de veces necesario para alcanzar la densidad especificada. Los esfuerzos transmitidos son máximos bajo la aplicación de la carga y decrecen con la profundidad. Los medios mecánicos usados para este menester combinan, en general, cuatro esfuerzos elementales: vertical estático, de amasado, de impacto y vibratorio.

  • El esfuerzo estático vertical produce fundamentalmente tensiones verticales que comprimen el suelo.
  • El esfuerzo de amasado provoca tensiones en al menos dos direcciones diferentes.
  • El esfuerzo de impacto alcanza mayor profundidad que el estático, al propagar una onda de presión hacia abajo.
  • El esfuerzo vibratorio supone una sucesión rápida de impactos, reduciendo el rozamiento interno entre las partículas y favoreciendo la densificación.

El tipo de esfuerzo aplicado influye en la estructura adoptada por las partículas del suelo. Estas se encontrarán menos “floculadas”, es decir, más orientadas y ordenadas, en orden creciente según sea el esfuerzo estático, vibratorio, de impacto y de amasado. La orientación de las partículas aumenta con las deformaciones de corte a que ha sido sometido el terreno, y éste será más resistente si la energía de compactación se utilizó en disminuir huecos y no en desarrollar deformaciones de corte.

La norma UNE-EN ISO 6165:2006 define al compactador como la “máquina autopropulsada o remolcada sobre ruedas, rulo o masa diseñada para aumentar la densidad de los materiales por: peso estático, impacto, vibración, amasado (presión dinámica) o combinación de estos efectos”.

Figura 2. http://www.wikivia.org/wikivia/index.php?title=Equipos_de_compactaci%C3%B3n

Estos equipos, que junto a las motoniveladoras se pueden considerar como máquinas de acabado de movimiento de tierras, se emplean para otros materiales tales como aglomerados asfálticos, grava-cemento, hormigón seco u otros.

Los equipos de compactación se pueden clasificar de varias formas. Atendiendo al modo en que se trasladan, se dividen en:

  • Compactadores remolcados.
  • Compactadores de conducción manual.
  • Compactadores autopropulsados.

Atendiendo al principio básico de trabajo, estos equipos se clasifican en:

  • Apisonadoras estáticas.
  • Rodillos vibratorios.
  • Compactadores de impactos.

A su vez, los compactadores pueden utilizar como herramienta de trabajo, en diversas combinaciones:

  • Rodillo liso.
  • Rodillo de patas apisonadoras o con tacos.
  • Ruedas neumáticas.
  • Bandeja vibrante.
  • Martinetes.
  • Pisones.

Atendiendo a su arquitectura, estos equipos pueden ser:

  • Tipo triciclo.
  • Tipo tándem.
  • De chasis articulado.
  • Monocilíndrico.
  • Mixto.

De esta forma podemos tener un rodillo autopropulsado vibratorio articulado con rodillos lisos, o bien un compactador autopropulsado estático tipo tándem de ruedas neumáticas. Las combinaciones son variadas.

Os dejo un vídeo explicativo que os he preparado explicando brevemente estas ideas básicas.

Otros vídeos explicativos son los siguientes:

 

https://www.youtube.com/watch?v=I7bH3PVbKE4

Referencias:

ABECASIS, J. y ROCCI, S. (1987). Sistematización de los medios de compactación y su control. Vol. 19 Tecnología carreteras MOPU. Ed. Secretaría General Técnica MOPU. Madrid, diciembre.

ROJO, J. (1988): Teoría y práctica de la compactación. (I) Suelos. Ed. Dynapac. Impresión Sanmartín. Madrid.

YEPES, V. (1995). Equipos y métodos de compactación. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-797. 102 pp. Depósito Legal: V-1639-1995.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5. Ref. 402.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Cursos:

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Compactador monocilíndrico vibratorio remolcado de patas apisonadoras

Figura 1. Rodillo de tiro pata de cabra vibrante. https://www.facebook.com/maquinariaescobal/photos/pcb.1645756895554174/1645756845554179

Son de características similares a los lisos en cuanto a dimensiones, peso y vibración, montándose incluso en el mismo bastidor. Las formas de las patas son distintas según los modelos. Se utilizan fundamentalmente en arcillas, limos arcillosos, arcilla limosa y grava con aglutinantes arcillosos, es decir, suelos cohesivos y muy cohesivos, especialmente en terrenos con humedad excesiva. No obstante, este tipo de compactador está casi en desuso, fundamentalmente por su pequeña velocidad de trabajo (2 km/h) y el gran número de pasadas (6-8 como mínimo).

Figura 2. Rodillo de tiro pata de cabra vibrante. https://www.facebook.com/maquinariaescobal/photos/pcb.1645756895554174/1645756838887513

Os dejo a continuación un vídeo explicativo de este compactador remolcado.

Referencias:

ABECASIS, J. y ROCCI, S. (1987). Sistematización de los medios de compactación y su control. Vol. 19 Tecnología carreteras MOPU. Ed. Secretaría General Técnica MOPU. Madrid, diciembre.

ROJO, J. (1988): Teoría y práctica de la compactación. (I) Suelos. Ed. Dynapac. Impresión Sanmartín. Madrid.

YEPES, V. (1995). Equipos y métodos de compactación. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-797. 102 pp. Depósito Legal: V-1639-1995.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Cursos:

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.