¿Cómo formar a los arquitectos del futuro? Un modelo innovador desde la educación técnica

La transformación digital y la industrialización de la construcción están generando una demanda creciente de profesionales altamente cualificados. Tanto la arquitectura, como la ingeniería civil, requieren un cambio profundo en la forma de formar a los futuros profesionales.

En este contexto, un grupo de investigadores de la Hunan University of Science and Engineering (China) y de la Universitat Politècnica de València (España) propone un nuevo modelo formativo que conecta mejor la educación superior con las necesidades reales del sector.

El artículo examina la necesidad de modernizar la educación en arquitectura y sugiere un modelo innovador para formar a los profesionales del futuro. Este modelo busca conectar la educación superior con las demandas reales de la industria de la construcción, caracterizada por la digitalización y la industrialización. La metodología empleada incluye análisis de datos, modelos matemáticos y la integración de la teoría con la práctica profesional. El objetivo principal es preparar arquitectos con competencias sólidas en construcción industrializada y tecnología digital, adaptados a las exigencias del mercado laboral contemporáneo.

Introducción: el desafío de modernizar la educación en arquitectura

El sector de la construcción está experimentando una transformación profunda impulsada por la digitalización, la automatización y la necesidad de soluciones sostenibles. Sin embargo, los sistemas educativos técnicos no siempre han sabido adaptarse a estas exigencias. En todo el mundo, los modelos educativos tradicionales en arquitectura muestran una desconexión creciente con la realidad del mercado laboral, especialmente en áreas como la prefabricación, el diseño colaborativo con BIM o el uso de tecnologías inteligentes.

El artículo revisado se enmarca en este contexto, tomando como referencia el caso chino, pero con ideas extrapolables a otras regiones. El objetivo principal es diseñar un sistema de formación profesional que responda de forma más efectiva a los retos de la construcción industrializada, incorporando criterios técnicos, sociales y pedagógicos.

Metodología: combinar datos, teoría y práctica

El estudio emplea una metodología cuantitativa que incluye:

  • Análisis de datos nacionales e internacionales sobre educación y empleo en el sector de la construcción.
  • Modelos matemáticos de predicción, como regresiones polinómicas y simulaciones con MATLAB.
  • Aplicación del modelo de evaluación educativa de Levin, ajustado mediante métodos de entropía para ponderar factores como calidad docente, entorno familiar, habilidades cognitivas y recursos institucionales.

A partir de estos datos, se diseñó un modelo de formación por etapas —llamado «optimización innovadora de múltiples módulos»— que articula mejor el aprendizaje teórico con la práctica profesional en empresas.

Aportaciones relevantes: una formación más adaptada al mercado

El artículo presenta un nuevo marco para la formación de profesionales de la arquitectura más alineado con las necesidades del sector. Sus aportaciones clave son las siguientes:

  • Propuesta de un modelo formativo escalonado, adaptable al ritmo del alumnado y al contexto institucional.
  • Inclusión de criterios de evaluación integral: desde la calidad académica hasta factores personales y sociales.
  • Análisis detallado de las políticas públicas chinas como base para la propuesta, con énfasis en la colaboración universidad-empresa.
  • Validación de la propuesta mediante simulaciones y estudios de casos reales.

Este enfoque integrador permite preparar a profesionales técnicos con competencias sólidas en construcción industrializada, tecnología digital y gestión de obra.

Discusión de resultados: mejoras observables y retos pendientes

Los resultados del estudio muestran mejoras concretas en la motivación del alumnado, su adecuación a los puestos de trabajo y su capacidad de adaptación a entornos reales. Se observa un aumento del interés por la profesión y una mejora de la empleabilidad, especialmente en sectores vinculados con tecnologías emergentes.

No obstante, el artículo reconoce desafíos importantes, como la falta de infraestructura adecuada para la formación práctica, la escasez de docentes con experiencia en obra y las dificultades para establecer colaboraciones estables con empresas.

Futuras líneas de investigación: ampliar, adaptar, evaluar

A partir del modelo propuesto, el artículo sugiere explorar:

  • Aplicación del sistema en otros países con necesidades similares de actualización en formación técnica.
  • Seguimiento longitudinal de las trayectorias laborales del alumnado.
  • Incorporación de inteligencia artificial y plataformas digitales para personalizar la enseñanza.
  • Extensión del modelo a otras ramas de la ingeniería civil, como estructuras o transporte.

Conclusión

El artículo revisado propone una reforma de la educación técnica en arquitectura con una propuesta estructurada, ambiciosa y bien fundamentada. Su valor radica en integrar múltiples factores en un solo modelo formativo con una base matemática sólida y una clara vocación práctica. En un momento en que el sector de la construcción necesita perfiles técnicos con nuevas competencias, investigaciones como esta ofrecen herramientas útiles para transformar la manera en que formamos a los futuros talentos.

Referencia:

ZHOU, Z.; TIAN, Q.; ALCALÁ, J.; YEPES, V. (2025). Research on the coupling of talent cultivation and reform practice of higher education in architecture. Computers and Education Open, 9:100268. DOI:10.1016/j.caeo.2025.100268.

Este artículo está publicado en abierto, por lo que os lo dejo para su descarga.

Pincha aquí para descargar

Glosario de términos clave

  • BIM (Building Information Modeling): Metodología de trabajo colaborativa para la creación y gestión de un proyecto de construcción. Su objetivo es centralizar toda la información del proyecto en un modelo digital.
  • Construcción industrializada: Proceso constructivo que implica la fabricación de componentes o módulos en un entorno de fábrica, bajo condiciones controladas, para luego ser ensamblados en el lugar de la obra.
  • Digitalización: Proceso de convertir información y procesos de formatos analógicos a digitales, aplicando tecnologías que permiten la automatización y mejora de la eficiencia.
  • Entropía (en evaluación educativa): Concepto utilizado en el estudio para ponderar y ajustar la importancia de diferentes factores de evaluación (calidad docente, entorno familiar, habilidades cognitivas, recursos institucionales) dentro del modelo de Levin.
  • Gestión de obra: Disciplina que abarca la planificación, organización, dirección y control de los recursos para llevar a cabo un proyecto de construcción de manera eficiente y dentro de los plazos y presupuestos establecidos.
  • MATLAB: Entorno de programación y plataforma numérica utilizada para realizar cálculos matemáticos, análisis de datos, desarrollo de algoritmos y modelado de sistemas, empleada en el estudio para simulaciones.
  • Modelo de evaluación educativa de Levin: Un marco teórico o práctico para valorar la calidad y eficacia de un sistema educativo, que en el estudio es ajustado con métodos de entropía para una ponderación más precisa de sus factores.
  • Modelos matemáticos de predicción: Herramientas que utilizan ecuaciones y algoritmos para prever comportamientos futuros o resultados basándose en datos históricos o actuales, como las regresiones polinómicas.
  • Optimización innovadora de múltiples módulos: Nombre del modelo formativo propuesto en el artículo, diseñado por etapas para integrar el aprendizaje teórico con la práctica profesional y adaptarse a diferentes contextos.
  • Prefabricación: Técnica constructiva que consiste en producir elementos o componentes de un edificio en un lugar distinto al de la obra, generalmente en una fábrica, para luego transportarlos e instalarlos en el sitio.
  • Regresiones polinómicas: Un tipo de análisis de regresión en el que la relación entre la variable independiente y la variable dependiente se modela como un polinomio de n-ésimo grado, utilizado para predicción en el estudio.
  • Sostenibilidad (en construcción): Enfoque que busca minimizar el impacto ambiental de las edificaciones a lo largo de su ciclo de vida, optimizando el uso de recursos, reduciendo residuos y promoviendo la eficiencia energética y el bienestar humano.
  • Transformación digital: El cambio integral que experimenta una organización o sector al integrar tecnologías digitales en todos los aspectos de sus operaciones, cultura y estrategias, lo que lleva a la creación de nuevos modelos de negocio y servicios.

 

Modelo para la construcción sostenible: reducción de emisiones y eficiencia estructural hacia 2100

Un artículo reciente en Sustainable Cities and Society revista del primer decil del JCR, explora un innovador modelo de evaluación de la sostenibilidad en la industria de la construcción, con aplicaciones de gran impacto a nivel global.

Esta investigación, llevada a cabo por un equipo de expertos de la Universidad de Ciencia e Ingeniería de Hunan (China) y de la Universitat Politècnica de València (España), introduce el «modelo de acoplamiento multidisciplinar», una metodología que integra conocimientos avanzados de matemáticas, ingeniería, ciencias ambientales y sociología económica para analizar, de manera más precisa, los efectos de la construcción sobre la sostenibilidad a largo plazo. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Objetivos y contexto de la investigación

El trabajo parte de un desafío global urgente: reducir las emisiones de carbono en la industria de la construcción, que representa un porcentaje significativo del consumo energético y de las emisiones contaminantes a nivel mundial. Según estimaciones previas, esta industria generará más del 50 % de las emisiones de carbono para 2050 si no se implementan políticas de mitigación eficaces. En este contexto, el equipo de investigación plantea un enfoque innovador para analizar el ciclo de vida completo de las construcciones, desde la selección de materiales y el diseño, hasta la construcción, el mantenimiento y el desmantelamiento, conocido como evaluación del ciclo de vida (LCA, por sus siglas en inglés).

Además, para obtener una visión integrada que abarque el impacto ambiental, social y económico de cada proyecto, se emplea la evaluación social del ciclo de vida (SIA), que permite analizar los efectos en la sociedad y en la economía. El objetivo principal de la investigación es ofrecer un marco más robusto que ayude a los gobiernos y a las empresas del sector a tomar decisiones informadas que favorezcan el desarrollo urbano sostenible.

Metodología y desarrollo del modelo

Para desarrollar este modelo, los investigadores implementaron una técnica de «acoplamiento multidisciplinar» novedosa que incorpora algoritmos avanzados y teorías de optimización de estructuras en tres dimensiones. Este enfoque se basa en el uso de algoritmos de interpolación y ajuste de datos, capaces de proyectar los impactos de la construcción de manera más precisa. Además, el modelo emplea herramientas de software de análisis ambiental, como OpenLCA, que permite integrar datos económicos y medioambientales para evaluar la sostenibilidad.

El equipo realizó pruebas del modelo en cuatro regiones económicas clave de China: las provincias de Hubei, Jiangsu, Henan y Guangdong, seleccionando puentes de gran escala en cada una como ejemplos de estudio. A través de análisis finitos y optimización de topología de estas estructuras, lograron proyectar cómo variará el impacto ambiental y social a lo largo de los próximos cien años.

Resultados más destacados y proyecciones futuras

Los resultados obtenidos indican que la industria de la construcción en China alcanzará su máximo de emisiones en el año 2030, con un estimado de 2,73 giga toneladas (GT) de CO₂. Tras este pico, se proyecta una significativa reducción de las emisiones, con niveles de -2,78 GT anuales entre 2061 y 2098, debido a la implementación de técnicas de construcción más eficientes y al uso de materiales más sostenibles. A nivel social, la evaluación SIA prevé un pico de impacto en 2048, con 4,26 GT de CO₂ equivalente en afectaciones sociales, seguido también de una reducción en las décadas posteriores.

Para obtener estas cifras, el estudio utilizó un algoritmo de optimización de la estructura en las distintas fases del ciclo de vida, con el que identificó puntos de mejora y áreas críticas de impacto. Así, el modelo no solo ofrece una herramienta para la proyección de emisiones, sino que también permite evaluar el desempeño de cada estructura en términos de durabilidad, coste y adaptabilidad a cambios estructurales, lo cual podría ser crucial en regiones urbanas que experimentan un crecimiento acelerado.

Conclusiones y aplicación global

Este trabajo es una contribución pionera en la investigación sobre sostenibilidad en construcción, ya que ofrece un marco metodológico con potencial para ser replicado en otros países y sectores de la construcción. Su aplicación no solo está dirigida a la reducción de emisiones, sino también a la mejora de la resiliencia estructural y a la reducción de costes a largo plazo mediante un diseño optimizado. Los investigadores destacan que este modelo podría adaptarse a otros países que, como China, se enfrentan a grandes desafíos en la gestión de la sostenibilidad urbana y que buscan avanzar hacia economías bajas en carbono.

En conclusión, el modelo de acoplamiento multidisciplinar de esta investigación establece un estándar robusto para el análisis de sostenibilidad en construcciones complejas. Con este enfoque, gobiernos y empresas de construcción podrían optimizar sus prácticas para reducir los impactos negativos, no solo ambientales, sino también sociales y económicos, en sintonía con las metas de desarrollo sostenible. Este estudio ofrece, además, una guía para que la industria de la construcción pueda abordar sus desafíos actuales y proyectar una trayectoria sostenible para las próximas décadas.

Referencia:

ZHOU, Z.; ZHOU, J.; ZHANG, B.; ALCALÁ, J.; YEPES, V. (2024). The centennial sustainable assessment of regional construction industry under the multidisciplinary coupling model. Sustainable Cities and Society, 101:105201. DOI:10.1016/j.scs.2024.105201

Evaluación del desarrollo sostenible de la industria de la construcción

Nos acaban de publicar en la revista Sustainable Cities and Society (1/68, CONSTRUCTION & BUILDING TECHNOLOGY, primer decil del JCR) un artículo relacionado con la evaluación del desarrollo sostenible de la industria de la construcción regional y nacional.

El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València. Se corresponde con la colaboración internacional que mantiene nuestro grupo de investigación con la Hunan University of Science and Engineering, de China. El primer autor, Prof. Zhou, sigue perteneciendo a nuestro grupo de investigación, pues desarrolló con nosotros su tesis doctoral.

Los datos de la investigación muestran que la industria de la construcción en China alcanzará su pico más alto de emisiones, según la evaluación del ciclo de vida en 2030 y tendrá emisiones nocivas entre 2061 y 2098. La evaluación del impacto social indica que se alcanzará su punto máximo en 2048.

Las contribuciones más relevantes de esta investigación son las siguientes:

  • El artículo innova modelos teóricos, como la «ponderación de la sensibilidad de la respuesta estructural», a través de una investigación interdisciplinaria, que aborda las limitaciones de la precisión de la iteración multifactorial, multidiscreta, con múltiples restricciones y con un bajo acoplamiento.
  • La investigación proporciona un sistema integral de teoría de la investigación y estándares de referencia para el cálculo científico y la evaluación precisa del desarrollo sostenible de la industria de la construcción en varios países del mundo.
  • El documento presenta un modelo, el «peso de sensibilidad a la respuesta estructural (SRSW)», que determina de forma precisa e intuitiva los resultados de la evaluación del desarrollo sostenible de la industria de la construcción regional y nacional.
  • La investigación incluye estudios de casos para demostrar la solidez del modelo, y muestra el pico de emisiones y las emisiones nocivas más altas de la industria de la construcción en China según la evaluación del ciclo de vida más alto.
  • La investigación contribuye al campo de la investigación sobre sostenibilidad en la industria de la construcción, ya que proporciona información y datos para que los responsables políticos y los profesionales tomen decisiones informadas con respecto al entorno ecológico.

ABSTRACT:

Sustainability research in the construction industry is of great strategic significance to the ecological environment of countries worldwide. This paper innovates theoretical models such as “structural response sensitivity weight” through interdisciplinary research on advanced mathematics, engineering science, computer science, environmental management and economic sociology. The model solves the limitations of multi-factor, multi-discrete, multi-constraint and low coupling iteration accuracy. The article shows the robustness of the model through case studies. The research data shows that the construction industry in China will reach its highest life cycle assessment emission peak of 2.73 GT in 2030 and will have harmful emissions of -2.78 GT between 2061 and 2098. The social impact assessment will peak at 4.26 GT in 2048 and harmful emissions of −3.75 GT per year from 2061 to 2098. This research provides a comprehensive research theory system and reference standards for scientific calculation and accurate assessment of the sustainable development of the construction industry in various countries around the world.

KEYWORDS:

Gross domestic product; Life cycle cost; Life cycle assessment; Social impact assessment; Topology optimization.

REFERENCE:

ZHOU, Z.; ZHOU, J.; ZHANG, B.; ALCALÁ, J.; YEPES, V. (2024). The centennial sustainable assessment of regional construction industry under the multidisciplinary coupling model. Sustainable Cities and Society, 101:105201. DOI:10.1016/j.scs.2024.105201

La editorial ELSEVIER permite el acceso directo y gratuito a este artículo hasta el 8 de marzo de 2024. El enlace para la descarga es: https://authors.elsevier.com/c/1iRse7sfVZE2dg