Las cimbras autolanzables, también llamadas autocimbras o cimbras de avance, se utilizan para el hormigonado de tableros de puentes o viaductos vano a vano. Son capaces de trasladarse a lo largo del puente por sus propios medios («cimbras-máquina»). En el caso de las cimbras autolanzables sobre tablero, se solucionan algunos problemas como los gálibos estrictos o la posibilidad de utilizar la cimbra como carril de rodadura de un pórtico grúa que lleve los materiales y medios auxiliares. Sin embargo es una estructura más pesada y compleja, de mayor coste y dificultad de montaje y maniobra, por lo que no es tan habitual su uso como en el caso de autocimbras bajo tablero.
A continuación os dejo un Polimedia explicativo sobre este medio auxiliar, que espero que os sea de interés.
Os dejo un vídeo sobre una cimbra autolanzable de una luz de 90 m.
Referencias:
SEOPAN (2015). Manual de cimbras autolanzables. Tornapunta Ediciones, Madrid, 359 pp.
Reconstrución de un Polyspastos romano en Bonn, Alemania.
En una entrada anterior tuvimos la ocasión de repasar brevemente algunos aspectos de la ingeniería romana, como fue la construcción de calzadas o puentes. Como podréis comprobar, el tema da para varias enciclopedias y el objetivo aquí es simplemente dar un par de pinceladas para despertar la curiosidad sobre aspectos históricos de la ingeniería. Además, en internet existen multitud de enlaces que permiten ampliar el tema considerablemente.
Podríamos empezar por la ingeniería municipal. Las ciudades del imperio romano disponían de sistemas de drenaje y suministro de agua, calefacción, baños públicos, calles pavimentadas, mercados de carne y pescado y otras infraestructuras municipales comparables a las actuales. La aplicación de la ingeniería en las artes militares y en los problemas de navegación, adecuación de puertos y bahías implicó, como en los otros casos, el uso de máquinas, materiales y procesos, que hablan del grado de desarrollo de la ingeniería romana, de la cual quedó constancia escrita en muchos tratados escritos en aquel tiempo y entre los cuales descuellan los trabajos de Marco Vitruvio. Su libro De Archítectura, lo escribió durante primer siglo d.C., donde incluyó el concocimiento del momento sobre materiales y métodos de construcción, hidráulica, mediciones, diseño y planificación urbana. Otra innovación en el ámbito urbano fue la invención del alumbrado público en la ciudad de Antioquía, aproximadamente hacia el año 3~0 d.C. Una innovación interesante de esa época fue la reinvención de la calefacción doméstica central indirecta, que se había usado cerca de 1200 a.C., en Beycesultan, Turquía. Lo extraño es que, tras la caída del Imperio Romano, este tipo de calefacción no se volviera a utilizar.
Restos de los acueductos Aqua Claudia y Anio Novus, integrados como portones de la Muralla Aureliana en el año 271.
Los romanos también fueron buenos ingenieros hidráulicos. En comparación con los anteriores, sus acueductos eran mayores y más numerosos. Casi todo lo que se sabe actualmente del sistema romano de distribución de aguas proviene del libro “De Aquis Urb’is Romae” de Sexto Julio Frontino, quien fue autor del Aquarum de Roma, de 97 a 104 a.C. Frontino llevaba registros de la utilización del agua, que indican que el emperador usaba el 17%, el 39% se usaba en forma privada, y el 44% en forma pública. Se calcula que en Roma diariamente se consumían entre 380 y 1 100 millones de litros de agua. La fracción del 44% para uso público estaba subdividida adicionalmente en un 3% para los cuarteles, el 24% para los edificios públicos, incluidos once baños públicos, un 4% para los teatros, y un 13% para las fuentes. Había 856 baños privados a la fecha del informe. En todo caso, la administración del agua en Roma era una tarea considerable e importante. Gran parte del agua que supuestamente debería entrar a la ciudad jamás lo hizo, debido a las derivaciones que tenían escondidas los usuarios privados.
Para resolver el problema de la toma de agua para las ciudades, los romanos construyeron acueductos siguiendo en esencia el mismo diseño, que usaba arcos semicirculares de piedra montados sobre una hilera de pilares. Cuando un acueducto cruzaba una cañada, con frecuencia requería niveles múltiples de arcos. Uno de los mejor conservados de la actualidad es el Pont du Gard en Nimes, Francia, que tiene tres niveles. El nivel inferior también tenía una carretera. Los romanos usaron tubería de plomo y luego comenzaron a sospechar que no eran salubres. Sin embargo, el envenenamiento por plomo no se diagnosticó específicamente, sino hasta que Benjamín Franklin escribió una carta en 1768 relativa a su uso.
Las técnicas utilizadas en la edificación por los romanos eran muy depuradas empleando, ya en aquellos tiempos, en sus edificios públicos el hormigón y el ladrillo, construyendo grandes bóvedas, como la del Panteón de Roma de 44 m de luz, realizada en el siglo II a.C. e impresionantes acueductos. Estas técnicas no fueron superadas en Europa hasta cerca del 1800. Uno de los grandes triunfos de la construcción pública durante este periodo fue el Coliseo, que fue el mayor lugar de reunión pública hasta la construcción del Yale Bowl en 1914.
El Coliseo de Roma
En el campo de las cimentaciones de los edificios, una de las innovaciones reseñables son sus plataformas de hormigón en masa, donde la capacidad hidráulica del cemento puzolánico permitió la colocación de las plataformas de cimentación incluso bajo el agua. En algunos casos, la utilización de estas cimentaciones continuas de gran espesor (losa de cimentación), supuso una solución eficaz en suelos pobres, con riesgo de asientos diferenciales. Así, por ejemplo, El Coliseo se alza sobre el antiguo lago del palacio de Nerón, sobre un anillo macizo de 12 m de profundidad y 170 m de diámetro, compuesto de hormigón y de grandes bloques de piedra. De forma similar, el Panteón descansa sobre un anillo sólido de 4,5 m de profundidad y más de 7 m de anchura.
El Panteón de Agripa o Panteón de Roma.
La ingeniería civil romana, y sobre todo la rama que se dedicó a las obras marítimas, experimentó un gran avance cuando descubrió la forma de fabricar morteros y hormigones hidráulicos. Vitruvio comentaba las condiciones para la construcción de distintas obras marítimas. Por ejemplo, en el caso de un dique vertical de hormigón en masa establecía que era necesaria la existencia de una playa apropiada, calidad de los fondos aceptable, posibilidad de utilizar en obra el cemento puzolánico y solicitaciones de oleaje de pequeña entidad. El procedimiento constructivo comenzaba construyendo un recinto tablestacado mediante la hinca de maderas de roble. Posteriormente, se procedía a sanear sus capas superficiales dragando, al mismo tiempo que se realizaba el perfilado de la cimentación. Las dragas eran manuales, iguales a las que se han utilizado hasta principios del siglo XIX. Posteriormente, se hormigonaba bajo el agua, llenando el recinto de conglomerado hidráulico. Se desencofraba retirando las tablestacas y se procedía a un nuevo avance repitiendo los pasos descritos. Se finalizaba la obra coronando el dique con un cabecero realizado mediante muros perimetrales de ladrillo o sillería. El hueco entre ellos se rellenaba de “todo uno” y sobre este material disgregado, se construía la calzada. Se desarrollaron grúas y barcazas que se utilizaron intensivamente en la construcción. Otro de los procedimientos constructivos a destacar es la de los cajones flotantes celulares herméticos, precursor de los diques monolíticos actuales. También hicieron uso de diques con baja cota de coronación (como en Cesarea Marítima, Israel en el 20 a.C.) para reducir la energía del oleaje antes de alcanzar el dique principal. El mayor complejo portuario artificial fue el Puerto Imperial de Roma, diseñado por Trajano, con una dársena hexagonal y un tráfico de trigo con Egipto y Francia de 300,000 t anuales.
Por supuesto, nos dejamos para otros posts, otros aspectos que irán surgiendo sobre la ingeniería y la arquitectura romanas.
Os dejo un vídeo explicativo de la construcción de los muros en este periodo.
[politube2]9240:450:253[/politube2]
Referencias:
ADAM, J.P. (2002). La construcción romana. Materiales y técnicas. Editorial de los Oficios, 2ª edición, León.
FERNÁNDEZ, M. (2001). Ingeniería militar e ingeniería civil, dos ingenierías íntimamente vinculadas. Revista de Obras Públicas, 3.413: 47-57.
FERNÁNDEZ CASADO, C. (1983). Ingeniería hidráulica romana. Colegio de Ingenieros de Caminos, Canales y Puertos. Madrid.
YEPES, V. (2009). Breve historia de la ingeniería civil y sus procedimientos. Universidad Politécnica de Valencia.
La draga de succiónestacionaria (plain suction dredger, en inglés) es una máquina hidráulica con un mecanismo de succión sumergible similar a las dragas de succión en movimiento. Sin embargo, a diferencia de estas, las dragas estacionarias operan ancladas en un punto fijo y también difieren en la forma de cargar el material extraído. En general, estas dragas no tienen cántara y el material se transporta a través de gánguiles o se bombea por tuberías si la zona de vertido está cerca de la de extracción.
Al estar ancladas, estas dragas crean un hueco con forma de cono invertido en la zona de dragado (ver Figura 1). Por este motivo, no se recomiendan para proyectos que requieran un mayor grado de precisión, como el mantenimiento de canales de navegación o la nivelación de terrenos. En cambio, son ideales para la extracción de material granular en la restauración de terrenos.
Estos equipos están diseñados para dragar materiales sueltos y no cohesivos, como arenas de grano medio. La capacidad de la bomba de succión también influye en el tipo de material que se puede dragar. Ofrecen altos rendimientos cuando la capa de sedimentos es de al menos 3 m de espesor. La profundidad máxima de dragado suele ser de aproximadamente 50 metros. La draga puede trabajar con olas de hasta 3 m de altura y corrientes con velocidades máximas de 3 nudos. Son útiles en zonas de trabajo alejadas de los puntos de vertido, pero tienen la limitación de que la descarga del material en gánguiles solo es posible en aguas tranquilas.
Por lo tanto, las principales ventajas de esta técnica son su capacidad para extraer materiales ubicados bajo capas estériles, la posibilidad de realizar dragados en aguas poco profundas y su alta producción en capas de sedimentos gruesos y sueltos. Por otro lado, entre sus desventajas se encuentran su sensibilidad a las condiciones marítimas si la carga se encuentra sobre gánguiles y su uso limitado a materiales granulares.
Figura 2. Draga de succión estacionaria (Bray, Bates y Land, 1997)
El modo de operación y su ciclo de trabajo (ver Figura 3) es el siguiente:
Estacionamiento en la zona de trabajo
Posicionamiento de la barcaza junto a la draga o conexión a las tuberías de impulsión en el caso de bombeo
Descenso de los equipos de succión hasta la capa de material granular
Puesta en marcha de la succión y de los cabezales inyectores de agua que fluidifican y arrastran el terreno
Carga de los gánguiles a través de conductos elevados con difusores o bombeo
Figura 3. Ciclo de producción de las dragas estacionarias de succión (Bray, Bates y Land, 1997)
Las dragas estacionarias no necesitan un equipo auxiliar muy grande. Solo es necesario ajustar los cabezales de succión y la forma de descarga. Para dragar a profundidades elevadas, se coloca la bomba de dragado en la parte inferior del tubo de succión, lo que soluciona las limitaciones del cabezal hidráulico de succión. En otros casos, se agrega una bomba de chorro en la entrada del conducto de succión. En cualquier caso, estos cambios tienen como objetivo aumentar la cantidad de material que entra en el conducto de succión o disolver los sedimentos del fondo marino cerca de la entrada del conducto de succión, lo que se logra con inyectores de agua de alta presión.
En cuanto a los métodos de descarga, tenemos los siguientes:
Descarga por el fondo: Este método es similar a la descarga de las dragas de succión en marcha.
Conductos laterales: Esta opción es una alternativa a la descarga sobre cántara. La mezcla bombeada se dirige a través de una tubería hasta los conductos laterales, y desde allí se cargan las barcazas o gánguiles.
Tubería: Las dragas estacionarias también pueden descargar el material de manera similar a las dragas con cabezal cortador, conectando tuberías flotantes por donde se desplaza el material dragado.
He grabado un vídeo explicativo que, espero, sea de vuestro interés.
Os pongo un vídeo que muestra el funcionamiento de esta máquina de succión. Espero que os sea útil.
Referencias:
BRAY, R.N.; BATES, A.D.; LAND, J.M. (1997). Dredging: A handbook for engineers. 2nd edition, Willey, 434 pp.
CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2010). Temas de procedimientos de construcción. Equipos de dragado. Editorial de la Universitat Politècnica de València. Ref. 2010.4038.
SANZ, C. (2001). Manual de equipos de dragado. Ed. Carlos López Jimeno. Madrid, 323 pp.
Figura 1. http://ingenieriaycomputacion.blogspot.com.es/2011/02/watermaster-classic-excelente-draga-y.html
La draga retroexcavadora (backhoe/dipper dredge, en inglés) es una draga mecánica montada sobre un pedestal situado en un extremo de una pontona. Está equipada con un cazo con una capacidad de entre 1 y 20 m³. Desarrollada a partir de las retroexcavadoras hidráulicas terrestres, en ocasiones se fijan directamente estas últimas a un pontón. Para garantizar su estabilidad durante la excavación, la barcaza se ancla con tres pilones: uno en la popa y dos en los costados de la proa. Las dragas de retroexcavadora son típicas en Europa, mientras que en Estados Unidos es más habitual el uso de palas frontales.
La draga retroexcavadora es apta para suelos de diferentes tipos, incluso rocas con una resistencia a compresión simple de hasta 10 MPa. La profundidad de dragado oscila entre 2 y 24 m. Puede trabajar en condiciones de oleaje con alturas máximas de 1,5 m y velocidades máximas de corriente de 2 nudos. Aunque es adecuada para trabajar en espacios reducidos, su uso en regeneraciones costeras es limitado debido a la necesidad de barcazas o vertido directo. Además, su funcionamiento discontinuo reduce su productividad en comparación con otras dragas. El campo de aplicación de la draga retroexcavadora es similar al de las dragas de rosario, y es más adecuada para dragar rocas y suelos con menor resistencia al oleaje.
La cuchara de la retroexcavadora tiene una cara cóncava orientada hacia atrás, lo que permite que el cucharón se acerque a la plataforma durante la excavación. La cuchara entra en la capa de material que se va a extraer de arriba hacia abajo. Este método de trabajo es similar al de las dragas de pala frontal al excavar coronas circulares. Sin embargo, estos equipos pueden operar tanto en avance como en retroceso, lo que reduce los derrames y garantiza un fondo dragado de mejor calidad. La capacidad de trabajar en ambas direcciones mejora el rendimiento en la extracción de materiales compactos o rocas rotas. Las dragas retroexcavadoras con cables son muy efectivas en el dragado de arcillas cohesivas, pues se pueden instalar empujadores en la parte inferior del brazo de excavación que facilitan la descarga del material.
Figura 2. Draga retroexcavadora con accionamiento por cables o hidráulico
Método de operación:
Situación del pontón en la zona de trabajo (estacionaria)
Descenso de los 3 pilonos de anclaje (spuds) que absorben esfuerzos horizontales de la excavación
Descenso del brazo de la retroexcavadora, extracción y elevación del material
Carga sobre gánguiles
Izado de los 2 spuds situados en el tercio delantero. El spud de popa hace girar a la draga sobre su eje (eje motor). Reinicio del proceso.
Figura 3. Ciclo de trabajo de la draga de retroexcavadora (Bray et al., 1997)
La draga de retroexcavadora presenta varias ventajas, como la capacidad de dragar diferentes tipos de terrenos, incluso con escombros y cantos, de trabajar en espacios reducidos y controlar la posición y profundidad con precisión, de no necesitar anclajes, de diluir el material dragado con mínimas consecuencias y de tener un tiempo de ciclo más corto en comparación con una draga de cuchara de tamaño similar. Además, los componentes clave del equipo se producen en serie, lo que reduce los costes de instalación y mejora la calidad y el control. Solo se requiere una persona para realizar las operaciones de dragado, aunque, por motivos de seguridad y para ayudar en la maniobra del pontón, se recomienda contar con un equipo de dos o tres personas.
El principal desafío de la retroexcavadora es su baja capacidad de producción en comparación con la de otros equipos de dragado que trabajan de forma continua. Este inconveniente es común a la mayoría de las dragas mecánicas, excepto a la draga de Rosario, que también depende de la disponibilidad de los gánguiles de descarga. La habilidad del operador es crucial para lograr un perfil final de trabajo uniforme, pero también es importante tener en cuenta las características del terreno que se va a dragar.
He grabado un vídeo sobre esta draga, que espero os sea de interés.
Os dejo unos vídeos donde podréis ver cómo funciona esta draga. Espero que os gusten.
Referencias:
BRAY, R.N.; BATES, A.D.; LAND, J.M. (1997). Dredging: A handbook for engineers. 2nd edition, Willey, 434 pp.
CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2010). Temas de procedimientos de construcción. Equipos de dragado. Editorial de la Universitat Politècnica de València. Ref. 2010.4038.
SANZ, C. (2001). Manual de equipos de dragado. Ed. Carlos López Jimeno. Madrid, 323 pp.
Figura 1. Draga de succión en marcha. Fuente: http://tecnologia-maritima.blogspot.com.es/
Una draga hidráulica de succión en marcha o de arrastre es una embarcación autopropulsada y autoportante que draga de forma continua elevados volúmenes de material en aguas profundas, incluso en condiciones marítimas desfavorables. Este tipo de dragas supone algo menos de una cuarta parte del parque mundial de dragas hidráulicas.
El material se aspira mediante una tubería provista de un cabezal de succión en su extremo. La bomba de dragado centrífuga puede ser sumergible (se instala en la tubería de succión a medio camino entre el cabezal y la conexión del tubo de succión al forro exterior del casco) o estar a bordo. La bomba pone en suspensión el material suelto y el agua, y aspira dicha mezcla mientras el barco sigue en movimiento, almacenándola en la cántara de la propia draga. El material sólido se decanta y el agua se evacúa por rebose. La cántara puede almacenar entre 1000 y 20 000 m³, por lo que es posible transportar el material a grandes distancias. El material se descarga mediante la apertura del fondo o por bombeo.
Esta draga es muy útil en terrenos blandos con poca compactación y cohesión (fangos, arcillas blandas, arenas y gravas). La profundidad de trabajo de esta draga se encuentra habitualmente entre los 4 y los 50 m, aunque ya se han alcanzado profundidades de trabajo de hasta 120-150 m. Navega a una velocidad de 17 nudos. Puede trabajar con una altura de ola de hasta 5 m. El tamaño máximo de partícula es de 300 mm y la resistencia máxima al corte del material a dragar es de 75 kPa.
Figura 2. Ciclo de trabajo de las dragas de succión en marcha (Sanz, 2001)
Os paso un vídeo donde podéis observar cómo trabajan estas dragas. Espero que os guste.
[politube2]65107:450:384[/politube2]
Referencias:
BRAY, R.N.; BATES, A.D.; LAND, J.M. (1997). Dredging: A handbook for engineers. 2nd edition, Willey, 434 pp.
CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2010). Temas de procedimientos de construcción. Equipos de dragado. Editorial de la Universitat Politècnica de València. Ref. 2010.4038.
SANZ, C. (2001). Manual de equipos de dragado. Ed. Carlos López Jimeno. Madrid, 323 pp.
Estas grúas de puerto mantienen la cota de la carga por medio de un sistema de articulaciones que hace que la pluma de la grúa funcione como un mecanismo. El desplazamiento del pórtico y el giro de la superestructura es similar a las giratorias de cable compensado.
El giro se consigue mediante un grupo moto-reductor fijado en el lateral del castillete y una corona dentada fija en la parte superior del pivote. Este dispositivo permite un giro de 360º controlado por la botonera de mando. Este mecanismo, además de hacer girar la superestructura de la grúa, debe controlar el momento de vuelco debido a la excentricidad de la carga y peso propios.
El mecanismo que mantiene la cota de la carga es automático, de forma que no es necesario actuar sobre el cable de elevación. El movimiento de cambio de alcance, al igual que el resto de movimientos que caracterizan este modelo de grúa, se realiza mediante manipuladores progresivos y electroválvulas proporcionales, dotando a la grúa de movimientos con velocidad variable y controlada. La cabina de control se sitúa en la parte frontal de la superestructura.
Referencia:
YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.
Figura 1. Contenedores de 40 pies en un buque portacontenedores. Wikipedia
Un contenedor o container (en inglés) es un recipiente de carga para el transporte marítimo o fluvial, transporte terrestre y transporte multimodal. Se trata de unidades estancas que protegen las mercancías de la climatología y que están fabricadas de acuerdo con la normativa ISO (International Standarization Organization), en concreto, ISO-668.
Los muelles de los puertos traen de serie una serie de elementos (infraestructura básica) con los cuales pueden cambiar el tipo de transporte (marítimo-terrestre). Estos elementos no son los más eficientes, así que se recurre al mercado para conseguir una maquinaria especializada y con ello optimizar el tiempo, lo que a la larga supondrá económicamente positivo (a pesar de la gran cantidad que habrá que desembolsar para comprar dichos equipos).
Figura 2. Contenedor de 10 pies. Wikipedia.
Entre los equipos especializados en la manipulación de los contenedores, podemos destacar los siguientes:
Grúa pórtico (Gantry crane): Grúa que consta de un puente elevado o pórtico soportado por dos patas a modo de un arco angulado, con capacidad para desplazar los contenedores en los tres sentidos posibles (vertical, horizontal y lateralmente), maniobrando sobre raíles (Rail Gantry Crane o Trastainer) o sobre neumáticos (Rubber Tire Gantry, RTG) en un espacio limitado.
Grúa apiladora de alcance (Reacher-staker crane): Permiten alcanzar con contenedores estibas de uno sobre tres y formar bloques de hasta cuatro filas.
Grúa de puerto (Quay crane o Portainer): Grúa con la que se introducen los contenedores en un barco portacontenedores.
Carretilla pórtico: Carretilla elevadora para la manipulación de los contenedores en las terminales portuarias.
Sidelifter: Camión grúa con elevador lateral, utilizado para la carga y descarga de contenedores en vagones de ferrocarril.
Os dejo a continuación algunos vídeos donde podemos ver la manipulación de contenedores por varias de las máquinas mencionadas. Espero que os gusten.
Carretilla portacontenedores:
Grúa portacontenedores:
Referencia:
YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.
Figura 1. Draga de cuchara. Vía: http://www.hiseamarine.com
La draga de cuchara montada sobre pontona (grab/clamshell dredger, en inglés) es una máquina mecánica equipada con una grúa que tiene un brazo de celosía y un cucharón o bivalva suspendido de un cable. Esta máquina se coloca en un pedestal en un extremo de un pontón o puede ser autoportante y montada en un barco.
La draga de cuchara es eficaz en materiales blandos o previamente tratados, ya que su única fuerza es su peso. Sin embargo, su necesidad de barcazas o vertido directo limita su uso en proyectos de regeneración costera y similares. Por otro lado, es ampliamente utilizada en el dragado de zanjas estrechas.
El ámbito de aplicación de estos equipos es para proyectos de escala reducida o de bajo volumen, en los que su tamaño les permite realizar tareas en lugares inaccesibles para dragas más grandes o en los que su movilización no resulta económica. Para proyectos de mayor envergadura, solo se emplean equipos con cucharas de gran capacidad. Se obtienen mejores resultados dragando terrenos no cohesivos, con sedimentos blandos como arenas o fangos. También pueden ser usados en arcillas y arenas moderadamente compactas, aunque con una disminución en la eficiencia. Con cucharas de gajos o pinzas, se pueden extraer rocas fragmentadas y otros elementos sueltos.
Figura 2. Elementos de la cuchara bivalva
En este caso, la grúa se encuentra montada en una pontona sin cántara. Para almacenar el material, se deben colocar uno o más gánguiles en los laterales de la pontona. Esta puede ser rectangular o semicircular y suele mantener su posición mediante cables y anclas en cada esquina o mediante pilones “spuds” que la estabilizan. La pontona tiene un bajo calado, lo que permite trabajar en aguas poco profundas siempre y cuando los gánguiles tengan acceso a la zona. La grúa se instala en la borda de la pontona para barrer la mayor superficie posible de material. Si es necesario, se pueden instalar varias grúas en una misma pontona.
Su modo de operación es el siguiente:
Situación del pontón en la zona de trabajo.
Descenso de los 3 pilonos de anclaje (spuds) que absorben los esfuerzos horizontales de la excavación. También las hay con un conjunto de cables y anclas o ambos combinados.
Descenso de la cuchara (con cierta inercia), extracción, elevación del material y carga sobre gánguiles.
Izado de los 2 spuds situados en el tercio delantero. El spud de popa hace girar a la draga sobre su eje.
Inicio del proceso.
Figura 3. Ciclo de trabajo de las dragas de cuchara sobre pontona (Bray et al., 1997)
Los gánguiles tienen la función de transportar materiales al punto de descarga. El volumen de la cuchara puede oscilar entre 0,75 y 200 m³. Su capacidad de almacenamiento varía entre 50 y 2000 m³. Las dragas de cuchara sobre pontona son más eficientes que las autoportadoras en cuanto a producción, pues permiten una operación ininterrumpida mientras haya gánguiles disponibles.
La operación de la draga de cuchara sobre pontón está limitada por factores económicos y ambientales. La profundidad mínima de agua para su funcionamiento es de 1 m y la profundidad máxima de dragado es de 50 m. La draga puede funcionar en olas de hasta 2 m y en corrientes con una velocidad máxima de 1,5 nudos. Además, cuenta con una resistencia máxima a la cizalladura de 300 kPa en arcillas y de 1 MPa de resistencia a compresión en rocas.
La draga de cuchara sobre pontona presenta varias ventajas sobre otros métodos de dragado. En primer lugar, la dilución durante la carga del material es mucho menor que con los métodos hidráulicos, lo que resulta en una proporción muy alta de sólidos en el relleno de la cántara. Además, la carga con cuchara permite manejar con relativa facilidad cantos, guijarros y escombros, aunque puede haber problemas durante la descarga con materiales como cables metálicos, cuerdas y cadenas que pueden enredarse en las compuertas de descarga y obstruir la salida. La draga también es útil para dragar áreas confinadas como muelles, zonas periféricas a espigones y entradas de dársenas, ya que otras dragas solo pueden trabajar en estas áreas después de una previa nivelación. La profundidad de operación de la draga solo depende de la resistencia del cable metálico del tambor izador, lo que la hace adecuada para dragar a profundidades inalcanzables para otras dragas similares. Además, el pequeño calado de la pontona permite trabajar en aguas poco profundas siempre que las barcazas puedan acceder a la zona. La ventaja más importante de la draga de cuchara sobre pontona es su capacidad para dragar zanjas estrechas.
Los principales inconvenientes en esta draga son el menor volumen de producción en comparación con otros tipos de dragas similares y la dificultad para mantener una producción regular. Para asegurarse de que no haya zonas no dragadas, se necesita sobre-excavar el terreno, especialmente en suelos cohesivos. Esto resulta en un costo elevado debido a la combinación de bajo volumen de producción y un exceso de terreno dragado, especialmente cuando se dragan capas delgadas en grandes extensiones de terreno. Además, la única fuerza que puede aplicarse al cucharón para penetrar en terrenos duros es su propio peso, por lo que el rango de materiales que se pueden dragar sin tratamiento previo es limitado.
He grabado un vídeo sobre esta draga, que espero os sea de interés.
A continuación os dejo un par de vídeos para que podáis observar cómo trabaja la draga. En este caso, en vez de estar montada la cuchara sobre un brazo en celosía y cables, lo está sobre un brazo hidráulico articulado. Espero que os gusten.
Referencias:
BRAY, R.N.; BATES, A.D.; LAND, J.M. (1997). Dredging: A handbook for engineers. 2nd edition, Willey, 434 pp.
CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2010). Temas de procedimientos de construcción. Equipos de dragado. Editorial de la Universitat Politècnica de València. Ref. 2010.4038.
SANZ, C. (2001). Manual de equipos de dragado. Ed. Carlos López Jimeno. Madrid, 323 pp.
Una estación náutica es un proyecto que persigue orientar un destino turístico litoral hacia la práctica de los deportes náuticos, conformando un producto de servicios de alojamiento y de actividades náuticas integrado tal y como ocurre con las estaciones de esquí, diferenciándose respecto a la actual oferta náutica en su gestión y comercialización (Consultur, 1999). Su objetivo no es otro que el de la desestacionalización de los destinos y la captación de nuevos segmentos del mercado, todo ello basándose en la estructuración de parte de la oferta turística en torno a la actividad náutica de recreo y al alojamiento vinculado a la misma, en la estandarización y cualificación de los servicios y en la profesionalización del empresariado. De hecho, la estación es una asociación de empresarios que precisa del apoyo del sector público como uno de los elementos esenciales del destino turístico.
La aparición de la estación náutica se enmarca dentro de las nuevas tendencias turísticas que se observan en las áreas maduras litorales, donde (a) factores tales como la irrupción de las periferias más distantes que cuentan con ventajas comparativas (exotismo, calidad ambiental, precios reducidos); y (b) las nuevas motivaciones de los consumidores, los cuales valoran crecientemente el medio natural y los espacios no degradados (Middleton, 1994), presentando además una actitud activa en busca de la diferenciación y la autenticidad de la experiencia turística (Vera et al., 1997), están provocando la necesidad de un proceso de renovación de dichas áreas.
Un proceso de rejuvenecimiento, el que han de abordar los destinos turísticos europeos de segunda generación –es decir, aquellos espacios turísticos que se originaron en el Mediterráneo durante la década de los 60-, cuya posibilidad de éxito es cuestionada por algunos autores (Knowles y Curtis, 1999) que aducen la existencia de puntos débiles de carácter estructural inherentes a los mismos.
Para los autores, la capacidad de destinos de estas características de evitar y/o superar la fase de estancamiento dentro del ciclo de vida del producto (Agarwal, 1999) viene dada en gran medida por los pasos que se den hacia la consecución de niveles de calidad competitivos, así como hacia la diferenciación de la oferta respecto a la de sus competidores reales y potenciales. En este contexto es donde hay que situar conceptualmente la diversificación que implica la incorporación, en el seno del conjunto de la actividad turística, de productos como el turismo náutico.
Este producto empezó a consolidarse en 1998 cuando se creó la Asociación de Estaciones Náuticas Españolas por parte de las del Mar Menor (Murcia), de L’Estartit-Illes Medes (Girona) y de Tarifa (Cádiz). En el año 2000 se abrió la posibilidad, en una primera fase, a 8 nuevos candidatos para, tras un periodo de adaptación e implantación de una estructura y un sistema de calidad específico, poder incorporarse a la citada Red. De ellos, tres proyectos corresponden a la Comunidad Valenciana, en particular a la Marina Alta, a la Bahía de Altea y al entorno de la ciudad de Alicante.
A partir de mediados de los 90, se manifiesta en la Comunidad Valenciana cierto interés por desarrollar nuevos productos turísticos por parte de la Administración Autonómica. En este sentido, en 1996 se originó el Programa de Nuevos Productos, abordándose en primer lugar el turismo de salud, tanto en lo que respecta a su definición, como a su comercialización como producto. El enfoque utilizado consistió básicamente en enlazar la oferta complementaria que presentan los establecimientos de turismo de salud (balnearios, centros de talasoterapia, y de belleza y relax) con la oferta de alojamiento –tanto la propia como la susceptible de ser vinculada a los mismos- para ofrecer paquetes completos (Amor y Fernández, 1998).
Tras este producto, el turismo relacionado con las actividades náuticas fue objeto de un planteamiento similar. Sin embargo, a diferencia del de salud, este tiene una oferta complementaria más diversa y menos estructurada, con una dispersión general de la actividad y de los servicios. Para conocer con detalle la situación y las perspectivas, y con el propósito último de llegar a la configuración de un producto turístico, en 1997 se publicó el volumen “Náutica de recreo y turismo en el Mediterráneo: La Comunidad Valenciana” (Esteban, dir. et al, 1998), que supuso un hito en el estado del conocimiento en dicho momento.
Una de las primeras dificultades que aparecen al confrontar la figura de la Estación náutica con la de municipio turístico, es que la primera es un producto que se encuentra asentado en un espacio que puede englobar uno o varios municipios, normalmente con vocación turística, aunque no necesariamente. El destino turístico, como núcleo receptor de los flujos turísticos, tampoco se identifica plenamente con el espacio donde desarrolla su actividad la estación náutica. Su oferta puede ser un elemento de un destino turístico o incluso de varios.
La estación náutica y su implantación territorial
Al hilo de estas disquisiciones, irrumpe, por su mayor acierto, la consideración de la estación náutica como un producto especializado, inmerso en un espacio turístico, es decir, en un área territorial cuya estructura y actividades turísticas son homogéneas.
De hecho, la estructura de Red que conlleva el concepto de estación náutica supone ofrecer al consumidor una estancia activa en el mar, independientemente del destino seleccionado. La elección acerca del tipo de alojamiento a utilizar y de la actividad náutica a practicar se erigen en las motivaciones principales. El destino es secundario, dado que el atractivo fundamental solo resulta modificado a través de otras ofertas tales como la restauración, los comercios, etcétera. Por esta razón, los servicios complementarios que trae consigo la actividad náutica -actividades de animación, guardería, consignas, aparcamientos, y otros-, suponen valores añadidos al producto capaces de detraer demanda a la competencia.
Jerarquía en los requerimientos del cliente de una estación náutica
Llegados a este punto, resulta de notable interés destacar las numerosas interrelaciones entre las posibles actuaciones que un municipio puede emprender en apoyo de la estación náutica. En efecto, no solo nos encontramos ante la incorporación de un nuevo producto generado a partir de la asociación de diversas empresas, el cual pretende reducir la estacionalidad, participando considerablemente en la diversificación (Yepes y Amor, 2000) de la oferta; sino que requiere de la participación público-privada para su éxito.
Referencias
AGARWAL, S. (1999). Restructuring and local economic development: implications for seaside resort regeneration in Southwest Britain. Tourism Management, 20(4): 511-521.
AMOR, F.; FERNÁNDEZ, M.A. (1998). El turismo de salud en la Comunidad Valenciana. Revista Valenciana d’Estudis Autonómics, 25:187-196.
CONSULTUR (1999). Definición y desarrollo de la red de estaciones náuticas. Secretaría de Estado de Comercio, Turismo y Pyme. Madrid.
ESTEBAN, V. (dir.) et al. (1998). Náutica de recreo y turismo en el Mediterráneo: La Comunidad Valenciana. Ed. Síntesis. Madrid, 422 pp.
KNOWLES, T.; CURTIS, S. (1999). The Market Viability of European Mass Tourist Destinations. A Post-Stagnation Life-cycle Analysis. International Journal of Tourism Research, 1(2): 87-96.
MIDDLETON, V.T.C. (1994). Marketing in travel and tourism. Ed. Butterworth and Heinemann. Oxford. 393 pp.
VERA, J.F. (coord.) et al. (1997). Análisis territorial del turismo. Ed. Ariel. Barcelona, 443.
YEPES, V.; AMOR, F. (2000). Análisis topológico de la diferenciación del producto turístico, en ESTEBAN, V. (dir.): Futuro y expectativas del turismo náutico. Universidad Politécnica de Valencia. SPUPV-2000.2080. Valencia, pp 7-17.
YEPES, V.; AMOR, F. (2001). Las estaciones náuticas y el municipio turístico en la Comunidad Valenciana, en Esteban, V. (dir.): La oferta turística de las estaciones náuticas. Universidad Politécnica de Valencia. Ref.: 2001.2358. Valencia, pp 5-17. ISBN: 84-9705-023-1.
Cajones flotantes de hormigón en Marín (Pontevedra), ejecutados por Sacyr
Los cajones flotantes constituyen estructuras de grandes dimensiones que, por su sección transversal aligerada —multicelular—, pueden flotar una vez terminadas. Eso les confiere una gran versatilidad en cuanto a la construcción (mediante hormigonado deslizante), el transporte flotante y la colocación en la obra portuaria, ya sea para muelles, diques u otros. Las infraestructuras típicas que emplean este tipo de cajones son los muelles y otras estructuras de atraque, los diques de abrigo verticales y los diques especiales tipo flotante. Este tipo de estructura flotante es una tipología ampliamente empleada en la construcción de diques en los puertos españoles. Son, sin duda, las mayores piezas prefabricadas de hormigón, con moles que pueden superar los 10.000 m³.
Desde el punto de vista económico, existen razones para apoyar la construcción de diques flotantes. En efecto, el ahorro más significativo que ofrecen estas estructuras frente a los diques rompeolas, o los de gravedad, se da en grandes profundidades, ya que su coste de construcción es prácticamente independiente de la profundidad, mientras que el de un dique en talud crece exponencialmente con la misma. Este ahorro se debe fundamentalmente al ahorro de volumen de escollera y de materiales de relleno, respecto a los diques en talud o a las banquetas de los diques verticales.
Las condiciones y limitaciones que presenta el cálculo necesario para la fabricación de los cajones flotantes están relacionadas, fundamentalmente con las importantes las interacciones entre los pesos de los elementos en construcción y los empujes de los elementos flotantes, pues de ellas se derivan los posibles riesgos como son la pérdida de estabilidad, riesgos de varada en el fondo, etc. Asimismo, los criterios con los que se fijan los parámetros de cálculo son, fundamentalmente, los siguientes: estabilidad hidrostática del conjunto cajón-pontona, presión suficiente entre cajón y pontona para asegurar el contacto durante la construcción y el mantenimiento de un francobordo mínimo que proteja el hormigón en el fraguado y no afecte a la estabilidad del cajón.
Cajón flotante remolcado hasta su posición final. http://www.dragados.com/upload/MONACO%205.jpg
Para quienes estén interesados, existen algunas referencias que pueden informar sobre el estado actual de los avances tecnológicos en este ámbito. Así, por ejemplo, un hito en este tema es el “Manual para el diseño y la ejecución de cajones flotantes de hormigón armado para obras portuarias”, editado por Puertos del Estado en el año 2006 (ISBN: 84-88975-55-4). En este manual se ofrecen a los usuarios los criterios necesarios para el diseño, la construcción y el mantenimiento de cajones de hormigón armado, con la aplicación específica de la EHE y la consideración de las recomendaciones del programa ROM.
Asimismo, se consideran muy interesantes las referencias relativas a algunas realizaciones en el ámbito nacional o internacional. Así, las primeras obras de cajones construidas en España se realizaron en el muelle de Levante del Puerto de Huelva, en 1932, con un calado máximo de 8 m. En los años 80 se generalizó la construcción de obras de atraque de cajones, aprovechando el auge de los puertos comerciales, y en la década de los 90 se extendió su uso en la construcción de diques verticales. A modo de ejemplo, la prolongación del Muelle de Poniente de Palma de Mallorca necesitó la fabricación de siete cajones flotantes que se fabricaron en Cartagena y se remolcaron unas 250 millas. La referencia se puede ver en Sáenz et al (1996): “Fabricación y remolque de los cajones de hormigón para la prolongación del muelle de Poniente en el puerto de Palma de Mallorca”, Revista de Obras Públicas, 143(3357):57-68. La construcción, en los últimos años, de diques verticales de 28 m de calado en la dársena de Escombreras, en Cartagena, hace que la tecnología de nuestro país sea solo equiparable a la de Japón.
Otro aspecto importante es la verificación de la armadura de cortante exigida por la norma EHE. La experiencia acumulada indica que esta armadura suele ser innecesaria, aunque la norma EHE la imponga. Un análisis al respecto puede verse en el artículo de Pita, Grau y Pérez sobre el diseño de cajones flotantes (http://www.fhecor.es/wp-content/uploads/ARW/ES_OBRASPORTUARIAS.pdf). También sería resaltable el trabajo de investigación realizado por el CEDEX sobre el comportamiento del hormigón de los cajones flotantes en la zona de carrera de mareas. Los resultados pueden verse en la revista Puertos, en su número 136 del año 2006 (http://www.puertos.es/export/download/ROM_PDFs/RecomendaCAJONES.pdf).
Una de las referencias importantes a nivel internacional es la guía práctica del PIANC(1994). “Floating breakwaters. A practical guide for design and construction.” Report of the Working Group n.º 13 of the Permanent Technical Committee II. Supplement to bulletin nº 85. Permanent International Association of Navigation Congresses. Otra referencia normalmente empleada es la de Michael L. Giles and Robert M. Sorensen (1978). “Prototype scale mooring load and transmission tests for a floating tire breakwater”. Technical paper nº. 78-3. U.S. ARMY, CORPS OF ENGINEERS. COASTAL ENGINEERING RESEARCH CENTER.
Resulta de interés citar una de las realizaciones más ambiciosas a nivel internacional. Se trata del mayor dique flotante del mundo, construido en el Puerto de Algeciras para ampliar el puerto deportivo de la Condamine en el Principado de Mónaco, lo que implicó una larga travesía por aguas del Mediterráneo. Las características de este hito se pueden ver en un artículo firmado por Barceló, Hue y Peset en la Revista de Obras Públicas, en su número 3432 de abril de 2003 (pp. 81-110). Bastan, pues, unas cuantas referencias bibliográficas y de realizaciones para comprobar que la tecnología necesaria para la construcción de cajones flotantes está consolidada, siendo España un referente a nivel internacional.