Perforación a percusión con cable

La perforación a percusión con cable se basa en el golpeteo con una pesada herramienta de corte (trépano) que se eleva con un cable y que cae por gravedad, fragmentando el suelo. Resulta evidente, por tanto, que los sondeos realizados por esta máquina deben ser verticales.

Este sistema empezó a utilizarse en China en el 4000 A.C., consistiendo en un balancín que se contrapesaba con un grupo de hombres que efectuaban el tiro en un extremo de una cuerda, mientras que de otra colgaba la sarta de perforación construida con cañas de bambú.

Su ámbito de aplicación se centra en terrenos de dureza media a baja o bien en aquellos otros duros que sean frágiles. Sin embargo, se encuentran contraindicados en terrenos detríticos no cohesionados, muy duros, abrasivos y plásticos.

La frecuencia de golpeo se encuentra en el entorno de 40 a 50 impactos/minuto, en función de los parámetros mecánicos del suelo perforado. Con ello se consiguen unos rendimientos medios de 2 a 4 m/día en materiales duros y de 10 a 20 m/día en materiales blandos. La percusión se consigue mediante un movimiento de balancín y manivela proporcionado por la máquina. La altura de caída del trépano dependerá de la dureza del terreno y de la profundidad del fondo de perforación. En máquinas normales, esta altura oscila entre 20 y 60 cm.

La perforación comienza hincando un tramo de tubería, generalmente de longitud inferior a 2 m y con un diámetro mayor al diámetro a perforar (700-800 mm), de forma que sirva de guía inicial al trépano. La entubación sólo es necesaria en casos de inestabilidad del terreno, en cuyo caso se entuban tuberías auxiliares recuperables aprovechando la percusión.

Con este sistema de perforación se hace necesario el uso de agua para facilitar la recogida del detritus formado. Este suelo fragmentado mezclado con agua forma un lodo viscoso que se recoge periódicamente mediante una válvula o cuchara de limpieza que se introduce cuando se detiene el golpeteo.

Estas cucharas consisten en una tubería terminada en su parte inferior en una válvula, que puede ser plana o de dardo. La plana, también llamada de charnela o de chapeta, hace mejor la limpieza del sondeo. La de dardo o lanza se usa fundamentalmente en pruebas de caudal.

La sarta de perforación se encuentra compuesta por los siguientes elementos:

  • Trépano: Se trata de la herramienta de corte, que permite la perforación. Su peso permite penetrar, triturar, escariar y mezclar el terreno.
  • Barra de carga o barrón: Es una barra cilíndrica de acero forjado que provee a la sarta de perforación del peso necesario y también guía el movimiento alternativo de la sarta. Lleva en su parte inferior una rosca hembra para recibir la rosca macho del trépano, y en su parte superior una rosca macho que conecta con la tijera o montera en su caso. Su longitud varía entre 3 y 5 m, con un peso entre 400 y 1000 kg.
  • Tijera o destrabador: Elemento situado encima del barrón que sirve para desatrancar la herramienta en caso de atasco. Está formada por dos eslabones que permiten un cierto juego longitudinal del orden de 10 a 20 cm.
  • Montera o giratoria: Es el elemento de unión entre la sarta y el cable, permitiendo el giro alrededor de su eje longitudinal.

 

TERRENO PESO RELATIVO DE LA SARTA COMPLETA
Blando 1.5-2.5 kg/mm diámetro
Medio 3.0-4.0 kg/mm diámetro
Duro 4.0-6.0 kg/mm diámetro
Muy duro 6.0-8.0 kg/mm diámetro

Entre sus aplicaciones principales de la perforación a percusión con cable se encuentra la captación de aguas subterráneas. Otros usos menos frecuentes, pero que igualmente encuentran eficiencia óptima son en el área de las perforaciones con fines de recarga artificial de aguas subterráneas, procedente de las lluvias o de otras perforaciones de captación próximas, pues su mayor diámetro permite espacios anulares que posibilitan tanto la ejecución de potencias cementadas, sellos o empaques graduados, así como la instalación de tuberías y filtros adecuados.

Como ventajas más importantes de este sistema de perforación es el empleo de maquinaria de coste moderado, la simplicidad de las operaciones, la necesidad de poco personal, el escaso consumo de agua, no usar lodos o mezclas tixotrópicas y la consecución de diámetros importantes de perforación (1.100 mm). Como inconvenientes se podría señalar la necesidad de personal cualificado, la interrupción de la perforación para la limpieza, el avance lento en rocas duras, la dificultad de avance en materiales no consolidados, la pérdida de diámetro en materiales abrasivos, las entubaciones frecuentes y la limitación de la profundidad práctica de perforación, que no resulta económica a partir de 150 m.

En el Polimedia que os presento a continuación os dejo las ideas más importantes de este sistema de perforación a percusión con cable. Espero que os sea útil.

Os dejo algunos vídeos donde podéis ver el trabajo de esta perforadora. Espero que os gusten.

 [politube2]65112:450:358[/politube2]

Referencias:

YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 2009.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Qué es el diferencial? ¿Para qué se utiliza en la maquinaria de construcción?

Vista de un diferencial. Wikipedia

Un diferencial es el elemento mecánico que permite compensar las diferencias en la velocidad de giro de las ruedas exteriores e interiores de un vehículo, según éste se encuentre tomando una curva hacia un lado o hacia el otro. Permite, por tanto, la transmisión de par a distintas revoluciones a ambas ruedas simultáneamente. Sus inventores fueron los chinos, que hace ya 3.000 años ya utilizaban un mecanismo diferencial en sus carros. Gracias al diferencial la conducción es más predecible, los neumáticos se gastan menos y no hay tensiones extra en chasis y ejes, así que, en definitiva, tenemos una conducción más segura.

El diferencial consta de engranajes dispuestos en forma de «U» en el eje. Cuando ambas ruedas recorren el mismo camino, por ir el vehículo en línea recta, el engranaje se mantiene en situación neutra. Sin embargo, en una curva los engranajes se desplazan ligeramente, compensando con ello las diferentes velocidades de giro de las ruedas.

Os paso a continuación varios vídeos explicativos sobre este elemento (algunos en inglés). Espero que os sean útiles.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

 

 

 

¿Qué es un turbocompresor?

Turbocompresor (corte longitudinal). En rojo, estátor de fundición y rotor de la turbina. En azul estátor de aluminio y rotor del compresor. Wikipedia

La incorporación de la sobrealimentación a los motores de combustión interna permite aumentar su potencia sin necesidad de aumentar sus dimensiones. Esta sobrealimentación puede aumentar la potencia hasta en un 40 % en comparación con un motor igual no sobrealimentado. La solución pasa por incrementar el volumen de aire que accede a la cámara de combustión en motores atmosféricos. Los turbocompresores son, por tanto, turbomáquinas que comprimen el aire y están compuestos por una turbina solidaria a un eje que impulsa el compresor de aire de admisión en su otro extremo. Este motor funciona con la energía que normalmente se pierde en los gases de escape. Se pueden clasificar en turbocompresores de geometría fija o variable. La mejora de los materiales ha hecho posible la instalación de estos sistemas de sobrealimentación. Cuanto mayor sea la eficiencia adiabática, mejor será el rendimiento final del sistema.

Los turbos de geometría variable disponen de un sistema de aletas o álabes que, dependiendo de la presión de los gases de escape, se sitúan en una u otra posición para aumentar la velocidad del flujo que debe pasar a través de la turbina y mantenerla girando a su velocidad óptima a cualquier régimen del motor.

En los motores diésel, el turbocompresor está más difundido debido a que un motor diésel trabaja con exceso de aire al no tener mariposa, lo que significa que, a igual cilindrada unitaria e igual régimen motor (rpm), entra mucho más aire en un cilindro diésel.

Turbo de geometría variable. Fuente: http://www.motorpasion.com/

A continuación os dejo un vídeo explicativo que explica el funcionamiento de esta máquina.

En el siguiente vídeo de la universidad de La Laguna se explica el funcionamiento de un sistema turbocompresor.

En este vídeo se explica el turbo de geometría variable.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

 

El motor endotérmico rotativo

Motor Wankel en el Deutsches Museum en Múnich (Alemania). Wikipedia

Dentro de la asignatura «Procedimientos de Construcción» siempre existe una parte del temario relacionada con los motores y la maquinaria empleada en las obras públicas. De hecho, esta asignatura procede de la que en los años cuarenta se denominaba «Maquinaria y Medios Auxiliares de Obra», impartida por aquellos años por el ingeniero alcoyano D. José Juan-Aracil Segura. Os paso a continuación un apunte sobre motores.

Dentro de los motores de combustión interna rotativos, el motor Wankel, cuya patente data de 1936, se diferencia enormemente de los motores convencionales. Este motor tiene un 40 por ciento menos de piezas y la mitad de volumen y peso de un motor comparable a pistones. Es de diseño simple, en vez de un pistón, de un cilindro y de válvulas mecánicas, un rotor triangular que gira alrededor del excéntrico, hay muy poca vibración y no hay problemas con la disipación de calor, los puntos calientes, o la detonación, que son consideraciones en el motor convencional del intercambio.

En la figura puede observarse el funcionamiento en cuatro fases: (1) admisión de la mezcla, (2) compresión, (3) encendido (por chispa), explosión y expansión y (4) escape. Todas las fases ocurren de forma simultánea.

Motor Wankel

Las ventajas teóricas de estos motores frente a los alternativos son las siguientes:

  • Su distribución uniforme, regular y ausente de fuerzas alternativas facilita un diseño más equilibrado.
  • Su volumen es menor, así como su relación peso/potencia.
  • Ausencia de espacios muertos.
  • Inexistencia de válvulas y menor número de piezas, lo que contribuye a su simplicidad constructiva.
  • Funcionamiento continuo, dando un empuje constante, lo que teóricamente va asociado a un rendimiento más alto.

Sin embargo también se pueden anotar algunos inconvenientes que hacen que su empleo sea más bien escaso:

  • Problemas de estanqueidad, para no perturbar las fases del ciclo.
  • Dificultad de conseguir una eficaz refrigeración.
  • Gradientes elevados de temperatura de la zona caliente de explosión y escape (más de 1000ºC) respecto a las otras (unos 150ºC).
  • Baja eficacia en el uso del combustible y necesidad de estar perfectamente sincronizado.

Os dejo una explicación del motor rotativo (en inglés, así practicáis). Espero que os guste.

Aquí podéis ver el motor rotativo del Mazda RX8.

Referencias:

YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J. (2012). Maquinaria auxiliar y equipos de elevación. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 200 pp.

 

Bombeo de hormigón para sistemas estructurales

25El transporte de hormigón por tubería ha adquirido gran importancia en los últimos años. Esto se debe al general aumento de la mecanización en las obras y al mayor uso del cemento en estructuras y demás elementos. Este impulso se debe especialmente a la mejora de la tecnología de las máquinas y a nuevas evoluciones que hacen que el transporte de hormigón sea más económico.

Este tipo de transporte tiene una repercusión económica beneficiosa en las obras. Un hormigón que se pueda transportar sin dificultad a través de tuberías responde a las exigencias generales de la construcción en lo que respecta a su trabajabilidad y a sus características resistentes.

Las técnicas de transporte de hormigón por tubería comenzaron a emplearse a principios del siglo XX, en sus dos modalidades: Por impulsión neumática y, poco tiempo después, por impulsión mediante bombas de accionamiento mecánico.

La difusión de esta forma de transporte se ha manifestado de forma más clara en la mejora de los sistemas de bombeo hidráulico, cuyo resultado ha sido el notable aumento de unidades estacionarias y móviles registradas en los últimos años, sobre todo de estas últimas (autobombas) cuyo empleo es cada vez mayor en obra civil y en edificación. Por el contrario, la impulsión neumática de hormigón ha tenido un desarrollo menor y su utilización se ha limitado a aplicaciones más específicas (hormigón proyectado) o a obras en las que la existencia de una instalación de aire comprimido está, además, justificada por otros fines.

El sistema de transporte de hormigón por tubería aumenta el rendimiento y supone un importante ahorro de mano de obra, pero solo es factible con un hormigón de mayor calidad que el habitual. Los componentes y la dosificación del hormigón deben proporcionar la consistencia necesaria para que circule de manera continua sin que se produzca segregación en ningún momento.

Os dejo a continuación una explicación al respecto de la UPV que espero que os sea de interés.

[politube2]56664:450:273[/politube2]

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València. 189 pp.

Seguridad en las grúas torre

Grua torre
Componentes de una grúa torre desmontable. Fuente: R.D. 836/2003, de 27 de junio, Anexo I)

Entre los equipos de elevación y manipulación mecánica de cargas, las grúas torre son un equipo muy común en las obras.  Es una máquina empleada para la elevación de cargas, por medio de un gancho suspendido de un cable, y su transporte, en un radio de varios metros, a todos los niveles y en todas direcciones. Son equipos donde pueden producirse accidentes derivados, entre otros, de caídas de objetos, contactos eléctricos, golpes, atrapamientos o incluso caídas de personas a distintos nivel.  La identificación y la gestión de los riesgos asociados es una tarea fundamental. En la figura se puede observar los diferentes componentes de una grúa torre desmontable, que es el tipo de grúa más usual.

La normativa aplicable a estas máquinas es prolija. En las referencias os he dejado unos cuantos documentos al respecto. Además, os dejo un vídeo explicativo que os puede servir para tener en cuenta los aspectos más importantes referidos a la seguridad. Espero que os sea de interés.

Referencias:

Junta de Andalucía (2009). Estudio: La seguridad en las grúas torre en las obras de construcción de Andalucía. Universidad de Málaga.

Instituto Nacional de Seguridad e Higiene en el Trabajo.  NTP 125: Grúa torre.

Instituto Nacional de Seguridad e Higiene en el Trabajo. NTP 701: Grúas-torre. Recomendaciones de seguridad en su manipulación.

Instituto Nacional de Seguridad e Higiene en el Trabajo. NTP 782: Grúas torres. Recomendaciones de seguridad en el montaje, desmontaje y mantenimiento (I).

Junta de Castilla y León. Folleto divulgativo para gruistas. Grúa torre.

CECE-FEM. ¿Qué es una grúa torre «segura»?

Real Decreto 836/2003, de 27 de junio, por el que se se aprueba una nueva Instrucción técnica complementaria «MIE-AEM-2» del Reglamento de aparatos de elevación y manutención, referente a grúas torre para obras u otras aplicaciones.

DIRECTIVA 98/37/CE DEL PARLAMENTO EUROPEO Y DEL CONSEJO de 22 junio de 1998 relativa a la aproximación de legislaciones de los Estados miembros sobre máquinas.

 

 

Grúas móviles sobre cadenas

Grúa telescópica sobre cadenas LTR 1220, http://www.liebherr.com

Las grúas sobre cadenas son máquinas adecuadas para la elevación de grandes cargas en zonas extensas donde no alcanzan otros equipos fijos, o también en terrenos con dificultades de acceso, resistencia o maniobrabilidad. Aunque son autopropulsadas, para trasladarlas de una obra a otra es necesario un transporte especial en góndola. Su velocidad de desplazamiento oscila entre 3 y 5 km/h. Utilizan una pluma metálica de celosía para afrontar las dificultades de sus condiciones de trabajo. Además, pueden reemplazar los accesorios propios de la grúa por los de una dragalina, una cuchara bibalva y otras máquinas similares. De este modo, la máquina se adapta fácilmente a diversas formas de trabajo, como la extracción de áridos, obras de dragado, hinca de pilotes y tablestacas, etc.

Los modelos más habituales están equipados con plumas de entre 12 y 35 m de longitud, aunque se pueden ampliar con un plumín de 30 m. Las capacidades habituales de estas máquinas oscilan entre 15 y 120 toneladas, aunque existen modelos de gran potencia que pueden superar las 3000 toneladas. Cada catálogo establece la capacidad de carga en función de la longitud de la pluma y del radio de alcance o inclinación, y diferencia los valores límite en función de si la pluma está orientada sobre el frente o sobre el lateral. En cualquier caso, no debe realizarse el tiro lateral con la pluma o el plumín.

Os dejo unos consejos de Liebherr sobre las tres cosas que necesita conocer un operador de estas máquinas.

En este otro vídeo se puede ver una grúa telescópica sobre orugas de goma.

A continuación os muestro un vídeo muy interesante donde podemos ver cómo una grúa sobre cadenas telescópica es capaz de realizar su automontaje. Espero que os guste.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Bomba de hormigón con sistema de válvulas de corredera plana

Además de la bomba de hormigón de pistones de trompa, también es posible encontrar bombas con un sistema de corredera plana para impulsar el hormigón. En ambos casos, son sistemas de doble pistón, conectados por una válvula. Ambos pistones provocan un movimiento alternativo que genera una especie de lingote de hormigón en estado fresco que se impulsa a una presión casi constante.

Los dos cilindros se unen a la tubería de impulsión formando una Y. Su principio de funcionamiento consiste en impulsar el hormigón alternativamente por uno u otro cilindro en un régimen continuo de alimentación. Esto se consigue con dos válvulas correderas situadas bajo la tolva y al comienzo de la impulsión. Por tanto, mientras un tubo aspira el hormigón, el otro lo impulsa a través de la tubería. Tienen el inconveniente del desgaste de las válvulas correderas.

 

Estas bombas de pistones con sistema de correderas permiten desde presiones bajas a muy altas, dando muy buenos resultados en aplicaciones pesadas con alta o muy alta presión.

Os dejo unos vídeos explicativos.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València. 189 pp.

PUTZMEISTER. Tecnología del hormigón para bombas de hormigón. http://www.pmw.co.in/pm_india/data/BP_2158_E.pdf

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Transporte del hormigón

Hormigonera y autobomba de hormigón. https://www.hormigonescarral.com/fullscreen-page/comp-jrt5h5d4/8d695975-f455-4ffc-8f63-42c63f186bf7/45/%3Fi%3D45%26p%3Dbuk8m%26s%3Dstyle-jrt5h5ev

La elección de los medios más apropiados para transportar el hormigón hasta el punto de vertido están supeditados a un conjunto de factores relacionados con:

  • Las características del hormigón
  • Las condiciones de la obra
  • El volumen de hormigón y la distancia de transporte. En general deben evitarse transportes prolongados especialmente con hormigones poco consistentes en los que puedan producir más fácilmente fenómenos de segregación

Los medios utilizados continuos o discontinuos, deben preverse coordinando el volumen de hormigón de llegada con el ritmo de vertido y los medios de compactación. Como medios de transporte discontinuo pueden emplearse camiones hormigonera, camiones volquete, tolvas móviles, cubas, carretillas, dumpers, blondines, etc. Para el suministro continuo del material, los medios más usuales son la cinta transportadora y la impulsión o bombeo del hormigón por tubería.

Blondín. https://fr.wikipedia.org/wiki/Blondin_%28engin_de_chantier%29

Cualquiera que sea la forma de transporte, deben cumplirse las siguientes condiciones:

  1. Durante el transporte no deben segregarse los áridos gruesos, lo que provocaría en el hormigón pérdidas de homogeneidad y resistencia. Deben evitarse las vibraciones y choques, así como un exceso de agua, que favorecen la segregación. Los áridos rodados son más propicios a segregarse que los de machaqueo, dado el mayor rozamiento interno de estos últimos.
  2. Debe evitarse que el hormigón se seque durante el transporte.
  3. Si al llegar al tajo de colocación el hormigón acusa un principio de fraguado, la masa debe desecharse y no ser puesta en obra.
  4. Cuando se empleen hormigones de diferentes tipos de cemento, se limpiará cuidadosamente el material de transporte antes de hacer el cambio.

Os dejo a continuación un vídeo Politube donde se explica con mayor detenimiento este tema. Espero que os sea útil.

[politube2]56653:450:273[/politube2]

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València. 189 pp.

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Perforación dirigida horizontal

perforacionLa perforación dirigida horizontal es un método de perforación empleado para la instalación de tuberías que evita la apertura de zanjas a cielo abierto minimizando el movimiento de tierras. Se utiliza fundamentalmente para la instalación de líneas de comunicación (fibra óptica, cables de datos), líneas eléctricas, gaseoductos, oleoductos y conducciones de agua a presión.

Esta tecnología opera mediante una máquina que perfora el suelo a lo largo de toda la trayectoria de la instalación, siendo orientada y seguida desde la superficie mediante un localizador que indica la posición, sin necesidad de pozos verticales, ya que la obra comienza desde la superficie.

El procedimiento constructivo se puede describir de la siguiente forma: una vez instalada la máquina para que la cabeza de perforación se introduzca en el suelo, se procede a lo siguiente: (1) ejecución de la perforación guía o piloto, (2) ampliación del diámetro de la perforación piloto mediante los escariadores adecuados, y (3) instalación de la tubería en el interior de la perforación realizada.

 

Os paso varios vídeos para que podáis ver la ejecución de este procedimiento constructivo. En el primero veremos la PDH de mayor longitud y tamaño realizada hasta la fecha. Se realizó en Alcira (Valencia) en el 2007. Se trataba de la instalación de una nueva conducción para el abastecimiento de agua potable. Espero que os gusten.

[politube2]65102:450:350[/politube2]

 Referencias:

YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia, 89 pp.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.