Estabilización de suelos con ligantes bituminosos

Figura 1. Estabilización de suelos con betún espumado. Fuente: https://www.i-q.net.au/main/research-to-expand-foamed-bitumen-applications

El uso de ligantes hidrocarbonados puede estabilizar suelos granulares con pocos finos y baja plasticidad. Consiste en la mezcla íntima y homogénea, compactada adecuadamente, de terreno, agua, ligante bituminoso y, en su caso, adiciones. El ligante bituminoso mejora las características resistentes del suelo, reduciendo su capacidad de absorción de agua e incrementando su cohesión.

Se trata de una técnica poco empleada por su elevado coste, pero que puede ser interesante, por ejemplo, con arenas de granulometría uniforme, como sería el caso de algunas regiones del norte de Francia, Países Bajos, la Pampa argentina o Arabia Saudí (Kraemer et al., 1999). También se emplea donde el coste de los betunes es asequible. Sería adecuado para suelos con menos del 20% del peso pasando por el tamiz 0,080 UNE, con un índice plástico IP<10, que puedan ser pulverizados económicamente y que estén exentos de cantidades perjudiciales de materia orgánica, arcillas de alta plasticidad o materiales micáceos (García Valcarce, 2003). La fracción cernida por el tamiz 0,40 de UNE cumplirá las condiciones siguientes: LL < 35 e IP < 15.

Dependiendo del tipo de suelo, método constructivo y condiciones meteorológicas, se emplean en este tipo de estabilización betunes fluidificados de viscosidad media, emulsiones bituminosas de rotura lenta y aceites pesados. El mezclado suele ejecutarse “in situ”, agregando agua al suelo para facilitar la mezcla de todos los componentes, aunque también se podría realizar en central. La mezcla debe realizarse de tal forma, y a la velocidad precisa para conseguir un material homogéneo y exento de concentraciones de ligante. Tras la colocación, debe compactarse la mezcla adecuadamente en el tajo.

Esta técnica de estabilización de suelos se encontraba en el artículo 511 del Pliego de Prescripciones Técnicas Generales para Obras de Carreteras y Puentes hasta la entrada en vigor de la O.C. 297/88 que lo suprime. La justificación dada era la de una unidad de obra de escaso empleo, dejando su regulación a los pliegos de prescripciones técnicas particulares. La Orden FOM 891/2004 lo derogó definitivamente este artículo.

Resulta de interés el uso de la espuma de betún (“foamed bitumen”) en la estabilización de suelos. Se trata de una técnica también utilizada en el reciclado de pavimentos “in situ” o en la construcción de mezclas bituminosas en capas de base. El betún espumado se consigue inyectando una pequeña cantidad de agua fría (1 a 2% del peso del asfalto) y aire comprimido a una masa de betún caliente (160º C – 180º C), dentro de una cámara de expansión, generando espuma (Thenoux y Jamet, 2002). Se trata de una técnica relativamente nueva en su uso que permite producir mezclas asfálticas de un modo muy diferente a los sistemas tradicionales.

A continuación os dejo una conferencia sobre estabilización de suelos con emulsiones asfálticas del grupo TDM.

Os dejo a continuación un vídeo de una estabilización usando betún y cemento.

 

También os dejo una conferencia sobre estabilización de asfalto espumado de Sergio Serment.

Referencias:

GARCÍA VALCARCE, A. (dir.) (2003). Manual de edificación: mecánica de los terrenos y cimientos. CIE Inversiones Editoriales Dossat-2000 S.L. Madrid, 716 pp.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

THENOUX, G.; JAMET, A. (2002). Tecnología del asfalto espumado. Revista Ingeniería de Construcción, 17(2):84.92.

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Columnas de hormigón vibrado

Figura 1. Ejecución de columnas de hormigón vibrado. https://www.keller-na.com/expertise/techniques/vibro-concrete-columns

En suelos sensibles, como la turba, una columna de grava puede ser inadecuada. En este caso se puede sustituir el material granular por hormigón para formas las llamadas columnas de hormigón vibrado (“vibro-concrete columns”, VCC). Suele utilizarse en suelos orgánicos flojos superpuestos a depósitos granulares. También se podría utilizar en terrenos contaminados donde no se desee un flujo de agua. La ejecución estas columnas es similar al de la columna de gravas por vibrodesplazamiento. Se bombea hormigón al terreno a través de una tubería anexa al vibroflotador. Una ventaja del método es que permite la ampliación de la base sobre la que se asienta la columna, lo que mejora la capacidad de carga y reduce los asientos. Una vez completada la columna, se puede introducir armadura de refuerzo.

El diámetro de estas columnas depende de las condiciones del suelo, pero es mayor cuanto más débil sea el suelo. Es habitual que el diámetro del fuste oscile entre 0,4 y 0,6 m, ampliándose a 1 m en la base. La profundidad del tratamiento oscila entre 2,5 y 12 m, pudiendo llegar a 25 m.

La técnica es aplicable a suelos con una resistencia al corte de 15 a 60 kPa, aunque si el espesor de la capa es inferior a 1,0 m, se podría utilizar en suelos de 8 a 15 kPa. Además, no se producen residuos durante la ejecución, debido al desplazamiento del terreno, lo cual es muy interesante en terrenos contaminados.

En la Figura 2 se observa el proceso constructivo de este tipo de inclusiones rígidas.

Figura 2. Ejecución de una columna de vibro-hormigón. Cortesía de Balfour Beatty.

Os dejo una animación de Keller donde se describe el procedimiento constructivo.

También os adjunto un folleto de la empresa Balfour Beatty sobre este tipo de inclusiones rígidas.

Pincha aquí para descargar

Referencias:

BRIANÇON L. (2002). Renforcement des sols par inclusions rigides – Etat de l’art. IREX, Paris, 185 p.

IREX (2012). Projet national ASIRI. Recommandations pour la conception, le dimensionnement, l’exécution et le contrôle de l’amélioration des sols de fondation par inclusions rigides. Presses des Ponts. France.

JENCK, O. (2005): Le renforcement des sols compressibles par inclusions rigides verticals. Modélisation physique et numérique.  https://tel.archives-ouvertes.fr/tel-00143331

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Compactador mixto de neumáticos y cilindro vibrante

Figura 1. Compactador mixto Dynapac CC224HF

Los compactadores mixtos de neumáticos y de cilindro vibratorio («combination rollers«) se usan principalmente en la compactación de firmes asfálticos. No obstante, en obras de tierra presentan la ventaja de combinar la acción profunda del cilindro vibratorio con el sellado superficial producido por el eje trasero formado por 3 o 4 neumáticos. Ambas partes pueden estar articuladas o presentar un bastidor rígido. La tracción suele darse en ambos ejes.

La anchura de compactación suele ser de 1,70 m, con modelos que llegan a 2,30 m. El diámetro del rodillo varía de 1,10 a 1,50 m, repartiéndose el peso en un 40% sobre el cilindro y el resto en las ruedas neumáticas. El peso oscila entre 7 y 16 t. La carga por rueda neumática suele ser de 2 a 3 t, lo que supone una carga lineal unitaria comprendida entre 25 y 30 kp/cm.

Las frecuencias de trabajo oscilan entre 25-40 Hz con amplitudes nominales a elegir, normalmente, entre dos o tres valores inferiores a 1 mm. La velocidad llega a 15 km/h, aunque la de trabajo puede ser de 7 km/h.

Este tipo de compactador mixto puede ser interesante en determinadas obras, pero hay que tener en cuenta que el rendimiento es comparativamente menor que el obtenido por dos máquinas por separado.

En ocasiones (Figura 2), puede ser este compactador híbrido remolcado. Son máquinas de mayor durabilidad, con un bastidor de alta resistencia capaz de lastrar hasta 14 t.

Figura 2. Compactador mixto remolcado. https://www.broons.com/product/combination-roller/

Os paso un vídeo de un compactador mixto de la empresa CASE.

https://www.youtube.com/watch?v=fQ8XSgIlkZE

Referencias:

ABECASIS, J. y ROCCI, S. (1987). Sistematización de los medios de compactación y su control. Vol. 19 Tecnología carreteras MOPU. Ed. Secretaría General Técnica MOPU. Madrid, diciembre.

ROJO, J. (1988): Teoría y práctica de la compactación. (I) Suelos. Ed. Dynapac. Impresión Sanmartín. Madrid.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Rodillos remolcados estáticos «pata de cabra»

Figura 1. Rodillo doble remolcado pata de cabra.

Se trata de un tipo de compactador estático de rodillo de patas apisonadoras. El nombre de «pata de cabra» viene por la similitud a la acción del paso de un rebaño, cuyas patas penetran en el suelo y lo compactan.

Están remolcados por un tractor, y constan de un cilindro de 1,20 a 1,70 m de anchura y un diámetro entre 1,00 y 1,50 m, al cual se le disponen de 90 a 130 patas de unos 15 a 30 cm. Estos salientes están dispuestos al tresbolillo, y sus formas pueden ser truncadas, cilíndricas u otras. El grosor máximo de la tongada, que está ligado la altura de la pata y al espesor de la misma, no debe pasar de unos 30 cm. La presión que transmiten al terreno oscila entre los 1,5 y 3,0 MPa.

Su uso actual es limitado. El peso de cada rodillo es de unas 5 t, pudiéndose remolcar varios a la vez, para mejorar el rendimiento de la compactación. La velocidad de trabajo oscila entre 3 y 10 km/h. Es una máquina muy robusta, y por consiguiente no necesita casi entretenimiento, pero requiere, para asegurar el rendimiento, una gran superficie de trabajo.

Figura 2. Rodillo remolcado pata de cabra. Imagen: V. Yepes (2020)

Os dejo un vídeo descriptivo de este compactador:

Referencias:

ABECASIS, J. y ROCCI, S. (1987). Sistematización de los medios de compactación y su control. Vol. 19 Tecnología carreteras MOPU. Ed. Secretaría General Técnica MOPU. Madrid, diciembre.

ROJO, J. (1988): Teoría y práctica de la compactación. (I) Suelos. Ed. Dynapac. Impresión Sanmartín. Madrid.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente n.º 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Sustitución del terreno como técnica de mejora

Figura 1. Mototraílla excavando y transportando material.

La forma más directa de mejorar un terreno de mala calidad es sustituirlo. Sería el caso de suelos blandos, con baja capacidad portante, que presentan deformaciones diferidas importantes o incluso que provoquen roturas parciales en terraplenes. Aparentemente se trata de una solución sencilla en terrenos blandos, pero puede ser problemática desde el punto de vista medioambiental debido a la cantidad de trabajos de excavación y movimiento de tierras necesarios.

El proceso pasa por excavar y retirar el terreno original que presenta una capacidad portante baja, tales como rellenos antrópicos, tierra vegetal, arcillas y limos blandos, arcillas expansivas, suelos colapsables, etc. El material retirado se sustituye por la aportación de otro de mayor calidad que deberá ser compactado. Sin embargo, también es posible aportar terreno sin necesidad de retirarlo previamente cuando se construyen terraplenes, salvo la posible retirada del material que formará el cimiento del terraplén, si éste es inadecuado.

En otras ocasiones, se elimina parte del material y se sustituye por otro de menor peso para reducir la sobrecarga. Es el caso del uso de geoespumas de bloques de poliestireno expandido que se han utilizado en la rehabilitación de infraestructuras y en la construcción de carreteras y terraplenes.

Figura 2. Uso de geoespuma de poliestireno expandido. https://www.epsindustry.org/other-applications/geofoam

Se trata de un método sencillo cuando la profundidad de excavación no supera el entorno de los 3-4 m y se encuentra por encima del nivel freático. En caso contrario, se debe eliminar con maquinaria adecuada, como puede ser una dragalina; después se rellena con escollera para alcanzar cierto grado de compacidad. Otra complicación puede aparecer cuando los suelos son excesivamente blandos, como las turbas, donde a la maquinaria se le dificulta su trabajo.

Las ventajas de este procedimiento es que es aplicable a cualquier tipo de terreno que sea excavable. Además, la mejora se alcanza en un corto periodo de tiempo en comparación con otras técnicas que supongan la consolidación, por ejemplo. Asimismo, la capacidad de carga y los asientos del terreno se pueden controlar fácilmente.

Os dejo a continuación un vídeo de una dragalina extrayendo material.

En este otro vídeo podemos ver la colocación de bloques de poliestireno expandido.

References:

CHU, J.; VARAKSIN, S.; KLOTZ, U.; MENGÉ, P. (2009). Construction Processes. Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering, pp. 3006-3135. IOS Press, doi:10.3233/978-1-60750-031-5-3006

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Compactación por resonancia de suelos

La compactación por resonancia de Muller (Muller Resonant Compaction, MRC) constituye un sistema de vibración profunda que se basa en el efecto de resonancia en las capas de suelo para incrementar la eficacia de la densificación (Figura 1). La amplificación de la vibración ocurre cuando la sonda vibrante y el suelo se encuentran en resonancia. En ese momento, la fricción entre las partículas se reduce temporalmente, lo que facilita su reorganización y densificación. El método se utiliza preferentemente en suelos granulares no saturados con un diámetro efectivo de sus partículas D10 (el 10% de las partículas son más finas que ese D10) aproximadamente igual a 0,03 mm. MRC no requiere agua para la penetración.

Figura 1. Compactación por resonancia (Massarsch et al, 2019)

Se utiliza una sonda de acero a la que se adjunta en su extremo superior un vibrador hidráulico de frecuencias de funcionamiento variables. La sonda se introduce en el suelo, ayudado por una guía, a frecuencia alta para reducir la resistencia. Cuando se alcanza la profundidad prevista, la frecuencia se ajusta a la frecuencia de resonancia. La frecuencia de resonancia depende de la masa dinámica y estática del vibrador, de la masa y las propiedades dinámicas de la sonda de compactación y de las condiciones del suelo. En la resonancia, que se produce entre 10 y 20 Hz, la energía de compactación requerida decrece. En esta fase de la compactación del suelo, la presión de aceite del vibrador disminuye, lo que reduce el consumo de combustible y el desgaste en el equipo vibratorio.

La sonda oscila en dirección vertical y la energía de la vibración se transmite al suelo circundante a lo largo de toda la superficie de la sonda. En la resonancia, la capa de suelo vibra «en fase» con la sonda de compactación. En este estado, la energía de vibración se transfiere eficientemente desde el vibrador a la sonda y al suelo circundante, ya que el movimiento relativo entre la sonda de compactación y el suelo es muy pequeño. Este aspecto es una ventaja importante, en comparación con los métodos convencionales de compactación vibratoria.

La sonda de compactación tiene un diseño patentado de placas flexibles en forma de Y con aperturas (FLEXI-probe) (Figura 2). La reducción de la rigidez de la sonda incrementa la transferencia de energía al suelo circundante, lo que se consigue con aperturas circulares en el perfil. Además, estas aperturas también presentan la ventaja de reducir el peso y aumentar la amplitud de la vibración, en comparación con otras sondas vibrantes del mismo peso. La longitud de la sonda así como el tamaño de la abertura puede variar dependiendo de las condiciones del suelo. La frecuencia de resonancia es bastante complicada de predecir desde un punto de vista teórico. Sin embargo, es fácil de medir directamente en el terreno a través de técnicas de medición sísmica.

Figura 2. Perfil longitudinal y sección de una sonda de compactación por resonancia (Massarsch y Fellenius, 2017)

La respuesta dinámica del suelo durante la compactación puede utilizarse para vigilar el efecto de la compactación. Con el aumento de la densificación de las capas, la frecuencia de compactación por resonancia crece. También se incrementa la velocidad de vibración del suelo y se reduce su amortiguación. Con la ayuda de unos sensores de vibración colocados en la superficie del terreno, se puede determinar el cambio en la velocidad de propagación de las ondas, lo que refleja el cambio de la rigidez y el estado tensional del suelo.

La duración de la compactación depende de las propiedades del suelo y del grado de densificación que se desee alcanzar. El tratamiento suele llevarse a cabo en un patrón de cuadrícula, en dos o más pasadas. El espaciado de la cuadrícula oscila entre 3,50 y 4,50 m. Sin embargo, el método MRC puede tener un rendimiento demasiado optimista en lo que respecta a la eficacia en función de los costos. Se requiere una maquinaria pesada capaz de manejar el peso de la sonda y del vibrador, siendo el consumo total de energía es excesivo en comparación con otros métodos. La profundidad de la vibrocompactación se limita en su mayor parte a 30 m.

Referencias:

MASSARCH, K.R., FELLENIUS, B.H. (2019). Evaluation of resonance compaction of sand fills based on cone penetration test. Proceedings of the Institution of Civil Engineers – Ground Improvement, https://doi.org/10.1680/jgrim.17.00004

MASSARCH, K.R., WERSÄLL, C., FELLENIUS, B.H. (2019). Liquefaction induced by deep vibratory compaction. Ground Improvement. Proceedings of the Institution of Civil Engineers – Ground Improvement, https://doi.org/10.1680/jgrim.19.00018

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Consolidación por vacío de suelos

La consolidación por vacío o atmosférica es un sistema patentado por Menard («Menard Vacuum«) que permite la consolidación y precarga de suelos saturados impermeables blandos y muy blandos como arcillas, limos, turbas, etc. (Figura 1). Es un procedimiento que se utiliza desde finales de los 80 en depuradoras, terraplenes, aeropuertos, centrales eléctricas, etc.

Figura 1. Vista de la consolidación por vacío de suelos. http://menard.com.mx/menard-vacuum%E2%84%A2

El sistema consiste en la instalación de una red de drenes horizontales y verticales bajo una membrana impermeable que permite, mediante bombeo al vacío del agua intersticial y del aire del terreno, un vacío en el terreno que equivale a una carga de 60 a 80 kPa (unos 3-4 m de arena). El agua se evacua por medio de zanjas perimetrales de confinamiento a las que se ancla la membrana. La profundidad del tratamiento se limita al espesor del depósito blando y la capacidad de la maquinaria, aunque los rangos habituales suelen ser de 10 a 35 m de profundidad, llegándose incluso a los 45 m. Los asientos residuales son poco significativos tras el tratamiento.

El vacío crea una consolidación isotrópica en poco tiempo, con la ventaja de eliminar la precarga sobre suelos potencialmente inestables (Figura 2). La consolidación se consigue al aumentar la presión efectiva sin modificar la presión total en el suelo. Además, no se rebaja el nivel freático, pues se mantiene la saturación del terreno por medio de las zanjas perimetrales. Frente a la precarga, es un procedimiento más rápido y económico.

Otra ventaja de la precarga con vacío es que la consolidación ocurre en la superficie donde se aplica. En algunos casos el suelo se retrae horizontalmente, pero no se produce un desplazamiento horizontal del manto cuando se carga, cosa que ocurre con la precarga y drenes verticales.

Figura 2. Esquema de instalación del sistema de vacío (cortesía de Menard).

No obstante, el procedimiento no es efectivo si existen capas de arena profundas en el depósito blando. Si estas capas son más superficiales, se pueden aislar mediante, por ejemplo, muros pantalla. Tampoco funciona bien el sistema en áreas extensas, por lo que normalmente se subdivide la extensión en zonas más pequeñas, pero que deben aislarse con pantallas impermeables. El procedimiento requiere, además, un control cuidadoso para detectar pérdidas de vacío por escapes.

El tratamiento por vacío suele aplicarse durante 4-6 meses (tiempo menor a la precarga). Durante este tiempo no se permiten actividades sobre el terreno para evitar perforar la membrana impermeable. Sí se autoriza el paso de la maquinaria y el almacenamiento de materiales, así como trabajar en las zonas adyacentes.

Figura 3. Consolidación por vacío. https://ceteau.com/es/products/consolidaci%C3%B3n-por-vac%C3%ADo/

Os dejo un vídeo que he grabado para explicar este procedimiento de mejora del terreno. Espero que os guste.

Os paso un vídeo de Menard sobre este procedimiento de consolidación atmosférica.

Este es otro vídeo donde veréis una animación del sistema.

Otro vídeo de mejora de suelos mediante geodrenes al vacío.

Aquí os dejo un folleto de Menard sobre la consolidación atmosférica.

Pincha aquí para descargar

Referencias:

LÓPEZ, N.P.; MENDOZA, M.J.; ESPINOSA, A.; OSSA, A. (2016). Sistemas de precarga con vacío para consolidación acelerada de suelos: membrana hermética o dren a dren. Memorias de la XXVIII Reunión Nacional de Ingeniería Geotécnica, SMIG (23-26 Noviembre 2016), Mérida, Yucatán, México.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Mejora de terreno mediante Terra-Probe

El método Terra-Probe consiste en hundir y extraer un tubo de acero de unos 80 cm de diámetro de extremo abierto con vibraciones verticales inducidas por un vibrohincador externo (Figura 1). Este tubo es de 10 mm de espesor de chapa y su longitud debe superar entre 3 y 5 m la profundidad requerida de tratamiento.

Figura 1. Esquema del acoplamiento del vibrohincador al tubo de acero.

Las vibraciones verticales (de unos 15 Hz) permiten la hinca del tubo que, al llegar a la profundidad prevista, se eleva gradualmente, continuando la vibración y compactando el suelo tanto en el interior como alrededor del tubo. Se mantiene de 30 a 60 segundos vibrando antes de elevar en cada escalón. El área de influencia de la compactación es de aproximadamente 1 m respecto al tubo.

Esta técnica permite compactar suelos arenosos secos o saturados, pudiéndose alcanzar profundidades de unos 15 a 20 m. Sin embargo, no es eficiente en los primeros 4 m desde la superficie. Los puntos de vibrado se separan habitualmente 1,50 m, en un patrón triangular o rectangular, en función del tipo de suelo y la densificación requerida.

Las condiciones del suelo saturado son ideales para el éxito del método. En los sitios donde el nivel freático es profundo, se instalan lanzas de agua en el tubo para ayudar a la penetración y densificación del suelo. Esta técnica, no obstante, no es útil cuando el contenido de finos supera el 15% o si hay materia orgánica en cantidades de más del 5% en peso. También hay que considerar que, si existen capas inferiores más blandas, pueden asentar con la vibración. Además, Terra-Probe no es útil cuando se trata de atravesar capas rígidas. Sí que es una técnica idónea en localizaciones off-shore.

.

Figura 2. Esquema del sistema Terra-Probe

Terra-Probe es una técnica similar a la vibroflotación, pero es unas 4 veces más rápida. No obstante, es menos eficaz, pues se necesitan de 4 a 5 veces más puntos de tratamiento. La zona de influencia de la compactación y la profundidad es menor, así como la densidad relativa alcanzada. Una de las ventajas de Terra-Probe es que se puede utilizar un equipo habitual de pilotaje para realizar el trabajo.

Referencias:

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Columnas de módulo controlado

Las columnas de módulo controlado, también llamadas columnas de mortero de desplazamiento, mejoran del terreno mediante una red de inclusiones verticales semi-rígidas. A diferencia de los pilotes, solo pretenden reducir el asiento total y diferencial del terreno, liberando una parte de las cargas transmitidas. Es una técnica desarrollada por Menard en 1994, y está bajo patente. Se trata, en definitiva, de reforzar el suelo con inclusiones de mortero u hormigón bombeable, que se comporta como un material compuesto poco compresible. Ello permite el uso de cimentación superficial en zonas donde usualmente se utilizan cimentaciones profundas. Se pueden instalar en terrenos tanto granulares como cohesivos, incluso en suelos con algo contenido orgánico o turba. Es idóneo para cargas fuertes y limitaciones estrictas de asientos.

Figura 1. Cabeza de barrena de desplazamiento para la ejecución de una columna de módulo controlado. http://www.pilotesyobras.com/tratamientos-suelos-columnas-mortero-desplazamiento.asp

La técnica se ejecuta en diámetros entre 250 y 500 mm y profundidades de unos 25 a 30 m, con producciones diarias superiores a los 250 metros lineales, pudiendo alcanzar valores de 400 a 500 m de columna por jornada de trabajo. Su coste es relativamente bajo al realizarse en diámetros pequeños frente a otras técnicas que consumen cantidades elevadas de grava. Presenta un rendimiento alto, reduce las cuantías de hormigón y acero de la cimentación, reparte bien las cargas y limita los asientos, además, es una técnica respetuosa con el medio ambiente, pues no hay extracción de material y tampoco vibraciones.

La perforación se realiza con una barrena hueca que desplaza el terreno horizontalmente, sin vibraciones ni producción de desechos. La inyección del mortero u hormigón se realiza por el interior de la barrena, de abajo a arriba, con presiones moderadas (normalmente inferior a 0,5 MPa) y garantizando la continuidad del hormigonado. La resistencia del hormigón o del mortero es de al menos 15 MPa. El módulo de deformación del mortero es de 5 a 30 veces menor que el del hormigón.

En la Figura 2 se observan las fases del procedimiento constructivo. La barrena se atornilla en el suelo hasta la profundidad especificada y luego se sube sin extraer el material. A continuación, se incorpora la lechada o mortero a través del taladro hueco. Cuando estas columnas soportan estructuras flexibles, como por ejemplo una solera, se termina con una capa granular de un espesor entre 40 y 80 cm. La capa de reparto también se puede estabilizar con cemento y, en el caso de cargas elevadas, pueden ser necesarios espesores de hasta 3,00 m combinados con geomallas de refuerzo.

Figura 2. Fases del procedimiento constructivo de las columnas de módulo controlado (cortesía de Menard)

Os dejo varios vídeos de la técnica de columnas de módulo controlado de la empresa Menard.

A continuación os dejo un folleto explicativo de Menard sobre este sistema de mejora de terrenos.

Pincha aquí para descargar

Referencias:

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Sistema de almacenamiento y calentamiento del ligante

Figura 1. Transporte calefactado del betún. Imagen: V. Yepes

El ligante se almacena en tanques provistos de serpentines de aceite para su calefacción. Suelen ser depósitos cilíndricos metálicos con aislante térmico de fibra de vidrio, con una capacidad que depende de la producción de la planta. Es habitual el uso de dos calderas para mantener en ellas el ligante a la temperatura requerida, o bien utilizar una para la recepción del ligante y otra para su calefacción. En ausencia de tanques, se pueden construir fosas de hormigón impermeabilizadas para evitar fugas; equipadas con serpentines para mantener a la temperatura. Además, la planta debería prever el uso de betún envasado en bidones como reserva para evitar el desabastecimiento.

 

Figura 2.- Tanque portátil

El sistema de calentamiento está compuesto por una caldera, una bomba centrífuga que hace recircular el aceite caliente, tuberías encamisadas, serpentines sumergidos en los depósitos del ligante, así como termómetros para el control. Todos los elementos disponen de aislamientos que evitan pérdidas de calor y ahorran energía. En algunos sistemas también se utilizan los gases de combustión como fluido caliente. En caso de usar los sistemas de calefacción por gases calientes de quemadores de combustible líquidos, la cámara de combustión, debe estar fuera del tanque o protegida con material refractario; siendo necesario un mejor control de la temperatura.

Figura 3.- Almacenamiento en silos del betún. Imagen: V. Yepes

Referencias:

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.