Uno de los datos más relevantes para que el uso seguro de las playas en tiempos de coronavirus es la estimación del aforo máximo de una playa en función una serie de factores que deben adaptarse a las circunstancias de cada playa y al contexto de la pandemia. Este cálculo no es sencillo, pues los factores que habitualmente se utilizan en los cálculos de aforos en playas se basan en aspectos que relacionados con el confort y con la satisfacción del usuario. Es la primera vez, por tanto, que se plantea un método cuyo objetivo principal sea la reducción del riesgo de contagio por coronavirus.
Para conocer dicho aforo son necesarios, entre otros, determinar las siguientes variables que influyen en el problema: distancia de seguridad sanitaria, ocupación estática segura, ocupación dinámica segura, porcentaje de usuarios susceptible de contagio, tipo y porcentaje de ocupación de la playa (toallas, sombrillas, toldos), tamaño de las “unidades de convivencia”, zonificación de la playa por usos (zona activa, zona de reposo, zona de resguardo, zona de servicios), temperatura de la arena, velocidad y dirección de la brisa, carrera de marea, curva horaria de uso de la playa, curva diaria de uso de la playa, separación entre accesos a la playa, separación de pasillos intermedios en zona de reposo, rango de tiempo mínimo y máximo de disfrute de la playa, velocidad de movimiento de los bañistas en la playa, gestión de colas, entre otras variables.
Se plantea, por tanto, un método simplificado que depende de una serie de coeficientes correctores que deberían ajustarse estudiando casos reales en cada una de las playas. El dato del aforo es fundamental para las autoridades que deben tomar decisiones respecto al control de accesos, planificación o evacuación de una playa en caso de necesidad. Además, el aforo máximo es un dato necesario en cualquier aplicación que, en tiempo real, sea capaz de comunicar a los usuarios si se ha desbordado el límite seguro de uso.
Dejo a continuación una metodología simplificada que, espero, os pueda ser útil y os resuelva muchas de vuestras dudas.
La Norma UNE-EN 14991:2008 contempla los requisitos y los criterios básicos de prestaciones y especifica, donde sea aplicable, los valores mínimos de los elementos prefabricados para cimentaciones (comprende pilares con elementos de cimentación integrados, elementos de cimentación en cáliz, cálices, etc.) fabricados con hormigón armado de peso normal para estructuras de edificaciones de acuerdo con la Norma Europea EN 1992-1-1.
La presencia de suelos con permeabilidad muy alta o macizos rocosos muy fracturados pueden hacer que los bombeos sean excesivamente costosos y se precisen otro tipo de técnicas para controlar el nivel freático. Una forma de cambiar la permeabilidad de un terreno, y por tanto, contener mediante barrera el agua subterránea, es mediante la inyección del terreno. La técnica, muy utilizada también como mejora del terreno, consiste en introducir en el medio una mezcla fluida que reacciona con las partículas de suelo mediante una reacción hidráulica o química. De esta forma se conforma una masa de mayor resistencia mecánica y permeabilidad, así como menor deformabilidad, pues se consigue aumentar la compacidad, disminuyendo el índice de huecos (Figura 1).
El tratamiento del terreno con inyecciones depende tanto de las peculiaridades del medio a tratar como de las características del producto de inyección, así como de la forma en la que este producto se introduce en el medio.
Este procedimiento constructivo se inició en Francia, siendo su inventor Charles Bérigny en 1802, quien inyectó morteros de cemento, alguna vez asociados con puzolanas. Si bien al principio solo se pretendían rellenar huecos colocando el mortero líquido por gravedad, poco a poco se perfeccionaron las inyecciones, a partir de 1920-1930, donde la construcción de ferrocarriles abrió paso a las grandes obras hidráulicas.
Las aplicaciones más frecuentes de la inyección del terreno son los tratamientos de las cimentaciones de presas, el refuerzo de cimentaciones o recalce de edificios, así como la construcción de túneles. Sin embargo, hay que ser prudentes con estos procedimientos, pues la inyección de grandes volúmenes de material en el terreno puede causar desplazamientos. Además, el material inyectado tiende a moverse a través de las capas más permeables o a través de grietas débiles, surgiendo a menudo a distancias considerables del punto de inyección.
En el caso de las inyecciones de impermeabilización, el objetivo fundamental es reducir la permeabilidad del terreno. Son tratamientos muy habituales en presas, en túneles y en excavaciones en general, cuando se realizan trabajos bajo nivel freático. Se emplean como mezclas de inyección lechadas y productos químicos como los geles de silicato, aunque también es posible realizar inyecciones de colmatación de huecos mediante arenas sin cemento con objeto de disminuir la permeabilidad, permitiendo el drenaje. A medida que la permeabilidad del medio disminuye, se deben emplear fluidos de menor viscosidad para conseguir la suficiente penetración en el terreno.
Al fluido inyectado se le conoce como mortero de inyección, los cuales pueden ser conglomerados hidráulicos, materiales arcillosos, arenas y filleres, agua y productos químicos. El componente más habitual en las inyecciones es el cemento, el cual puede ir acompañado por distintos productos. Los materiales utilizados en la inyección son los siguientes:
Conglomerantes hidráulicos: Incluyen los cementos y productos similares empleados en suspensión cuando se preparan las lechadas. La granulometría del conglomerante hidráulico de la lechada es un factor importante, pues guarda relación con las dimensiones de los huecos o fisuras o huecos existentes.
Materiales arcillosos: Las arcillas naturales, de tipo bentonítico, activadas o modificadas, se utilizan en las lechadas elaboradas con cemento, pues reducen la sedimentación y varían la viscosidad y la cohesión de la lechada, mejorando la bombeabilidad.
Arena y filleres: Se adicionan a las lechadas de cemento y a las suspensiones de arcilla para variar su consistencia, mejorando de esta forma su comportamiento frente a la acción del agua, su resistencia mecánica y su deformabilidad. Generalmente se utilizan arenas naturales o gravas, filleres calcáreos o silíceos, puzolanas y cenizas volantes, exentos de elementos perjudiciales.
Agua
Productos químicos: Se utilizan silicatos y sus reactivos, resinas acrílicas y epoxi, materiales procedentes de lignina y poliuretanos, siempre que cumplan la legislación ambiental vigente. Los aditivos son productos orgánicos e inorgánicos que se añaden, en general en cantidades reducidas, a la lechada para modificar sus propiedades y controlar la viscosidad, el tiempo de fraguado y la estabilidad, durante la inyección, además de la resistencia, cohesión y permeabilidad una vez colocada la lechada. Como aditivos se utilizan, entre otros, superplastificantes, productos para retener agua y productos para arrastrar aire.
En la Tabla 1 se relacionan los distintos tipos de productos:
Os paso a continuación un vídeo explicativo de los materiales empleados en la inyección de terrenos.
Referencias:
BELL, F.G. (1993). Engineering treatment of soils. E & F Spon, Londres.
BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Carlos López Jimeno, Madrid, 432 pp.
CAMBEFORT, H. (1968). Inyección de suelos. Omega, Barcelona.
KUTZNER, C. (1996). Grouting of rock and soil. A.A. Balkema, Rotterdam.
MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. 2004.844. Valencia.
SANZ, J.M. (1981). Procedimientos generales de construcción. Sondeos y perforaciones, inyecciones, pilotes, pantallas continuas. E.T.S. Ingenieros de Caminos, Madrid.