Curso en línea de “Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación”

La Universitat Politècnica de València, en colaboración con la empresa Ingeoexpert, ha elaborado un Curso online sobre “Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación”. El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 50 horas de dedicación del estudiante. Empieza el 9 de septiembre de 2019 y termina el 21 de octubre de 2019. Hay plazas limitadas.

Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-procedimientos-de-construccion-de-cimentaciones-y-estructuras-de-contencion-en-obra-civil-y-edificacion/?v=04c19fa1e772

Os paso un vídeo explicativo y os doy algo de información tras el vídeo.

Este es un curso básico de construcción, cimentaciones y estructuras de contención en obras civiles y de edificación. Se trata de un curso que no requiere conocimientos previos especiales y está diseñado para que sea útil a un amplio abanico de profesionales con o sin experiencia, estudiantes de cualquier rama de la construcción, ya sea universitaria o de formación profesional. Además, el aprendizaje se ha escalonado de modo que el estudiante puede profundizar en aquellos aspectos que más les sea de interés mediante documentación complementaria y enlaces de internet a vídeos, catálogos, etc.

En este curso aprenderás las distintas tipologías y aplicabilidad de los cimientos y las estructuras de contención utilizados en obras de ingeniería civil y de edificación. El curso índice especialmente en la comprensión de los procedimientos constructivos y la maquinaria específica necesaria para la ejecución de los distintos tipos de cimentación (zapatas, losas de cimentación, pilotes, micropilotes, cajones, etc.) así como los distintos tipos de estructuras de contención (muros pantalla, pantallas de pilotes y micropilotes, tablestacas, entibaciones, muros, etc.). Es un curso de espectro amplio que incide especialmente en el conocimiento de la maquinaria y procesos constructivos, y por tanto, resulta de especial interés desarrollar el pensamiento crítico del estudiante en relación con la selección de las mejores soluciones constructivas para un problema determinado. El curso trata llenar el hueco que deja la bibliografía habitual donde los aspectos de proyecto, geotecnia, estructuras de hormigón, etc., oscurecen los aspectos puramente constructivos. Además, está diseñado para que el estudiante pueda ampliar por sí mismo la profundidad de los conocimientos adquiridos en función de su experiencia previa o sus objetivos personales o de empresa.

El contenido del curso está organizado en 20 unidades didácticas, que constituyen cada una de ellas una secuencia de aprendizaje completa. La dedicación aproximada para cada unidad se estima en 2-3 horas, en función del interés del estudiante para ampliar los temas con el material adicional. Además, al finalizar cada unidad didáctica, el estudiante afronta una batería de preguntas cuyo objetivo fundamental es afianzar los conceptos básicos y provocar la duda o el interés por aspectos determinados del tema abordado. Al final se han diseñado cuatro unidades didácticas adicionales cuyo objetivo fundamental consiste en afianzar los conocimientos adquiridos a través del desarrollo de casos prácticos, donde lo importante es desarrollar el espíritu crítico y la argumentación a la hora de decidir la conveniencia de un procedimiento constructivo. Por último, al finalizar el curso se realiza una batería de preguntas tipo test cuyo objetivo es conocer el aprovechamiento del curso, además de servir como herramienta de aprendizaje.

El curso está programado para una dedicación de 50 horas de dedicación por parte del estudiante. Se pretende un ritmo moderado, con una dedicación semanal de 6 a 10 horas, dependiendo de la profundidad de aprendizaje requerida por el estudiante, con una duración total de 6 semanas de aprendizaje.

Objetivos

Al finalizar el curso, los objetivos de aprendizaje básicos son los siguientes:

  1. Comprender la utilidad y las limitaciones de las cimentaciones y estructuras de contenciónempleadas en la construcción de obras civiles y de edificación
  2. Evaluar y seleccionar el mejor tipo de cimentación y estructura de contención necesario para una construcción en unas condiciones determinadas, considerando la economía, la seguridad y los aspectos medioambientales

Programa

  • – Unidad 1. Concepto y clasificación de cimentaciones
  • – Unidad 2. Cimentaciones superficiales. Parte 1
  • – Unidad 3. Cimentaciones superficiales. Parte 2
  • – Unidad 4. Cimentaciones por pozos y cajones
  • – Unidad 5. Conceptos fundamentales y clasificación de pilotes
  • – Unidad 6. Pilotes de desplazamiento prefabricados
  • – Unidad 7. Pilotes de desplazamiento hormigonados “in situ”
  • – Unidad 8. Pilotes perforados hormigonados “in situ”. Parte 1
  • – Unidad 9. Pilotes perforados hormigonados “in situ”. Parte 2
  • – Unidad 10. Equipos para la perforación de pilotes
  • – Unidad 11. Estructuras de contención de tierras. Muros
  • – Unidad 12. Pantallas de hormigón
  • – Unidad 13. Estabilidad de las excavaciones. Entibaciones.
  • – Unidad 14. Tablestacas y anclajes
  • – Unidad 15. Hinca de pilotes y tablestacas
  • – Unidad 16. Descabezado de pilotes y muros pantalla
  • – Unidad 17. Caso práctico 1
  • – Unidad 18. Caso práctico 2
  • – Unidad 19. Caso práctico 3 d
  • – Unidad 20. Cuestionario final del curso

Profesorado

Víctor Yepes Piqueras

Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València y profesor, entre otras, de las asignaturas de Procedimientos de Construcción en los grados de ingeniería civil y de obras públicas. Su experiencia profesional se ha desarrollado fundamentalmente en Dragados y Construcciones S.A. (1989-1992) como jefe de obra y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 5 proyectos de investigación competitivos. Ha publicado más de 84 artículos en revistas indexadas en el JCR. Autor de 8 libros, 22 apuntes docentes y más de 250 comunicaciones a congresos. Ha dirigido 12 tesis doctorales, con 4 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos. Tiene experiencia contrastada en cursos a distancia, destacando el curso MOOC denominado “Introducción a los encofrados y las cimbras en obra civil y edificación”, curso que ya ha tenido tres ediciones con más de 4000 estudiantes inscritos.

 

 

 

Perforación con hélice corta

Hélice cortaCuando se trata de perforaciones de diámetros elevados y la extracción del material se realiza de forma discontinua, se utiliza la perforación con hélice corta (intermittent augering).

Con este procedimiento se pueden abrir perforaciones de hasta unos 2,5 m de diámetro y profundidades de hasta unos 50 m. El terreno debe ser lo suficientemente seco y cohesivo para evitar derrumbes en las paredes. En caso contrario, se debería recurrir a la perforación con lodos y extracción con cazo.

 

 

 

Referencias:

YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia.

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Soil nailing o suelo claveteado

Soil nailing
Figura 1. Gunitado sobre ladera claveteada

La técnica del soil nailing, o claveteado de suelos,  consiste en reforzar un talud, a medida que desciende la excavación, mediante la introducción de anclajes de refuerzo pasivos o activos, generalmente subhorizontales, que trabajan principalmente a tracción, pero también pueden tomar cargas de flexión y corte. Estos refuerzos se complementan a medida que baja la excavación con un paramento superficial que puede ser rígido o flexible que impide el deslizamiento del suelo entre los puntos que se encuentran las barras instaladas. Este refuerzo del terreno permite mejorar su resistencia al corte a lo largo de superficies potenciales de falla.

Las barras se colocan en unos sondeos perforados previamente y que luego se rellenan con una lechada o mortero de inyección. Posteriormente se ejecuta un paramento vertical que impida la caída de tierra entre los puntos donde se sitúan las inclusiones. Esto suele realizarse mediante hormigón proyectado (gunita), que suele reforzarse mediante una malla de acero.

Este procedimiento no se puede aplicar bajo nivel freático, ni tampoco cuando el suelo es blando o muy blando, pues entonces no es rentable su uso.

Figura 2. Procedimiento constructivo del suelo claveteado. https://civilengineeringbible.com/article.php?i=107

Os paso unos cuantos vídeos informativos al respecto. Espero que os sean de utilidad.

 

Referencias:

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844. Valencia.

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Inyecciones de fracturación

Figura 1. Inyección de fracturación para mejorar terreno bajo cimentación de aerogenerador

Las inyecciones de fracturación (también llamadas hidrofisuración, hidro-fracturación, hidrojacking o claquage), son inyecciones de lechada de cemento a media/alta presión que rompen el terreno, produciendo su densificación y rigidización, creando una red estructuradora.  Se introduce un material de baja viscosidad que busca la rotura del terreno para la posterior introducción de la lechada de pronto fraguado para reestructurarle. El tipo de lechada o mortero a emplear, así como los aditivos y dosificaciones dependerán tanto del tipo de inyección que vayamos a realizar como del resultado que estemos buscando con la intervención.

La técnica se realiza mediante la inyección con un tubo-manguito, inyectándose pequeños volúmenes en cada fase. El producto de inyección no es capaz de penetrar en los poros del terreno, sino que se introduce por las fisuras que se van creando por efecto de la presión. Se crean lentejones del material inyectado, que recomprimen transversalmente el terreno. Al crear una nueva estructura de terreno reforzado se consigue un doble efecto de densificación y rigidización. Esto se debe a que el suelo queda cosido por la red de fracturas cementadas inducidas en el mismo.

Esta técnica suele utilizase en las inyecciones de compensación, utilizadas éstas para controlar los movimientos que puedan generar las obras subterráneas sobre edificios en superficie. Asimismo, se suele utilizar para conseguir  una mejora de las características resistentes del terreno ya que se densifica éste y se generan unas ramificaciones de material resistente a modo de “armado” del terreno.

 

Las fases características de este tipo de inyección son las siguientes:

  1. Instalación del tubo manguito e inyección de la vaina: El tubo manguito se coloca en la perforación efectuada, rellenando con una mezcla de bentonita-cemento, el espacio anular entre la pared del sondeo y el tubo manguito.
  2. Fracturación del suelo: Para permitir la inyección de la suspensión se inserta en un obturador doble, que independiza cada uno de los manguitos durante su inyección.
  3. Inyección múltiple: Los manguitos pueden inyectarse una o varias veces, de acuerdo con los requisitos técnicos. El volumen de lechada, la presión máxima de inyección y, en el caso de una inyección repetitiva, la velocidad de inyección, se mantiene de acuerdo con las instrucciones. Los tubos manguitos pueden reutilizarse.

 

Figura 2. Esquema de inyección por fracturación
Figura 3. Fases de la inyección por fracturación
Os paso una animación de la empresa HAYWARD BAKER que espero os guste.

Referencias:

AENOR (2001). UNE-EN 12715. Ejecución de trabajos geotécnicos especiales. Inyecciones. Madrid.

Dirección General de Carreteras (2002). Guía de cimentaciones en obras de carretera.  Ministerio de Fomento, Madrid.

Puertos del Estado (2005). ROM 0.5-05. Recomendaciones geotécnicas para obras marítimas y portuarias.  Ministerio de Fomento, Madrid.

Muzas, F. (2003). Inyecciones de fracturación y compactación. Jornada sobre mejora del terreno de cimentación. Intevía. (link)

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844.

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Columna de grava mediante vibrosustitución

KellerTerra muestra en un vídeo de 5 minutos cómo se ejecuta una columna de grava (vibrosustitución) en la obra de la Central de Ciclo Combinado de la Bahía de Escombreras, Murcia. Después de visualizarlo, contesta a las siguientes preguntas:

  1. ¿Qué es una central de ciclo combinado?
  2. ¿Qué circunstancias del terreno hicieron recomendable la mejora del suelo mediante columnas de gravas?
  3. ¿Qué características se querían conseguir del terreno mejorado?
  4. ¿De qué partes consta un tubo vibrador?
  5. ¿Pará qué sirve el tamiz que se encuentra en la tolva donde la cargadora descarga grava?
  6. ¿Qué hace el aire comprimido en la cámara de descarga?
  7. ¿Qué diámetros de columna de grava se ejecutaron?

Otro vídeo de interés sobre la vibrosustitución es el siguiente:

Inyecciones de alta presión: Jet grouting

http://www.interempresas.net/Mineria/Articulos/146294-Diametro-columnas-jet-grouting-funcion-energias-especificas-perforacion-inyeccion.html

El Jet-Grouting es un proceso que consiste en la desagregación del suelo (o roca poco compacta), mezclándolo, y parcialmente sustituyéndolo, por un agente cementante (normalmente cemento). La desagregación se consigue mediante un fluido con alta energía, que puede incluir el propio agente cementante. Esta técnica de alta presión consigue desagregar el suelo o la roca poco compacta, mezclándolo y sustituyéndolo por cemento, así se van llenando huecos y discontinuidades. Básicamente se expulsan chorros de lechada de cemento (grout) a través de unas toberas a velocidades muy altas, logrando así la rotura del terreno y su íntima mezcla con el mismo. La técnica del Jet-Grouting tiene múltiples aplicaciones (mejora del terreno, impermeabilización, túneles, etc.), siendo el fluido de perforación también variable (cemento, bentonita, mezclas químicas, etc.)

Os paso varios vídeos al respecto, empezando por una animación sobre del Jet grouting de triple fluido:

Referencias:

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844.

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Control del nivel freático mediante lanzas de drenaje (wellpoints)

Figura 1. Disposición de lanzas de drenaje en dos fases. https://www.empresadesatascossevilla.es/2015/08/achiques-de-agua-del-nivel-freatico-en-sevilla.html

El descenso de la capa freática por el método de vacío, también llamado lanzas de drenaje, agujas filtrantes, tubos filtrantes, tubos de achique o pozos-punta, se le conoce comúnmente por su nombre en inglés de “wellpoint“. Se trata de un equipo autoaspirante para el bombeo por vacío del agua. Es un método de control de descenso de agua subterránea, aplicable en terrenos granulares de diversa densidad y graduación. Es un sistema simple, versátil y de costo razonable, especialmente cuando el sitio donde se va a construir es accesible y el estrato saturado que se pretende drenar no es muy profundo.

Este sistema de agotamiento de agua puede resultar de gran eficiencia y utilidad en excavaciones cuya cota se encuentra por debajo del nivel freático. Por ejemplo, en la ejecución de sótanos o zanjas para colectores.

Tiene aplicación en un amplio rango de terrenos, con permeabilidades comprendidas entre 10-3 y 10-5 m/s, aunque su funcionamiento óptimo se produce cuando se instala en arenas de grano medio sin presencia de finos. En otro tipo de terrenos pueden ser necesarias operaciones adicionales de montaje (perforación previa y ejecución de filtro granular). Es especialmente útil en terrenos de baja permeabilidad (arenas finas y limos), donde el agua no puede drenar por gravedad a un sumidero. Además, el efecto de succión hace que la arena fina se mantenga con taludes empinados en excavaciones de altura inferior a 2 m. En terrenos poco permeables la depresión del nivel freático sería muy lenta, con caudales muy pequeños y un tiempo para alcanzar el nivel definitivo que podría durar meses. Es por ello que en estos terrenos no es viable el sistema, no solo por bajo rendimiento, sino porque lo finos taponarían el filtro de la lanza, impidiendo el paso del agua.

La aspiración del agua se produce por vacío a través de numerosos puntos de captación, tantos como lanzas colocadas, a través de los filtros existentes en los extremos de las mismas. Consiste básicamente en unas lanzas de 2,5 a 6 m de longitud, de un diámetro entre 1,75 y 2,00 pulgadas, que se hincan separadas entre 1 y 1,5 m de forma paralela a la zanja que se quiere excavar. Estas lanzas se conectan a una bomba de succión. Las lanzas están equipadas en su extremo inferior con una boquilla de inyección, de forma que cuando se hincan se impulsa agua a presión para introducirla con facilidad. Una vez instalada, se succiona el agua para abatir el nivel freático. La limitación se encuentra en la altura de aspiración, de unos 5 a 6 m, por lo que, si se quiere profundizar más, deberán realizarse escalonamientos (Figura 2).

Figura 2. Drenaje mediante wellpoint en etapas (Justo Alpañes y Bauzá, 2010)

El montaje del equipo no es complicado. La hinca de las lanzas se realiza mediante inyección de agua a presión a través de las mismas (self-jetting). Una vez colocadas, las lanzas se recogen en su parte superior por una tubería colectora, que a su vez irá conectada a la bomba de vacío, desde donde se conducirá el agua extraída al punto de vertido (con la ayuda de dos bombas incorporadas).  La bomba de vacío, de gran cilindrada, es la que produce la depresión base del sistema. El accionamiento y control del funcionamiento del equipo es muy sencillo. Es necesario garantizar la estanqueidad de toda la conducción para conseguir la aspiración del agua.

Debido a que el agotamiento se produce en numerosos puntos, disminuye el efecto de arrastre de finos, típico de las bombas de fondo.

El sistema funciona como un equipo compacto, que puede ser móvil o estar situado en un punto fijo de la obra, pues no precisa moverse para realizar el trabajo; en efecto, el bombeo se realiza a través de los conductos de aspiración al que concurren las diversas lanzas de drenaje.

Los componentes del sistema son:

  • Bomba de hinca: bombas de agua a presión conectadas a las cabezas de las lanzas, de modo que el agua sale por la punta de la lanza desplazando y arrastrando el terreno allí situado. Este vaciado hace que descienda la lanza.
  • Bomba de vacío: junto con un tanque separador de la mezcla aire-agua y bomba de agua, junto con una unidad de control eléctrico, la bomba de vacío provoca una subpresión que aspire el agua.
  • Manguitos de unión: tubos flexibles que conectan las lanzas con la conducción de aspiración.
  • Lanzas o agujas de drenaje: tubos de acero galvanizado y 50 mm de diámetro, con un filtro de 1 m de longitud en el extremo más profundo. Se hincan en el terreno y aspiran el agua una vez ensambladas a la bomba de vacío.
  • Mangueras de presión
  • Colectores: para la tubería perimetral.
  • Accesorios: codos, tes, tapones tubos bifurcados, uniones, mangueras flexibles.
  • Cuadro eléctrico: 380 V, 36 A
  • Alargadores
Figura 3. Componentes del sistema. Cortesía de ISCHEBECK. http://www.ischebeck.es/assets/files/agotamiento_agua/Cat%C3%A1logo%20Wellpoint%2016022012.pdf

Una página interesante es la de la empresa ISCHEBECK, os dejo su catálogo a continuación.

Descargar (PDF, 4.58MB)

Os paso algunos vídeos sobre la ejecución de esta técnica.

REFERENCIAS:

  • HERTZ, W.; ARNDTS, E. (1973). Theorie und praxis der grundwasserabsenkung. Ernst & Sohn, Berlin.
  • JUSTO ALPAÑES, J.L.; BAUZÁ, J.D. (2010). Tema 10: Excavaciones y drenajes. Curso de doctorado: El requisito básico de seguridad estructural en la ley orgánica de la edificación. Código Técnico de la Edificación. ETS. de Arquitectura, Universidad de Sevilla.
  • MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844. Valencia
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 326 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.