Hormigonado con tubería Tremie

Figura 1. Hormigonado con tubería Tremie

El método Tremie, de llenado por flujo inverso, se utiliza para hormigonar elementos estructurales de difícil acceso, como, por ejemplo, pantallas y pilotes, especialmente en presencia del nivel freático o en excavaciones en las que se empleen lodos de perforación. Con este procedimiento, el hormigón se coloca mediante un tubo vertical de acero cuyo extremo superior tiene forma de embudo. El extremo inferior del tubo se mantiene sumergido en el hormigón fresco sin contacto con el agua.

El hormigón se bombea de forma continua a través de una tubería, deslizándose hacia el fondo y desplazando el agua y las impurezas hacia la superficie. El tubo se coloca por tramos de varias longitudes para adaptarse a la profundidad del elemento que se va a hormigonar y está provisto de un embudo en la parte superior y de elementos de sujeción y suspensión.

En el fondo del tubo Tremie hay una válvula para evitar que el hormigón entre en contacto con el agua. El tubo debe llegar hasta el fondo de la perforación antes de iniciar el vertido del hormigón. Al principio, se debe elevar algunos centímetros para poner en marcha el flujo de hormigón y asegurar un buen contacto entre este y el fondo de la perforación. Se debe evitar el contacto con el agua. Antes de retirar el tubo completamente, se debe verter en la superficie suficiente de hormigón como para desplazar toda el agua y el hormigón diluido. El hormigón debe fluir fácilmente hacia su ubicación final y consolidarse por su propio peso, sin segregación o vibración que pueda incorporar agua a su masa, lavando el cemento, con la consecuente formación de bolos de arena y grava débilmente cementados.

Los tubos Tremie por gravedad deben tener un diámetro interior mínimo de 150 mm o 6 veces el tamaño máximo del árido, el que sea mayor, según la norma EN 1536. Por lo general, se emplea un diámetro de 250 mm. En el caso de los sistemas Tremie a presión (líneas de bombeo), el diámetro puede ser inferior a 150 mm. Los tubos deben ser de acero, ya que el aluminio reacciona con el hormigón y se separa del lodo de perforación.

Los tramos de tubería deben conectarse mediante un acoplamiento completamente estanco al agua. La longitud habitual de estos tramos varía entre 1 y 5 m. Se prefieren longitudes más largas porque tienen menos juntas, aunque el orden de colocación de las diferentes longitudes debe considerarse según las condiciones específicas de la obra, como la profundidad de la excavación, la altura de la tolva y el empotramiento en la primera retirada del tubo, así como durante las últimas descargas a baja presión hidrostática.

En general, los tubos deben separarse en cada junta después de cada uso y guardarse en un soporte Tremie para una limpieza adecuada. Se han producido roturas en las uniones durante la manipulación del Tremie, por lo que se recomienda realizar inspecciones visuales completas.

Tremie
Figura 2. Embudo en la parte superior del tubo Tremie y elementos de sujeción y suspensión

Los tubos sin juntas pueden utilizarse en excavaciones de poca profundidad, siempre que su manipulación lo permita. La tolva debe tener el mayor volumen posible para garantizar un suministro continuo de hormigón al tubo durante su colocación inicial. Los tubos deben ser lisos, limpios y rectos para minimizar la resistencia por fricción al flujo de hormigón.

Los pilotes suelen ser circulares y, por lo general, es suficiente una tubería central dentro de la perforación. Para los muros de pantalla, las normas especifican distintos límites para la distancia de flujo horizontal, que van de 1,8 a 2,5 m, con un máximo de 3 m. Se recomienda limitar la distancia a 2 m. Distancias mayores, de hasta 3 m, podrían ser aceptables si se ha demostrado que la trabajabilidad del hormigón es suficiente, combinada con una separación adecuada de las barras de armadura y un recubrimiento de hormigón superior a los valores mínimos establecidos. Los ensayos a escala real o las simulaciones numéricas, en particular mediante estudios comparativos, pueden ayudar a determinar los valores adecuados.

Los tubos deben colocarse de la manera más simétrica posible para evitar subidas irregulares del nivel del hormigón. En el caso de un solo tubo, este debe colocarse en el centro. Si se utilizan dos tubos, deben situarse aproximadamente a 1/4 de la longitud del panel desde cada extremo.

El inicio del hormigonado es uno de los pasos más críticos de todo el proceso de vertido, ya que el primer hormigón debe separarse del lodo de perforación.

En el método de hormigonado inicial en seco (a menudo confundido con el «vertido en seco»), el extremo del tubo está cerrado y el hormigón solo entra en contacto con el fluido de soporte una vez que sale del tubo. Se coloca una placa de acero o madera contrachapada con un anillo de sellado en la parte inferior del tubo para mantener el fluido de perforación fuera de la tubería durante su descenso al fondo de la excavación. A continuación, se descarga el hormigón directamente en el tubo seco, elevando el tubo entre 0,1 m y 0,2 m para permitir que el hormigón fluya en la excavación. En vertidos profundos, puede ser difícil evitar que el fluido entre en el tubo a través de las juntas o que este flote.

Con el método de colocación inicial en húmedo, se debe utilizar un medio de separación cuando el tubo esté lleno de fluido. Ejemplos de estos «tapones» incluyen gránulos de vermiculita (posiblemente agrupados en un saco), pelotas de goma inflables, esponjas, y bolas o cilindros de espuma. A veces se utiliza una placa de acero en la base de la tolva que se levanta con una grúa cuando la tolva está llena. El tapón debe evitar que la carga inicial de hormigón se mezcle con el fluido de perforación, lo que causaría segregación dentro del Tremie.

Para iniciar el hormigonado, el tubo debe bajarse hasta el fondo de la excavación y luego levantarse una pequeña altura (no mayor que el diámetro del tubo) para iniciar el flujo de hormigón y permitir que el tapón salga por la base del Tremie. El tapón deslizante de vermiculita debe tener una longitud dos veces el diámetro del tubo y que este no debe levantarse más de 0,2 m desde la base. Por razones prácticas, el método de colocación inicial en húmedo es el método preferido.

La Figura 3 muestra las condiciones de presión antes y durante las etapas del vertido, y destaca que, antes del primer corte, el tubo debe estar suficientemente sumergido. No obstante, debido a los aspectos dinámicos del flujo del hormigón, el nivel real de hormigón en el tubo, especialmente después de una interrupción tras el vertido inicial, puede ser más bajo que el punto de equilibrio hidrostático, tal como indica la Figura 3.

Figura 3. Fases de hormigonado Tremie

El nivel de hormigón necesario debe evaluarse para cada condición específica del lugar. Sin embargo, en la mayoría de los casos se requiere un mínimo de 5 m, o 6 m, según la norma EN 1536, antes del primer corte del Tremie. Es esencial contar con un volumen suficiente de hormigón en la obra, definido como la cantidad necesaria para llenar la altura mínima, antes de comenzar el vertido.

El Tremie requiere un mínimo de empotramiento en el hormigón previamente vertido. Las normas de ejecución europeas (EN 1536 y EN 1538) establecen un empotramiento mínimo que varía entre 1,5 y 3 m, siendo los valores más altos aplicables a excavaciones de mayor tamaño. En general, se acepta en la práctica un empotramiento mínimo de 3 m.

Cuando se utiliza una entubación recuperable durante el vertido de hormigón al Tremie, es importante considerar la extracción de los tramos de entubación al determinar el empotramiento mínimo del Tremie. La extracción de los tramos de entubación recuperable provocará un descenso en el nivel del hormigón, ya que se ocupará el espacio anular dejado por la entubación. Antes de retirar un tramo de entubación, la profundidad de empotramiento del Tremie debe ser suficiente para garantizar que se mantenga el empotramiento mínimo requerido después del descenso del hormigón.

Cuando se utilizan dos o más tubos Tremie, el extremo inferior de los tubos debe mantenerse a un nivel uniforme, salvo que la base esté escalonada y requiera medidas especiales iniciales.

Para asegurar un flujo adecuado del hormigón, el peso del hormigón dentro de la tubería Tremie debe superar:

  • La resistencia fuera de la base del tubo Tremie (presión hidrostática del fluido).
  • La resistencia del hormigón ya vertido.
  • La fricción entre el hormigón y la superficie interna de la tubería Tremie.

Algunos autores se refieren al «punto de equilibrio hidrostático» como el momento en que la fuerza de gravedad dentro del Tremie está equilibrada con la resistencia al flujo (véase la figura 3). Cuando se añade hormigón por encima de este punto de equilibrio, se provoca el flujo del hormigón. A mayor velocidad de vertido, más rápido será el flujo a través de la salida del Tremie.

El hormigón debe fluir libremente por el Tremie sin necesidad de bombeo, es decir, sin requerir elevación y descenso frecuentes del Tremie. Subir y bajar el Tremie para mantener el flujo indica una falta de trabajabilidad. Esto puede afectar a la configuración del flujo de hormigón y conlleva el riesgo de mezcla con el fluido de perforación y con material contaminado en la parte superior del hormigón, lo que puede dar lugar a la acumulación de detritos.

Os dejo algunos vídeos sobre este método de vertido del hormigón. Espero que os gusten.

Colocación de una tubería Tremie:

Hormigonado de un muro pantalla con tubería Tremie:

Lubricación de una tubería Tremie con lechada de cemento:

Descargar (PDF, 3.34MB)

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

TIKTIN, J. (1994). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pilotes de compactación

Figura 1. Hincado de pilotes prefabricados. https://geotecniafacil.com/pilotes-prefabricados-hincados/

En ocasiones se hincan pilotes en suelos granulares para compactar el terreno en superficie y permitir el uso de cimentos poco profundos. Suelen ser pilotes de desplazamiento cortos, aunque son las pruebas de campo las que pueden determinar cuál es la longitud razonable. Esta longitud depende de la densidad relativa del terreno antes y después de compactar y de la profundidad de compactación requerida (Das, 1999).

Los pilotes podrían ser de cualquier material, como los de madera o los prefabricados. La hinca de pilotes de madera se ha utilizado en la construcción de terrapalenes para carreteras. No obstante, también se podría emplear un pilote de arena compactada o de grava por sustitución. Estos elementos se disponen en mallas regulares. Estos elementos se hincan desde la periferia hacia el centro del área que se quiere mejorar.

El objetivo de estos pilotes es compactar el terreno entre elementos, formando un conjunto relativamente rígido de columnas donde se concentran las cargas. En consecuencia, se aumenta la capacidad de carga por fricción. El volumen desplazado, añadido a la vibración de la hinca, son los responsables de la densificación del terreno circundante. Con este efecto se mejora la resistencia del terreno y se reducen los asientos totales y diferenciales. Además, limitan el riesgo de licuación. La profundidad no suele pasar de 20 m.

Figura 2. Efecto del pilote de compactación

El cimiento no se apoya directamente sobre el pilote de compactación, sino sobre el conjunto del terreno densificado. También se puede hincar, mediante vibración o golpeo, un tubo con un tapón en su parte inferior. Una vez llega a la profundidad requerida, se rellena el orificio con material granular que se compacta por tongadas a la vez que se extrae la tubería, quedando el tapón en el terreno, formando un pilote de arena compactada.

Los pilotes de compactación se suelen utilizar bajo las mismas condiciones estructurales y subterráneas de la vibroflotación y Terra-Probe. No obstante, los resultados son mejores para un terreno de arenas flojas que la vibroflotación para un mismo espaciamiento entre puntos de tratamiento.

A continuación os dejo un vídeo donde se puede observar el proceso de hincado de un pilote prefabricado.

Referencias:

DAS, B. M. (2001). Principios de ingeniería de Cimentaciones. 4ª edición, International Thomson Editores, México, pág 575.

DELGADO, M. (1999). Ingeniería de cimentaciones: Fundamentos e introducción al análisis geotécnico. 2ª Edición, Alfaomega Grupo Editor, México.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Cursos:

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Procedimientos de construcción de cimentaciones y estructuras de contención. Segunda edición ampliada

Os presento la segunda edición ampliada del libro que he publicado sobre procedimientos de construcción de cimentaciones y estructuras de contención. El libro trata de los aspectos relacionados con los procedimientos constructivos, maquinaria y equipos auxiliares empleados en la construcción de cimentaciones superficiales, cimentaciones profundas, pilotes, cajones, estructuras de contención de tierras, muros, pantallas de hormigón, anclajes, entibaciones y tablestacas. Pero se ha ampliado esta edición con tres capítulos nuevos dedicados a los procedimientos de contención y control de las aguas subterráneas. Además, de incluir la bibliografía para ampliar conocimientos, se incluyen cuestiones de autoevaluación con respuestas y un tesauro para el aprendizaje de los conceptos más importantes de estos temas. Este texto tiene como objetivo apoyar los contenidos lectivos de los programas de los estudios de grado relacionados con la ingeniería civil, la edificación y las obras públicas.

Este libro lo podéis conseguir en la propia Universitat Politècnica de València o bien directamente por internet en esta dirección: https://www.lalibreria.upv.es/portalEd/UpvGEStore/products/p_328-9-2

El libro tiene 480 páginas, 439 figuras y fotografías, así como 430 cuestiones de autoevaluación resueltas. Los contenidos de esta publicación han sido evaluados mediante el sistema doble ciego, siguiendo el procedimiento que se recoge en: http://www.upv.es/entidades/AEUPV/info/891747normalc.html

Sobre el autor: Víctor Yepes Piqueras. Doctor Ingeniero de Caminos, Canales y Puertos. Catedrático de Universidad del Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil de la Universitat Politècnica de València. Número 1 de su promoción, ha desarrollado su vida profesional en empresas constructoras, en el sector público y en el ámbito universitario. Es director académico del Máster Universitario en Ingeniería del Hormigón (acreditado con el sello EUR-ACE®), investigador del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y profesor visitante en la Pontificia Universidad Católica de Chile. Imparte docencia en asignaturas de grado y posgrado relacionadas con procedimientos de construcción y gestión de obras, calidad e innovación, modelos predictivos y optimización en la ingeniería. Sus líneas de investigación actuales se centran en la optimización multiobjetivo, la sostenibilidad y el análisis de ciclo de vida de puentes y estructuras de hormigón.

Referencia:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

A continuación os paso las primeras páginas del libro, con el índice, para hacerse una idea del contenido desarrollado.

https://gdocu.upv.es/alfresco/service/api/node/content/workspace/SpacesStore/31b0d684-f0a7-4ee7-b8f4-73694e138d5e/TOC_0328_09_02.pdf?guest=true

Descargar (PDF, 476KB)

 

 

Pilotes de plástico

Figura 1. Pilote hincado de plástico. http://www.archiexpo.es/prod/hahn-kunststoffe-gmbh/product-149415-1840086.html

Si bien los pilotes tradicionales de madera, acero y hormigón, disponen de sistemas capaces de preservarlos de su degradación en ambientes agresivos, estas medidas presentan sus limitaciones. Es por ello que se han desarrollado pilotes alternativos de compuestos plásticos que normalmente se utilizan en ambientes portuarios (Figura 1), aunque también se utilizan con otros usos, como en mobiliario urbano (Figura 2).

Figura 2. Pilote hincado usado como soporte para pasarelas de madera en playas. http://www.archiexpo.es/prod/hahn-kunststoffe-gmbh/product-149415-1840086.html

Estos pilotes suelen ser de sección tubular desde 20 a 60 cm y longitudes de hasta 35 m, aunque también se fabrican secciones cuadradas. Están fabricados con plásticos reciclados y poseen una armadura, normalmente un tubo de acero, fibra de vidrio o una combinación de ambos. Debido a las características del material son neutrales a cualquier agresión del medio ambiente (también agua de mar). Estos pilotes son ecológicos y no contaminan. No les afecta el gusano de la madera (Teredo navalis). Por su empleo frecuentemente portuario están diseñadas para resistir esfuerzos axiales y laterales procedentes del impacto de buques.

También existen pilotes compuestos de acero y plástico, con un corazón tubular de acero rodeado de una cubierta de plástico reciclado. Se trata de un pilote de coste superior al de madera, pero con un periodo de vida útil mayor, por su resistencia a la acción de organismos marinos, putrefacción y abrasión, además de su mayor resistencia mecánica.

Figura 3. Instalación de un pilote de plástico. http://www.archiexpo.es/prod/hahn-kunststoffe-gmbh/product-149415-1840086.html

Referencias:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

STARSOL: Pilotes con hélice continua mejorada

Figura 1. Pilotes Starsol. http://www.soletanche-bachy.com.ar

Dentro de los pilotes de extracción de barrena continua podemos distinguir un procedimiento mejorado denominado STARSOL. Se trata de un sistema desarrollado por el grupo francés SOTELANCHE-BACHY, al cual pertenece la empresa española RODIO, por lo que también se llama este procedimiento Rodiostar/Starsol. Con este sistema se resuelven dos problemas que tenían procedimientos anteriores: la perforación de capas duras y la ejecución y control de la calidad del hormigonado. La perforación en capas duras se realiza mediante un motor de gran potencia, con un par de 90000 N·m, incorporando un útil de corte bajo el eje de la hélice, con lo que puede atravesar o empotrase en terrenos de 35 a 50 N/mm² de resistencia a rotura. Ello hace innecesario el uso de trépano. Tampoco se necesitan lodos ni camisa porque el hormigonado se efectúa a través del tubo interno, que funciona a modo de Tremie. El mayor problema es que las armaduras deben introducirse después del hormigonado, aunque este problema se podría resolver definitivamente con hormigones armados con fibras de acero. Los diámetros habituales de este tipo de pilotes se encuentran entre 0,40 y 1,00 m, con una profundidad máxima normal de 30 m. La potencia total instalada ronda los 250 kVA.

Los elementos principales del equipo son los siguientes:

  • Grúa dotada de grupo hidráulico
  • Mástil guía
  • Cabeza de rotación hidráulica
  • Manguera de introducción del hormigón al tubo interior
  • Barrena continua alrededor del tubo exterior
  • Tubo central con desplazamiento por el interior del tubo exterior
  • Sistema de gatos que permite el desplazamiento vertical del tubo central hasta 1,50 m
  • Útil de limpieza

En la Figura 2 se muestran las fases constructivas del método. El procedimiento comienza con la perforación mediante rotación de la barrena. Una vez llega a la profundidad requerida, se para la rotación, se levanta el conjunto y se comienza a bombear hormigón a presión. La distancia entre las bases de la barrena y del tubo sumergido es de 1,50 m. Por último, una vez hormigonado el pilote, se coloca la armadura, incluso con vibradores si fuera necesario. La armadura se puede introducir con este método fácilmente hasta 15 m, aunque el mejor registro de 17 m se consiguió en 1988.

La diferencia entre el procedimiento STARSOL y los pilotes de barrena continua convencionales es que en los primeros el hormigón se bombea a presión (de al menos 0,1 MPa, lo que asegura un excelente contacto en cualquier terreno), de forma que dicha presión y el volumen de hormigón se encuentran controlados. Esto garantiza que el primer hormigón vertido es el único que ha estado en contacto con el terreno y el único que puede estar contaminado. En el caso de los pilotes de barrena continua clásica, el hormigón se vierte a través del tubo central de la barrena y directamente sobre el anterior, mientras que en el sistema STARSOL, se realiza mediante un tubo telescópico introducido por dicha barrena hueca, el cual puede quedar introducido hasta 1,0 m por debajo de la lámina libre de hormigón, de ahí la mayor presión de bombeo y la gran ventaja con respecto al CPI-8 convencional; pues se evita la posibilidad de cortes en el hormigón.

Figura 2. Esquema del proceso de ejecución del pilote STARSOL

A continuación os dejo algunos vídeos explicativos que creo de interés.

Referencias:

GARCÍA-VALCARCE, A.; SACRISTÁN, J.A.; GONZÁLEZ, P.; HERNÁNDEZ, R.J.; PASCUAL, R.; SÁNCHEZ-OSTIZ, A.; IRIGOYEN, D. (2003). Manual de edificación. Mecánica de los terrenos y cimentaciones. Editorial CIE Dossat 2000, 710 pp.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pilotes prefabricados de hormigón armado hincados

Figura 1. Hinca de pilotes prefabricados. Cortesía de Rodio

Los pilotes prefabricados de hormigón constituyen una técnica de cimentación profunda enmarcada en los pilotes de desplazamiento. Este tipo de pilotes pueden fabricarse de hormigón armado o pretensado.

Los pilotes prefabricados de hormigón armado suelen de sección cuadrada, de dimensiones habituales entre 200 y 400 mm de lado, aunque también los hay de sección rectangular, circular o poligonal. A veces, incluso pueden ser huecos para poder introducir algún tipo de canalización como las instalaciones de geotermia. Por sus dimensiones reducidas se utilizan para cargas y longitudes moderadas, como en obras de edificación. Se confeccionan con hormigones de resistencia característica mayor a 40 MPa. Las armaduras longitudinales son de, al menos, 12 mm de diámetro, disponiéndose como mínimo una barra en cada vértice. Las armaduras transversales serán, de al menos 6 mm de diámetro, duplicándose la cuantía en al menos una longitud de 3 veces el diámetro del pilote. Se comportan bien por fuste en arenas, gravas y arcillas. La durabilidad es buena, pero en ambientes agresivos se deben proteger las armaduras de la corrosión con cementos especiales o revestimientos.

Los prefabricados presentan ventajas como el curado al vapor, la disminución de almacenaje en obra, los mayores rendimientos y la calidad, entre otros. Ello permite cargas de trabajo de 10 – 12,5 MPa, lo que disminuye la sección para igual capacidad portante. Son habituales secciones de 25×25 cm y 30×30 cm para capacidades que van de 600 a 1000 kN.

Con longitudes largas, se realizan empalmes entre las piezas de hormigón, de un máximo usual de 12 m por razones de transporte. Las juntas de empalme suelen ser objeto de patente y pueden ser mecánicas (tipo machihembrado), por anclaje mediante resinas epoxi, mediante forros de acero o soldados en piezas metálicas dejadas en los extremos. Además, se debe cuidar la manipulación del pilote desde el vehículo de transporte hasta el lugar de hinca.

La hinca de estos pilotes se suele ejecutar mediante equipos de caída libre, con una maza entre 50 y 110 kN que se eleva mediante equipos de accionamiento hidráulico. La maza golpea constantemente la cabeza del pilote hasta su rechazo, que se produce cuando, tras un determinado número de golpes, el pilote no desciende un determinado número de centímetros. En ese momento, se supone una capacidad resistente tanto por rozamiento por fuste como por su trabajo en punta. No obstante, en suelos arcillosos, debe comprobarse el rechazo alcanzado, transcurrido un periodo mínimo de 24 horas.

La protección de la punta del pilote frente a la hinca es un detalle que no se debe olvidar. Para ello suele añadirse una pieza metálica cónica o piramidal, o bien un azuche metálico específico, como puede verse en la Figura 1, que permite también la fijación del pilote en un sustrato rocoso. Se trata de azuche especial denominado punta de Oslo. En la Figura 3 se observa la protección de la cabeza del pilote frente a la hinca.

Figura 2. Detalle de azuche de acero en pilote de prefabricado de hormigón (Rodio Kronsa). Fuente: http://www.fontdarquitectura.com/productos/cimentaciones/pilotes/588
Figura 3. Detalle del anillo de protección del pilote frente al golpeo. Imagen: I. Serrano (www.desdeelmurete.com)

Una vez el pilote se hinca hasta el rechazo, la parte libre del pilote queda a distintas alturas. Ahora se debe limpiar y eliminar el hormigón de la cabeza que pueda haber quedado resentido por el golpeo de la maza y no reúna las características mecánicas necesarias y para dejar unas esperas para unir el pilote al encepado.

A continuación os dejo un vídeo explicativo que, entre otros, explica este tipo de pilote prefabricado. Espero que os sea de interés.

Os dejo un vídeo sobre el procedimiento constructivo de hinca de estos pilotes prefabricados.

Referencias:

FERNÁNDEZ-TADEO, C. (2018). ¿Cómo comprobar que los pilotes prefabricados hincados tienen la resistencia suficiente?. Interempresas.net

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Hinca de pilotes y tablestacas por prebarrenado

Figura. Pilote hincado perforado previamente. https://www.junttan.com/piling-specialist/piling-applications/

En situaciones difíciles, como estratos de arcilla compacta o roca blanda, cuando la técnica de la inyección del agua no es apropiada, se puede optar por una perforación vertical previa mediante una barrena helicoidal de un diámetro bastante inferior al pilote. Al utilizar una perforación previa, se protege el pilote de un hincado demasiado difícil y, además, se reduce el ruido y las vibraciones. El diámetro del prebarrenado dependerá del tamaño y la forma del pilote, así como de las características del terreno. Suele ser 100 mm inferior que la diagonal de la sección de pilotes cuadrados o en H, y 25 mm inferior en caso de sección circular. Sin embargo, si el terreno es muy resistente, a veces el diámetro del prebarrenado es igual a la mayor dimensión exterior del pilote.

Esta técnica es aplicable a la hinca de pilotes muy próximos a otra infraestructura, de forma que el desplazamiento radial del terreno puede afectarla. También sería de interés en el caso de que la hinca del pilote transmitiera fuertes presiones hidráulicas a distancias considerables. Otro caso sería en terrenos de gran susceptibilidad tixotrópica, donde los pilotes pueden levantarse varios metros debido a la recuperación de las propiedades del suelo.

En otras ocasiones, se recurre a la técnica del punzonado cuando los pilotes son pequeños. Esta técnica consiste en hincar un perfil pesado de acero laminado para romper estratos duros. El punzón se debe extraer antes de hincar el pilote.

A continuación, os dejo un vídeo en el que se realiza un prebarrenado antes de hincar un pilote metálico de sección en H.

Referencias:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Qué son los micropilotes?

Figura 1. Micropilotes

Los micropilotes son pilotes de pequeño diámetro de perforación, normalmente de 80 a 300 mm, compuestos por una barra, un tubo de acero o una armadura de acero que constituye el núcleo portante, el cual se recubre normalmente de lechada de cemento que forma el bulbo. Esta inyección favorece el trabajo por rozamiento lateral del fuste. No obstante, también se denominan micropilotes a aquellos elementos hincados por golpeo o hincados mediante vibración, con un diámetro no superior a 150 mm. Los micropilotes aparecieron en los años cincuenta con los «pali-radicci» o pilotes-raíz, para solucionar los problemas de recalces de edificios o estructuras. Se trataba de perforaciones con un diámetro pequeño (de 3 pulgadas o menos), donde se introducía un redondo de acero y se inyectaba con una lechada de cemento.

Los micropilotes estructurales actuales son de mayor diámetro, entre 100 y 150 mm, e incorporan una armadura. Las características técnicas de los materiales y el modo de ejecución de estos micropilotes permiten lograr altas capacidades de carga, normalmente entre 100 y 150 kN, tanto a la tracción como a la compresión, con deformaciones mínimas. De este modo, se consigue un elemento resistente en el que predomina la longitud y la resistencia por rozamiento o fuste. Además, presentan la ventaja de no requerir grandes volúmenes de excavación del terreno. El uso de micropilotes es especialmente interesante cuando existen cargas dispersas de poca importancia, terrenos y cimientos heterogéneos, condiciones difíciles de ejecución en espacios reducidos, con restricciones en altura, o zonas congestionadas, y donde se alternan las cargas en tracción y compresión.

Las cuatro grandes áreas de utilización de los micropilotes son las siguientes:

  1. Como cimentación o recalce de estructuras, trabajando fundamentalmente a compresión
  2. Formando cortinas o muros discontinuos para contener terrenos o excavaciones profundas
  3. En la corrección de corrimientos o deslizamiento, trabajando a flexión, tracción o flexotracción
  4. Como paraguas de sostenimiento en bocas de túneles, como paso de terrenos muy difíciles o para recuperar tramos con hundimientos.

Hoy en día también se utilizan micropilotes de gran capacidad, con diámetros de 300 mm o, en casos excepcionales, incluso mayores, en los que se introduce como elemento resistente un perfil metálico, generalmente tubular, capaz de resistir 2000 kN o más. Posteriormente, se inyecta mortero de cemento para rellenar la sección interior del perfil y sellar la corona exterior entre el perfil metálico y el terreno. Con perforación a rotopercusión, se alcanzan rendimientos de 50 a 100 m por turno. Sin embargo, los costes de este sistema son superiores a los de otros pilotes y solo se justifica cuando hay que atravesar zonas rocosas.

La maquinaria empleada para ejecutar los micropilotes presenta varias ventajas respecto a la de los pilotes. Es más accesible y maniobrable en espacios pequeños, reduce los movimientos durante la ejecución y, por tanto, las deformaciones en estructuras vecinas, se puede adaptar a suelos duros, heterogéneos y con obstáculos y mantiene bien la verticalidad. Sin embargo, no son tan aptos en terrenos saturados o con un nivel freático superior a la cota inferior de la cimentación. En la figura 2 se muestran algunas máquinas empleadas para ejecutar micropilotes.

Figura 2. Maquinaria empleada en la ejecución de micropilotes. Fuente: http://www.civogal.com/

La armadura debe colocarse inmediatamente después de finalizar la perforación del taladro. Para ello, se habrá comprobado que no hay obstáculos en el taladro. La armadura se ubicará sin que se muevan los centradores o los manguitos. Los centradores garantizan la colocación correcta de la armadura y aseguran un recubrimiento mínimo frente a la corrosión, de modo que no impidan la inyección. Se deben instalar, al menos, dos centradores, a distancias que no superen los 3 m. El límite elástico del acero de la armadura tubular suele ser de 560 MPa, mientras que el de las barras corrugadas suele ser de 500 MPa.

Tras la colocación de la armadura, debe inyectarse el micropilote lo antes posible (preferiblemente, en menos de 24 horas) con lechada o mortero de cemento. El objetivo es doble: por un lado, ejecutar el fuste y la punta del pilote propiamente dichos, rellenando tanto el espacio entre el tubo y la perforación como el interior del tubo y, por otro, protegerlo de la corrosión. La relación agua/cemento, en peso, de la lechada debe situarse entre 0,40 y 0,55, y la resistencia característica no debe ser inferior a 25 MPa.

En ocasiones, las pérdidas de inyección son tan elevadas, de 2,5 a 3 veces el volumen teórico necesario, que es necesario realizar una inyección previa con lechada o mortero de cemento que habrá que reperforar para continuar con el micropilote.

La inyección del micropilote se realiza por circulación inversa, bombeándose desde la central de fabricación de lechada mediante el empleo de batidoras de alta turbulencia. La inyección se realiza desde el interior de la armadura hasta el fondo del taladro, ascendiendo por el espacio anular existente entre la armadura y el varillaje de perforación, desplazando al exterior el posible detritus de perforación. Según su forma de ejecución, los micropilotes pueden estar inyectados a baja o a alta presión. En los primeros, se reproduce la técnica del pilote de gran diámetro y se inyecta mortero o mezcla cementicia de forma que se recubre el elemento de acero que constituye la armadura. Los micropilotes inyectados a alta presión se realizan en una o varias etapas a través de válvulas antirretorno, colocadas en la parte más profunda del micropilote, de forma que se conforme un bulbo que transmita las cargas en profundidad. Esta última técnica es similar a la inyección de terreno no cohesivo, que forma una serie de bulbos que, en su conjunto, conforman el elemento de transmisión de la carga del micropilote al terreno.

Se utilizan distintos tipos de inyección con los micropilotes:

  • (IU) “Global única”: Se inyecta en una fase desde la base inferior del tubo de armado, desde donde asciende el material de relleno entre las paredes de este y la del encamisado, si lo hay, o del terreno, si no lo hay. La presión de inyección debe ser superior a la mitad de la presión límite del terreno e inferior a dicha presión límite. Es adecuado para rocas más o menos sanas, suelos cohesivos muy duros y suelos granulares.
  • (IR) “Repetitiva única”: La inyección se realiza en dos fases: la primera, como en el caso del IU, y posteriormente a través de rejillas practicadas a lo largo del tubo. Una vez terminado el proceso, se realiza una inyección final de relleno de la armadura tubular. La presión en la boca del taladro debe cumplir las mismas condiciones que en el tipo IU. La inyección se realiza entre 500 kPa y la mitad de la presión límite del terreno. Es adecuado para rocas blandas y fisuradas, así como para materiales granulares gruesos de compacidad media.
  • (IRS) “Representativa o repetitiva selectiva”: Se utilizan válvulas antirretorno dispuestas a lo largo de la tubería de armado. Se puede inyectar más de dos veces, en función de la admisión de lechada. La presión de inyección es alta, entre 1000 kPa y la mitad de la presión límite del terreno. Una vez finalizado el proceso, se realiza una inyección final de relleno de la armadura tubular. Es adecuada para suelos cohesivos no muy duros, suelos de consistencia baja o media y suelos granulares en los que se intenta crear un bulbo.

Al inyectar una lechada, debe guardarse una relación entre el diámetro efectivo y el teórico. En bolos y gravas es 2 veces el diámetro teórico de perforación, mientras que en arcillas es 1,4 veces y en arenas, 1,2 veces.

Los micropilotes también se pueden realizar hincando una única tubería y sin inyección de lechada. Es el caso de una cimentación provisional o cuando posteriormente se vaya a excavar, dejando los micropilotes a la vista. Al ser de acero, esto permite soldar una estructura de arriostramiento. Incluso se pueden formar «muros-pantalla» de micropilotes (figura 3) que contengan tierras en un vaciado, en cuyo caso se descubre la lechada para soldar vigas metálicas a los tubos como estructura auxiliar para el arriostramiento y el apuntalamiento provisional del muro.En un artículo anterior podéis ver qué medidas de seguridad se deben adoptar en la ejecución de este tipo de cimentación profunda.

Figura 3. Pantalla de micropilotes con anclajes. Fuente: http://www.geotec262.com/micropilotes-anclajes

A continuación os dejo un vídeo explicativo sobre micropilotes de goetecnia.ONLINE

Os dejo un par de animaciones de Keller sobre la ejecución de micropilotes.

También resulta de interés este vídeo de geotecnia.online sobre pruebas de carga en micropilotes.

Referencias:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pilotes inyectados

Existe una variedad de pilotes en los que se inyecta mortero o microhormigón sobre pilotes hincados o perforados. Normalmente, la lechada contiene aditivos, con una relación agua/cemento de entre 0,4 y 0,55. Entre pilotes, podemos distinguir los siguientes:

  • Pilotes “prepacked”: Se rellena la perforación con un árido de tamaño máximo de 25 mm y una granulometría que permita la entrada de una inyección de lechada. La inyección se realiza a través de tubos que suelen llegar hasta el fondo del pilote. A medida que avanza la inyección, se retiran los tubos, pero permanecen sumergidos en la lechada para asegurar su distribución uniforme.
  • Inyección de base o de fuste: En los pilotes ejecutados en obra se pueden dejar alojados tubos permanentes, fijados a las armaduras, para inyectar la lechada con el hormigón endurecido. Esta inyección puede realizarse tanto en el fuste como en la base.
  • Inyección de pilotes de desplazamiento: Se dispone de un azuche de diámetro suficiente para dejar un espacio alrededor del pilote que permita la inyección.

Os dejo un vídeo explicativo al respecto:

Referencias:

AENOR (2016). UNE-EN 156:2011+A1. Ejecución de trabajos geotécnicos especiales. Pilotes perforados.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Hinca de pilotes y tablestacas con mazas de caída libre

Figura 1. Martinete de cabrestante. https://mitrapancang.wordpress.com

La hinca de pilotes con maza de caída libre (figura 1) es un sistema antiguo que ya utilizaban los romanos. Debido a su bajo coste y simplicidad, su uso se mantiene en la hinca de pequeños pilotes de madera o metálicos que se utilizan de manera provisional. Los equipos más utilizados tienen mazas de 10 a 50 kN que operan con carreras de entre 0,2 y 1 m. Sin embargo, el golpeteo es muy lento.

La maza o ariete se suspende de un cable y desliza por unas guías que hacen la función de gemelas. Existen dos variedades: las que se izan con un cabrestante con embrague, que experimentan cierto frenado por rozamiento e inercia del cabrestante; y las de escape en la propia maza, siendo estas últimas las que mayor control de energía proporcionan por la ausencia de rozamientos del cabrestante. En pilotes de gran tamaño que a veces sobrepasan los 2 m de diámetro y 100 m de profundidad, la hinca debe efectuarse sin «gemelas», pues los elementos parciales, de 20 o 30 m, se acoplan a los modelos normales.

En la actualidad, se ha recobrado el interés por este tipo de martillos debido a la facilidad de operar dentro de una cámara aislada acústicamente para cumplir las exigentes normativas de ruidos. Esto se debe al aislamiento conseguido con la colocación de chapas de acero y plástico intercaladas en torno al punto de percusión de la maza. Con esta protección se consiguen niveles de ruido tolerables, de 80 a 85 dB-A.

Las condiciones del terreno, junto con la longitud, el diámetro y el peso del pilote o la tablestaca, determinan el peso de la maza y la altura de caída más convenientes (figura 2). Designando por R la resistencia a vencer (función a su vez de la tensión de hundimiento del terreno y de la sección del pilote o tablestaca), h la penetración del elemento a cada golpe, P el peso de la maza y H su altura de caída, se cumple la siguiente condición:

Figura 2. Caída de la maza

Y teniendo en cuenta el peso T del pilote o de la tablestaca y los coeficientes prácticos de corrección, tenemos la siguiente expresión:

donde:

K1 = Coeficiente de eficiencia de la maza

K2 = Coeficiente de restitución del impacto

re = Rebote elástico del conjunto tablestaca-terreno

Los pesos habituales de las mazas están comprendidos entre el 75 % y el 50 % del pilote o tablestaca que se debe hincar. En las mazas de caída libre, el ritmo de golpeo es lento (del orden de 20 a 30 golpes por minuto), aunque este aspecto no es importante, ya que la hinca dura poco en comparación con el conjunto de la obra.

Relacionado con lo anterior, os envío un vídeo explicativo sobre la hinca dinámica de pilotes y tablestacas. Espero que os resulte interesante.

Aquí os dejo un vídeo ilustrativo sobre la hinca de pilotes.

Os paso un vídeo donde se utiliza una masa de 7,85 kN que se deja caer desde una altura de 10 m.

Referencia:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.