Perforación dirigida horizontal

perforacionLa perforación dirigida horizontal es un método de perforación empleado para la instalación de tuberías que evita la apertura de zanjas a cielo abierto minimizando el movimiento de tierras. Se utiliza fundamentalmente para la instalación de líneas de comunicación (fibra óptica, cables de datos), líneas eléctricas, gaseoductos, oleoductos y conducciones de agua a presión.

Esta tecnología opera mediante una máquina que perfora el suelo a lo largo de toda la trayectoria de la instalación, siendo orientada y seguida desde la superficie mediante un localizador que indica la posición, sin necesidad de pozos verticales, ya que la obra comienza desde la superficie.

El procedimiento constructivo se puede describir de la siguiente forma: una vez instalada la máquina para que la cabeza de perforación se introduzca en el suelo, se procede a lo siguiente: (1) ejecución de la perforación guía o piloto, (2) ampliación del diámetro de la perforación piloto mediante los escariadores adecuados, y (3) instalación de la tubería en el interior de la perforación realizada.

 

Os paso varios vídeos para que podáis ver la ejecución de este procedimiento constructivo. En el primero veremos la PDH de mayor longitud y tamaño realizada hasta la fecha. Se realizó en Alcira (Valencia) en el 2007. Se trataba de la instalación de una nueva conducción para el abastecimiento de agua potable. Espero que os gusten.

[politube2]65102:450:350[/politube2]

 Referencias:

YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia, 89 pp.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Plataformas petrolíferas

Plataforma Mittelplate en Alemania. Wikipedia

El mundo necesita energía desesperadamente. Pero cada vez cuesta más encontrar petróleo y gas. Las prospecciones se llevan a sitios complicados. Los primeros pozos petroleros se perforaban mediante percusión, martillando una herramienta sujeta a un cable. Poco tiempo después las herramientas de cables fueron substituidas por la perforación rotatoria, que permitía perforar a mayor profundidad y en menor tiempo. En 1989 se alcanzó un récord en el pozo Kola Borehole al norte de Rusia, que alcanzó 12.262 m de profundidad, usando un motor de perforación no rotatoria en el fango.

Una plataforma petrolífera o plataforma petrolera es una estructura de grandes dimensiones cuya función es extraer petróleo y gas natural de los yacimientos del lecho marino que luego serán exportados hacia la costa. También sirve como vivienda de los trabajadores que operan en ella y como torre de telecomunicaciones. Dependiendo de las circunstancias, la plataforma puede estar fija al fondo del océano, flotar o ser una isla artificial.

1, 2) Plataformas convencionales fijas; 3) Plataformas de torre autoelevable; 4, 5) Plataformas flotantes tensionadas; 6) Plataformas Spar; 7,8) Plataformas semi-sumergibles; 9) Plataformas en barcos perforadores; 10) Plataformas sustentadas en el zócalo y unidas a instalaciones de extracción en el fondo marino. Wikipedia

Os dejo un vídeo donde podéis ver una plataforma petrolífera de récord. Es tan alta como la Torre Eiffel y pesa unas 20.000 toneladas. La compañía Shell ha tardado un año y medio en construirla.

Perforación mediante jumbos

Jumbo es el nombre que recibe una unidad de perforación equipada con uno o varios martillos perforadores sobre brazos hidráulicos donde puede montarse un martillo de perforación o una cesta donde pueden alojarse uno o dos operarios y que permite el acceso a cualquier parte del frente. Es una máquina diseñada para realizar labores subterráneas de forma rápida y automatizada: avance de túneles y galerías, bulonaje y perforación transversal, banqueo con barrenos horizontales y minería por corte y relleno, entre otras.

El mecanismo de traslación de los jumbos normalmente es autopropulsado por un tractor montado sobre neumáticos, cadenas o carriles, aunque existen modelos remolcados. Cuando trabajan se estacionan y su accionamiento es eléctrico, aunque pueden disponer de un motor diésel para el desplazamiento.

Los martillos perforadores son hidráulicos para conseguir mayores potencias que los neumáticos, funcionando a rotopercusión: la barrena gira continuamente ejerciendo a la vez un impacto sobre el fondo del taladro. Se precisa un aporte de agua para arrastrar los detritus y refrigerar la boca de perforación.

Con esta máquina se pueden alcanzar rendimientos que superan los 3,5 m/min de velocidad instantánea de perforación. Además, están computerizados, de forma que se automatiza la dirección de los taladros, el impacto y la velocidad de los martillos, e incluso la secuencia y disposición de los taladros. En pocas horas, un solo operario puede perforar la pega completa del frente del túnel.

A continuación os dejo varios vídeos donde podemos ver esta máquina de perforación en funcionamiento. El primero es de un jumbo AMV con 3 brazos para perforación y un brazo con canastillo.

 

Referencias:

YEPES, V. (2022). Maquinaria para sondeos, movimientos de tierras y construcción de firmes. Apuntes de la Universitat Politècnica de València, Ref. 22.

Perforación con coronas

La perforación con corona es el método de sondeo más difundido en el ámbito de la ingeniería civil, siendo imprescindible cuando se trata de extraer un testigo continuo en formaciones rocosas.

La zona de corte consta de la matriz, que es una aleación de distintas características según el terreno a perforar y en la que se insertan los diamantes, y de un cuerpo principal, que da soporte a la matriz y sirve de unión por roscado al varillaje. Si hay necesidad de extraer testigos, la matriz debe ser hueca (de corte anular) y en el caso contrario, maciza o ciega.

La función de la corona es fragmentar la roca hasta dejarla en condiciones de ser extraída a la superficie. La eficacia de esta función, su precio y la duración (que dependerá del desgaste) son los tres aspectos básicos en su elección. Según la dureza y abrasividad del terreno, la corona puede ser de widia o de diamantes.

Las coronas de widia son apropiadas para perforar rocas blandas o de dureza media. Están compuestas por prismas octogonales de unos 15 mm de longitud, insertados en las zonas más sobresalientes del perfil que forma el perímetro de la corona. La widia (aglomerado de carburo de wolframio, tungsteno, molibdeno, cobalto y otros metales) es mucho más resistente y menos sensible a la abrasión que los aceros especiales, pero su costo es bastante más elevado, aunque menor que el del diamante.

Las coronas de diamante se emplean en rocas muy duras y abrasivas, donde el rápido desgaste de las coronas de widia no compensaría la economía obtenida en su compra.

Por la forma de fabricación y distribución de los diamantes, estas coronas puedes ser de inserción o de concreción.

  • En las coronas de inserción los diamantes están incrustados sobre la superficie de la corona de la que sobresalen en forma de casquete. El tamaño de los diamantes es en estos casos de 10-80 p.p.q. (piedras por quilate: 1 quilate = 0,2 gramos).
  • En las coronas de concreción, los diamantes son de bastante menor tamaño (80-1000 p.p.q.), están mezclados y distribuidos regularmente por la matriz.
Coronas de diamantes de inserción

Al cabo de cierto tiempo de utilización, la corona no proporciona ya un avance aceptable, por lo que es necesario su recambio. Ese momento puede medirse aproximadamente, cuando con la máxima carga sobre la corona, el avance es inferior a unos 2 cm/min. El intentar en estos casos mantener el rendimiento aumentando la carga podría provocar la fractura de algún diamante o de la matriz.

Os dejo unos vídeos sobre el tema.

Referencias:

YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València. 89 pp.

Sistema «Franki» de ejecución de pilotes de desplazamiento

Figura 1. Procedimiento constructivo de un pilote Franki. Fuente: http://www.frankipile.co.id/frankipile.php

El sistema «Franki» de ejecución de un pilote de desplazamiento se base en una entubación metálica que presenta un tapón de hormigón en la punta. Dicho conjunto se hinca «a golpes» mediante una maza. Una vez se llega a la profundidad adecuada, se sujeta la entubación y se golpea el tapón en la punta para expulsarlo hacia abajo, creando así un bulbo o “punta ensanchada” a base de compactar el terreno, lo que hace que este pilote sea también muy eficiente trabajando a tracción. No se recomienda su uso en suelos cohesivos, donde la compactación de la base no es posible.

Fue desarrollado en el año 1909 por el ingeniero belga Frankignoul Edgard y desde entonces ha logrado un éxito considerable en todo el mundo.  Este método se puede aplicar en diferentes condiciones, y sigue siendo utilizado debido a su alta capacidad de carga y tracción, y los bajos niveles de ruido y las vibraciones del suelo.

En la Figura 1 se representan las fases constructivas de este tipo de pilote:

  • Ejecución, en tongadas de pequeño espesor y fuertemente compactadas, del tapón de gravas, arena y hormigón (de consistencia 0) dentro de la entubación, de espesor 3Φ.
  • Introducción de la entubación hasta la profundidad necesaria golpeando el tapón.
  • Golpeo del tapón y retirada de la entubación, quedando el ensancho como punta del pilote.
  • Instalación de la armadura dentro de la entubación, cuidando el recubrimiento mínimo
  • Extracción de la entubación a la vez que se va hormigonando por tongadas.

También se ha argumentado que la hinca del tapón presenta algunas ventajas claras, como la eliminación de fangos bajo la punta, el control de la existencia de capas blandas intercaladas inmediatamente bajo la punta y la aparición de un bulbo de hormigón que equivale a una base ensanchada. Todo ello hace que este tipo de pilotes con tapón son muy adecuados como pilotes trabajando en punta. Hay que indicar aquí que el aumento de la resistencia por punta se hace a costa de una disminución de la resistencia por el fuste en las cercanías de la base. Como desventajas principales de este tipo de pilote destaca la escasa mecanización del proceso y el riesgo durante la extracción de la entubación.

A continuación podéis ver un vídeo explicativo de los pilotes de desplazamiento con tapón de gravas, que en la nomenclatura de las NTE se denomina CPI-3.

Os recomiendo el enlace de Enrique Montalar, y también los siguientes vídeos explicativos que espero os gusten.

Os dejo este folleto explicativo que espero os sea de utilidad.

Pincha aquí para descargar

Referencia:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Sistema «Fundex» de ejecución de pilotes de desplazamiento a rotación

El sistema «Fundex» de pilotes de desplazamiento por rotación requiere una cabeza de rotación en punta, que no se vuelve a recuperar.

En la figura se puede apreciar el método de ejecución, que consta de las siguientes fases:

  1. El hueco de perforación se cierra de forma estanca mediante una cabeza especial de perforación
  2. A través de una mesa de rotación se hace girar el taladro formado por la cabeza de perforación y el entubado
  3. Se coloca la armadura sobre la longitud del pilote
  4. Se hormigona hasta alcanzar la cota del terreno
  5. A través de la mesa de perforación, se retira el entubado, manteniendo un control constante del cuele del hormigón.

Os dejo unos vídeos explicativos que espero os gusten.

Referencia:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Perforación con martillo en fondo

La perforación con martillo en fondo (D.T.H. down the hole), desarrollada por Stenuick en 1951, se basa en que un martillo golpea directamente la boca en el fondo de la perforación. De esta forma se evita la pérdida de energía transmitida por la percusión del pistón a través del varillaje (a partir de 15-20 m, los martillos en cabeza dejan de ser efectivos). Hoy en día se pueden alcanzar profundidades superiores a los 100 m con rendimientos de entre 60 y 100 m/turno. El martillo en el fondo y la boca forman una unidad integrada dentro del barreno. Esto garantiza una velocidad de perforación bastante homogénea a medida que aumenta la profundidad del taladro, aunque es normal que disminuya debido a la reducción de la velocidad de barrido con la profundidad. El accionamiento del pistón se lleva a cabo neumáticamente, mientras que la rotación puede ser neumática o hidráulica.

El martillo DTH consta de un cilindro cuya longitud es función de la carrera del pistón y cuyo diámetro es acorde con el diámetro de perforación. En el extremo de este cilindro se encuentra la boca de perforación, alojada en un portabocas. El varillaje se sustituye por un tubo hueco que conecta el martillo con el equipo y que transmite el par de rotación y la fuerza de avance. Los barrenos perforados con martillo en el fondo presentan mínimas desviaciones y ofrecen buenos resultados en rocas muy fracturadas. El varillaje, compuesto por tubos de igual diámetro en toda su longitud, no tiene acoplamientos que puedan obstruir la perforación. La rotación la realiza un motor neumático o hidráulico montado en el carro, al igual que el sistema de avance. El aire de escape limpia los detritos y los transporta fuera.

Martillo DTH Secoroc COP 64 Gold. www.dthrotarydrilling.com

El campo de aplicación del martillo DTH son las rocas con una resistencia a compresión media-alta (60-100 MPa), para los cuales se utilizan diámetros más frecuentes entre 85 y 200 mm, aunque podrían ampliarse a diámetros mayores entrando en competencia con los sistemas rotopercutivos hidráulicos con martillo en cabeza. La velocidad de penetración de estos martillos, para diámetros entre 105 y 165 mm, es de 0,5 a 0,6 m/min, con presiones de trabajo entre 1800 y 2000 kPa. La frecuencia de golpeo oscila entre 600 y 1600 golpes por minuto. En cuanto al empuje, son necesarios unos 85 kg por cada cm de diámetro. Para hacerse una idea, con diámetros de 125 mm podemos obtener el doble de potencia que con un diámetro de 100 mm, a igualdad de presión y carrera de pistón.

Hoy en día, el sistema DTH, en el rango de 76 a 125 mm, está siendo sustituido por la perforación con martillo hidráulico en cabeza.

Las ventajas de la perforación con martillo DTH frente a otros sistemas son las siguientes:

  • Velocidad de penetración prácticamente constante con el aumento de la profundidad de perforación
  • Salvo en rocas muy abrasivas, desgastes de las bocas menores que con martillo en cabeza
  • Vida más larga de los tubos que de las varillas y manguitos de los martillos en cabeza
  • Desviaciones pequeñas de los barrenos, por lo que son adecuados para profundidades largas
  • Menor energía de impacto y más frecuencia, lo cual es apto para macizos muy fracturados o desfavorables
  • Par y velocidad de rotación menor que otros métodos
  • No necesitan barras de carga, lo cual permite pequeños carros de perforación para barrenos de gran diámetro y profundidad
  • Menor coste por metro lineal que con perforación rotativa en diámetros grandes y rocas muy duras
  • Consumo de aire comprimido más bajo que con martillo en cabeza neumático
  • Nivel de ruido inferior al estar el martillo dentro de la perforación.

En cuanto a los inconvenientes de este sistema:

  • Velocidades de penetración bajas
  • Cada martillo está diseñado para una gama de diámetros muy estrecha que oscila en unos 12 mm
  • El diámetro más pequeño está limitado por las dimensiones del martillo para un rendimiento aceptable (unos 76 mm)
  • El costo de un martillo de fondo es muy elevado frente a la pequeña inversión de un tren de varillaje
  • Riesgo de pérdida del martillo en el interior de la perforación
  • Se necesitan compresores de alta presión con elevados consumos energéticos.

Os dejo a continuación algunos vídeos de este sistema de perforación. En el primero os dejo un Polimedia que espero os sea útil.

En el siguiente vemos una máquina perforadora neumática  Stenuick modelo MD25-60 con motor de rotación Stenuick mod F574, martillo del fondo de 2″, broca de carburo de tungsteno de 2 ¾ » y 3″ y tubos de perforación de 60 mm de diámetro por 2 m.

En este vemos una perforación de anclajes con martillo de fondo para la estabilización de un talud en roca meteorizada de basalto.

En este otro se puede ver una perforación con DTH a través de estructuras geotécnicas para la ejecución de inyecciones de contacto en una estructura subterránea.

 [politube2]65113:450:358[/politube2]

Referencias:

  • DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
  • INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Editorial de la Universitat Politècnica de València. Ref. 530, 165 pp.
  • UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.
  • YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Perforación con martillo en cabeza

Figura 1. Equipo de perforación Simba 7.

La forma habitual de perforación de una roca a rotopercusión es la perforación con martillo en cabeza. El principio de corte se basa en el impacto realizado en el exterior de la perforación por un pistón de acero sobre una barrena o varillaje, que a su vez transmite la energía al fondo del taladro por medio del elemento final (la boca) que fragmenta la roca en esquirlas. Para asegurar una sección circular en el barreno, el útil gira con cada golpe para presentar nueva roca virgen en el fondo del barreno. Además, es preciso evacuar los detritos del barreno (barrido), lo que se consigue insuflando aire al fondo del taladro. Parte de la energía del impacto se pierde en la transmisión y en los cambios de sección del varillaje, por lo que la velocidad de penetración de la perforación disminuirá a medida que se profundice en el barreno. Es un sistema que conceptualmente es similar al barrenado manual, donde un operario golpea con una maza la cabeza de una barrena.

Se pueden distinguir los martillos manuales de las perforadoras de martillo en cabeza propiamente dichas. Los primeros son equipos sencillos, actualmente en desuso, salvo en demoliciones o perforaciones de pequeña sección no mecanizable. Los segundos son equipos pesados que, en consecuencia, precisan de su montaje en chasis especiales.

Las perforadoras con martillo en cabeza pueden accionarse mediante martillos neumáticos y martillos hidráulicos. El desarrollo de los martillos hidráulicos en los años sesenta y comienzos de los setenta supuso un gran avance tecnológico en la perforación de rocas.

Tanto las perforadoras neumáticas como las hidráulicas constan de los siguientes elementos:

  • Un cilindro que con su movimiento alternativo golpea el extremo de una barrena
  • Un mecanismo de rotación incorporado al pistón (barra rifle o rueda trinquete) o independiente de este (motor de rotación)
  • Un sistema que permite el barrido del barreno mediante una aguja de barrido que atraviesa el pistón o bien por medio de la inyección del fluido de barrido lateralmente en la cabeza frontal de la perforadora

 

Perforadoras neumáticas

El accionamiento de estas perforadoras es mediante aire comprimido, con una misma presión tanto para el mecanismo de impacto como para el aire de barrido. Son perforadoras que se han empleado de forma tradicional para barrenos de menos de 150 mm de diámetro. Su peso y tamaño son menores que el de las perforadoras hidráulicas. Presentan un consumo de aire de unos 2,1-2,8 m³/min por cada centímetro de diámetro, la velocidad de rotación es de 40-400 rpm y la carrera del pistón de 35-95 mm.

La rotación del varillaje puede realizarse mediante:

  • Barra estriada o rueda de trinquete: Muy generalizado en perforadoras ligeras
  • Motor independiente: Barrenos de gran diámetro

Las longitudes de perforación con este sistema no superan habitualmente los 30 m debido a las importantes pérdidas de energía ocasionadas por la transmisión de la onda de choque y por las desviaciones de los barrenos. Lo normal es utilizar barrenos cortos, con longitudes de entre 2 y 15 m, y diámetros pequeños, de entre 38 y 100 mm. Además, a medida que aumenta la longitud del barreno, se precisa una mayor presión de aire de barrido.

Entre las ventajas de las perforadoras neumáticas cabe destacar las siguientes:

  • Gran simplicidad
  • Fiabilidad y bajo mantenimiento
  • Facilidad de reparación
  • Precios de adquisición bajos

 

Perforadoras hidráulicas

Estos equipos se introdujeron inicialmente en los trabajos subterráneos, pero poco a poco se están imponiendo también en la perforación en superficie. Estructuralmente, la perforadora hidráulica es similar a la neumática, aunque el accionamiento se realiza mediante un grupo de bombas que suministran un caudal de aceite que impulsa los componentes. Además, estas unidades van equipadas con un compresor cuya función es suministrar aire para barrer los escombros y se puede incrementar la presión del aire con la profundidad del barreno. La presión de trabajo de estos equipos oscila entre 7,5 y 25 MPa, la potencia de impacto entre 6 y 20 kW y la velocidad de rotación entre 0 y 500 rpm. Aquí el consumo relativo de aire comprimido es menor, entre 0,6 y 0,9 m³/min por cada centímetro de diámetro.

Respecto a las perforadoras neumáticas, necesitan una mayor inversión inicial, requieren reparaciones más complejas y costosas y necesitan una mejor organización y formación del personal de mantenimiento. En cambio, las ventajas tecnológicas de las perforadoras hidráulicas son las siguientes:

  • Menor consumo de energía: tres veces menos
  • Menor coste de accesorios de perforación: incremento del 20% de la vida útil del varillaje
  • Mayor capacidad de perforación: velocidades de penetración entre un 50 y un 100% mayores
  • Mejores condiciones ambientales: más limpios y silenciosos
  • Mayor elasticidad en la operación: posibilidad de variar la presión de accionamiento, la energía y la frecuencia de golpeo
  • Mayor facilidad para la automatización: cambio de varillaje, mecanismos antiatranque, etc.
Carro para martillo en fondo semihidráulico AirROC D45 (Atlas Copco)

Os dejo un Polimedia explicativo sobre este sistema de perforación que espero os sea útil.

Referencias:

  • DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
  • INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Editorial de la Universitat Politècnica de València. Ref. 530, 165 pp.
  • UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.
  • YEPES, V. (2022). Maquinaria para sondeos, movimientos de tierras y construcción de firmes. Apuntes de la Universitat Politècnica de València, Ref. 22.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Perforación rotativa con trépanos triturantes o triconos

Tricono de dientes para formación blanda. Wikipedia

Trépano es la herramienta de corte localizado en el extremo inferior de la sarta de perforación que se utiliza para cortar o triturar la formación durante el proceso de la perforación rotatoria. Actualmente los trépanos más utilizados son los trépanos triturantes o triconos. Esta herramienta se creó en 1910, pero no fue hasta que se perfeccionaron los equipos de rotación en la década de los sesenta cuando su uso se popularizó. Al principio, este tipo de perforación se utilizaba solo en rocas blandas o de poca resistencia, pero actualmente estos sistemas ya son competitivos en rocas duras. Con este sistema de perforación se alcanzan buenos rendimientos, de entre 60 y 100 m por turno, en profundidades de hasta 200 m. Se utiliza en ingeniería civil con diámetros de entre 100 y 300 mm. Sin embargo, estos límites se superan en perforaciones petrolíferas, donde en España se han superado los 4500 m de profundidad.

El principio de perforación se basa en dos acciones combinadas:

  • Indentación: Los dientes o insertos penetran en la roca debido al empuje sobre la boca. Este mecanismo tritura la roca.
  • Corte: La roca se fragmenta debido al movimiento lateral de desgarre de los conos al girar sobre el fondo del barreno.

 

La fuerza de avance se produce al introducir los botones del tricono en la roca. Este empuje se transmite al varillaje mediante una cadena de accionamiento hidráulico. La magnitud del empuje no debe sobrepasar cierto umbral para evitar que el trépano se agarrote a la roca y se produzcan otros fallos. La limpieza de la perforación se realiza inyectando un fluido, generalmente lodo, aunque en ocasiones se usa agua o aire comprimido, por el interior de la columna de barras hacia el fondo del barreno. Este caudal, aparte de barrer el detritus, permite refrigerar y lubricar los rodamientos del tricono.

La velocidad de penetración de este sistema depende de la dureza o resistencia de la roca y de las variables de operación, que son las siguientes:

  • Velocidad de rotación
  • Fuerza de empuje
  • Diámetro de la perforación
  • Velocidad y caudal del aire de barrido
  • Desgaste de los trépanos

 

Tricono de insertos. https://www.talleresegovia.com

Se pueden distinguir dos tipos de triconos: de dientes y de insertos de carburo de tungsteno. Los triconos de dientes tienen un coste económico menor, aproximadamente una quinta parte menos que los de insertos. Sin embargo, estos últimos presentan claras ventajas:

  • Mantienen la velocidad de penetración durante la vida útil
  • Requieren menos empuje para una determinada velocidad de penetración
  • Necesitan menos par, disminuyendo las tensiones sobre los motores de rotación
  • Reducen las vibraciones, con menos fatiga sobre la perforadora y el varillaje
  • Disminuye el desgaste sobre el estabilizador y la barra
  • Producen menos pérdidas de tiempo por cambio de bocas y menores daños en las roscas.

Un Polimedia explicativo es el siguiente:

Os dejo a continuación algunos vídeos sobre triconos que espero os sean útiles.

Referencias:

  • DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
  • INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
  • UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.
  • YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia, 89 pp.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Perforación rotativa de rocas

Figura 1. Trépano tricono típico. Wikipedia

El principio utilizado por las perforadoras rotativas consiste en aplicar energía a la roca haciendo rotar un útil de corte o destroza conjuntamente con la acción de una gran fuerza de empuje. Los diámetros habituales de barreno conseguidos con este tipo de perforadoras oscilan entre 50 y 311 mm, estando los mayores diámetros especialmente indicados para los grandes volúmenes de excavación.

Este sistema consta de una fuente de energía, una columna de barras o tubos individuales o conectados en serie, que transmiten el peso, la rotación y el aire de barrido a una boca con dientes de acero o de insertos de carburo de tungsteno que deben fragmentar la roca. De este modo, se puede distinguir la perforación con tricono (Figura 1) y la perforación con útiles de corte (Figura 2). El primer sistema se aplica a rocas de dureza media a alta y el segundo a rocas blandas.

Figura 2. Trialeta. www.krham.com

La fuente primaria de potencia utilizada por estos equipos puede ser eléctrica o motores diésel, y su aplicación se realiza mediante mecanismos de transmisión mecánicos e hidráulicos. La energía se transmite a través de las barras de perforación, que giran al mismo tiempo que penetra la boca, debido a la intensidad de la fuerza de avance. Prácticamente, casi sin excepciones, esta fuerza de empuje se obtiene a partir de un motor hidráulico. En este tipo de perforación, las pérdidas de energía en las barras y la boca son despreciables, por este motivo, la velocidad de penetración no varía apenas con la longitud del barreno. Para girar las barras y conseguir el par necesario, estas máquinas tienen un sistema de rotación montado habitualmente sobre un bastidor que se desliza a lo largo del mástil de la perforadora. El barrido del detritus de la perforación se realiza con aire comprimido, para lo cual el equipo está dotado de uno o dos compresores ubicados en la sala de máquinas.

El empuje a aplicar dependerá de la resistencia de la roca y del diámetro de la perforación. El mecanismo de empuje está diseñado para aplicar una fuerza del orden del 50% del peso de la máquina, alcanzando los equipos de mayor tamaño un peso de unas 120 toneladas. La rotación la provee un motor eléctrico o hidráulico y se transmite a la herramienta por medio de la columna de barras. Los sistemas de rotación pueden ser los siguientes:

  • Directos
  • De mesa de rotación
  • Falsa barra Kelly
Figura 3. Sistemas de rotación: (a) directo, (b) mesa de rotación y (c) falsa barra Kelly

A su vez, estas perforadoras se pueden montar sobre orugas o sobre neumáticos. La elección de uno u otro depende de las condiciones del terreno y de factores como la maniobrabilidad, la movilidad o la estabilidad de la máquina. El montaje sobre orugas se utiliza preferentemente en las grandes excavaciones a cielo abierto, donde los requerimientos de movilidad son escasos. Su limitación en cuanto a menor velocidad de traslación, 2 a 3 km/h, es poco relevante cuando el equipo permanece durante largos períodos de tiempo operando en un mismo banco o sector de la excavación. En tareas medianas, donde se requiere un desplazamiento más frecuente y ágil del equipo, se prefiere el montaje sobre neumáticos. Estos equipos van montados sobre un camión de dos o tres ejes, los más ligeros, y solo los de mayor tamaño se construyen sobre un chasis de cuatro ejes. Su velocidad media de desplazamiento es de 20 a 30 km/h.

El éxito de la perforación rotativa depende de una serie de factores, unos directamente relacionados con la máquina y otros que son factores externos a la misma. Entre los primeros caben resaltar la magnitud del empuje sobre la roca, la velocidad de rotación, el desgaste de la boca, el diámetro del barreno y el caudal de aire necesario para la evacuación del detritus. Entre los factores que no dependen de la máquina se encuentran las características del macizo rocoso y los rendimientos dependientes del operario.

TIPO DE ROCA

RESISTENCIA A

COMPRESIÓN SIMPLE (MPa)

VELOCIDAD

(rpm)

Muy blandas

< 40

120 – 100

Blandas

40 – 80

100 – 80

Medianas

80 – 120

80 – 60

Duras

120 – 200

60 – 40

Muy duras

> 200

40 – 30

 

En el Polimedia que os presento se resumen las ideas más importantes acerca de la perforación rotativa de roca. Espero que os sea útil.

Os dejo a continuación un pequeño vídeo donde se muestra el funcionamiento del tricono.

Referencias:

  • DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
  • INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Editorial de la Universitat Politècnica de València. Ref. 530, 165 pp.
  • UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.