5 lecciones sorprendentes de la IA para construir puentes más sostenibles y económicos.

La tesis doctoral leída recientemente por Lorena Yepes Bellver se centra en la optimización del diseño de puentes de losa de hormigón pretensado para pasos elevados con el fin de mejorar la sostenibilidad económica y ambiental mediante la minimización de costes, energía incorporada y emisiones de CO₂. Con el fin de reducir la elevada carga computacional del análisis estructural, la metodología emplea un marco de optimización de dos fases asistido por modelos sustitutos, en el que se destaca el uso de Kriging y redes neuronales artificiales (RNA).

En concreto, la optimización basada en Kriging condujo a una reducción de costes del 6,54 % al disminuir significativamente el consumo de hormigón y acero activo sin comprometer la integridad estructural. Si bien las redes neuronales demostraron una mayor precisión predictiva global, el modelo Kriging resultó más eficaz para identificar los óptimos locales durante el proceso de búsqueda. El estudio concluye que las configuraciones de diseño óptimas priorizan el uso de altos coeficientes de esbeltez y suponen una reducción del hormigón y del acero activo en favor del acero pasivo, con el fin de mejorar la eficiencia energética. Finalmente, la investigación integra la toma de decisiones multicriterio (MCDM, por sus siglas en inglés) para evaluar de manera integral los diseños en función de sus objetivos económicos, estructurales y ambientales.

Cuando pensamos en la construcción de grandes infraestructuras, como los puentes, suele venirnos a la mente la imagen de proyectos masivos, increíblemente caros y con un gran impacto ambiental. Son gigantes de hormigón y acero que, aunque necesarios, parecen irrenunciablemente vinculados a un alto coste económico y ecológico.

Sin embargo, ¿y si la inteligencia artificial nos estuviera mostrando un camino para que estos gigantes de hormigón fueran más ligeros, económicos y respetuosos con el planeta? Una reciente tesis doctoral sobre la optimización de puentes está desvelando hallazgos impactantes y, en muchos casos, sorprendentes. Este artículo resume esa compleja investigación en cinco lecciones clave y a menudo sorprendentes que no solo se aplican a los puentes, sino que anuncian una nueva era en el diseño de infraestructuras.

1. La sostenibilidad cuesta mucho menos de lo que crees.

Uno de los descubrimientos más importantes de la investigación es que la idea de que la sostenibilidad siempre implica un alto sobrecoste es, en gran medida, un mito. La optimización computacional demuestra que la viabilidad económica y la reducción del impacto ambiental no son objetivos opuestos.

La tesis doctoral lo cuantifica con precisión: un modesto aumento de los costes de construcción (inferior al 1 %) puede reducir sustancialmente las emisiones de CO₂ (en más de un 2 %). Este dato es muy relevante, ya que demuestra que con un diseño inteligente asistido por modelos predictivos se puede conseguir un beneficio medioambiental significativo con una inversión mínima. La sostenibilidad y la rentabilidad pueden y deben coexistir en el diseño de las infraestructuras del futuro.

2. El secreto está en la esbeltez: cuanto más fino, más eficiente.

En el diseño de un puente, la «relación de esbeltez» es un concepto clave que define la proporción entre la altura del tablero (su grosor) y la longitud del vano principal. Tradicionalmente, podríamos pensar que «más robusto es más seguro», pero la investigación demuestra lo contrario.

El estudio identificó una relación de esbeltez óptima para minimizar el impacto ambiental. Concretamente, el estudio halló una relación de esbeltez de aproximadamente 1/30 para optimizar las emisiones de CO₂ y de aproximadamente 1/28 para optimizar la energía incorporada. Esto significa que, en lugar de construir puentes masivos por defecto, los modelos de IA demuestran que un diseño más esbelto y afinado no solo es estructuralmente sólido, sino también mucho más eficiente en el uso de materiales. Este diseño más esbelto se logra no solo usando menos material en general, sino también mediante un sorprendente reequilibrio entre los componentes clave de la estructura, como veremos a continuación.

3. El equilibrio de materiales: menos hormigón, más acero (pasivo).

Quizás uno de los descubrimientos más sorprendentes es que el diseño más sostenible no consiste simplemente en utilizar menos cantidad de todos los materiales. La solución óptima es más un reequilibrio inteligente que una simple reducción general.

La investigación revela que los diseños optimizados lograron reducir el uso de hormigón en un 14,8 % y de acero activo (el acero de pretensado que tensa la estructura) en un 11,25 %. Sin embargo, este descenso se compensa con un aumento de la armadura pasiva (el acero convencional que refuerza el hormigón). Esto resulta contraintuitivo, ya que la intuición ingenieril a menudo favorece una reducción uniforme de los materiales. Sin embargo, los modelos computacionales identifican un complejo intercambio —sacrificar un material más barato (hormigón) por otro más caro (acero pasivo)— para alcanzar un diseño globalmente óptimo en términos de coste y emisiones de CO₂, un equilibrio que sería extremadamente difícil de lograr con métodos de diseño tradicionales.

4. Precisión frente a dirección: El verdadero poder de los modelos predictivos.

Al comparar diferentes modelos de IA, como las redes neuronales artificiales y los modelos Kriging, la tesis doctoral reveló una lección fundamental sobre su verdadero propósito en ingeniería.

El estudio reveló que, si bien las redes neuronales ofrecían predicciones absolutas más precisas, el modelo Kriging era más eficaz para identificar las regiones de diseño óptimas. Esto pone de manifiesto un aspecto crucial sobre el uso de la IA en el diseño: su mayor potencial no radica en predecir un valor exacto, como si fuera una bola de cristal, sino en guiar al ingeniero hacia la «región» del diseño donde se encuentran las mejores soluciones posibles. La IA es una herramienta de exploración y dirección que permite navegar por un universo de posibilidades para encontrar de forma eficiente los diseños más prometedores.

5. La optimización va directo al bolsillo: reducción de costes superior al 6 %.

Más allá de los objetivos medioambientales, la investigación demuestra que estos modelos de IA son herramientas muy potentes para la optimización económica directa. Este descubrimiento no se refiere al equilibrio entre coste y sostenibilidad, sino a la reducción pura y dura de los costes del proyecto.

La tesis doctoral muestra que el método de optimización basado en Kriging consigue una reducción de costes del 6,54 %. Esta importante reducción se consigue principalmente minimizando el uso de materiales: un 14,8 % menos de hormigón y un 11,25 % menos de acero activo, el acero de pretensado más especializado y costoso. Esto demuestra de forma contundente que los modelos sustitutivos no solo sirven para alcanzar metas ecológicas, sino que también son una herramienta de gran impacto para la optimización económica en proyectos a gran escala.

Conclusión: Diseñando el futuro, un puente a la vez.

La inteligencia artificial y los modelos de optimización han dejado de ser conceptos abstractos para convertirse en herramientas prácticas que permiten descubrir formas novedosas y eficientes de construir la infraestructura del futuro. Los resultados de esta investigación demuestran que es posible diseñar y construir puentes que sean más económicos y sostenibles al mismo tiempo.

Estos descubrimientos no solo se aplican a los puentes, sino que abren la puerta a una nueva forma de entender la ingeniería. Si la IA puede rediseñar algo tan grande como un puente para hacerlo más sostenible, ¿qué otras grandes industrias están a punto de transformarse con un enfoque similar?

En este audio podéis escuchar una conversación sobre este tema.

Este vídeo resume las ideas principales.

Aquí tenéis un documento resumen de las ideas básicas.

Pincha aquí para descargar

Referencias:

YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Predictive modeling for carbon footprint optimization of prestressed road flyovers. Applied Sciences15(17), 9591. DOI:10.3390/app15179591

VILLALBA, P.; SÁNCHEZ-GARRIDO, A.; YEPES-BELLVER, L.; YEPES, V. (2025). A Hybrid Fuzzy DEMATEL–DANP–TOPSIS Framework for Life Cycle-Based Sustainable Retrofit Decision-Making in Seismic RC Structures. Mathematics, 13(16), 2649. DOI:10.3390/math13162649

ZHOU, Z.; WANG, Y.J.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Intelligent monitoring of loess landslides and research on multi-factor coupling damage. Geomechanics for Energy and the Environment, 42:100692. DOI:10.1016/j.gete.2025.100692

ZHOU, Z.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Study on the failure mechanism of deep foundation pit of high-rise building: comprehensive test and microstructure coupling. Buildings, 15(8), 1270. DOI:10.3390/buildings15081270

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2025). Surrogate-assisted cost optimization for post-tensioned concrete slab bridgesInfrastructures, 10(2): 43. DOI:10.3390/infrastructures10020043.

BLIGHT, T.; MARTÍNEZ-PAGÁN, P.; ROSCHIER, L.; BOULET, D.; YEPES-BELLVER, L.; YEPES, V. (2025). Innovative approach of nomography application into an engineering educational context. Plos One, 20(2): e0315426. DOI:10.1371/journal.pone.0315426

NAVARRO, I.J.; VILLALBA, I.; YEPES-BELLVER, L.; ALCALÁ, J. Social Life Cycle Assessment of Railway Track Substructure AlternativesJ. Clean. Prod. 2024450, 142008.

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2024). Artificial neural network and Kriging surrogate model for embodied energy optimization of prestressed slab bridges. Sustainability, 16(19), 8450. DOI:10.3390/su16198450

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2023). Embodied energy optimization of prestressed concrete road flyovers by a two-phase Kriging surrogate model. Materials16(20); 6767. DOI:10.3390/ma16206767

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2022). CO₂-optimization of post-tensioned concrete slab-bridge decks using surrogate modeling. Materials, 15(14):4776. DOI:10.3390/ma15144776

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

5 lecciones sorprendentes de ingeniería avanzada para construir puentes más sostenibles y económicos

Cuando pensamos en la construcción de grandes infraestructuras, como los puentes, a menudo nos viene a la mente una imagen de fuerza bruta: toneladas de hormigón y acero ensambladas con una precisión monumental. Se trata de una proeza de la ingeniería física, un testimonio de la capacidad humana para dominar los materiales y la geografía.

Sin embargo, detrás de esta fachada de poderío industrial se está produciendo una revolución silenciosa. La inteligencia artificial y los modelos computacionales avanzados, que pueden ejecutar el equivalente a décadas de diseño y pruebas de ingeniería en cuestión de horas, están redefiniendo las reglas del juego. Lejos de ser un mero ejercicio teórico, estas herramientas permiten a los ingenieros diseñar puentes que son no solo más resistentes, sino también sorprendentemente más económicos y respetuosos con el medio ambiente.

Las lecciones que siguen se basan en los hallazgos de una tesis doctoral, defendida por la profesora Lorena Yepes Bellver, innovadora en la optimización de puentes. La tesis obtuvo la máxima calificación de sobresaliente «cum laude». Las lecciones demuestran que el futuro de la construcción no radica únicamente en nuevos materiales milagrosos, sino en la aplicación de una inteligencia que permita aprovechar los ya existentes de forma mucho más eficiente.

De izquierda a derecha: Julián Alcalá, Salvador Ivorra, Lorena Yepes, Tatiana García y Antonio Tomás.

1. El pequeño coste de un gran impacto ecológico: pagar un 1 % más para emitir un 2 % menos de CO₂.

Uno de los principales obstáculos para la adopción de prácticas sostenibles ha sido siempre la creencia de que «ser verde» es significativamente más caro. Sin embargo, la investigación en optimización de puentes revela una realidad mucho más alentadora. Gracias a los diseños perfeccionados mediante metamodelos, es posible lograr reducciones significativas de la huella de carbono con un impacto económico mínimo.

El dato clave del estudio es contundente: «Un modesto aumento de los costes de construcción (menos del 1 %) puede reducir sustancialmente las emisiones de CO₂ (más del 2 %)». Este hallazgo demuestra que la sostenibilidad no tiene por qué ser un lujo, sino el resultado de una ingeniería más inteligente.

 

«Esto demuestra que el diseño de puentes sostenibles puede ser económicamente viable».

Esta lección es fundamental, ya que pone fin a una falsa dicotomía entre la economía y la ecología. Demuestra que no es necesario elegir entre un puente asequible y otro respetuoso con el medio ambiente. Gracias a las decisiones de diseño inteligentes, guiadas por la optimización avanzada, es posible alcanzar ambos objetivos simultáneamente, de modo que la sostenibilidad se convierte en una ventaja competitiva y no en una carga.

2. La paradoja de los materiales: añadir más componentes para reducir el consumo global.

La lógica convencional nos diría que, para construir de forma más sostenible, el objetivo debería ser reducir la cantidad total de materiales utilizados. Menos hormigón, menos acero, menos de todo. Sin embargo, uno de los hallazgos más sorprendentes de la tesis es una paradoja que desafía esta idea tan simple.

El diseño óptimo y más sostenible aumenta, de hecho, la cantidad de uno de sus componentes: la armadura pasiva (el acero de refuerzo convencional). A primera vista, esto parece contradictorio: ¿cómo puede ser más ecológico añadir más material?

La explicación se debe a un enfoque sistémico. Este aumento estratégico y calculado del refuerzo pasivo permite reducir considerablemente el consumo de otros dos materiales clave: el hormigón y la armadura activa (el acero de pretensado). La producción de estos materiales, especialmente la del cemento y del acero de alta resistencia, es intensiva en energía y, por tanto, genera numerosas emisiones de CO₂. En esencia, se sacrifica una pequeña cantidad de un material de menor impacto para ahorrar una cantidad mucho mayor de materiales de alto impacto.

Este enfoque, que podría describirse como «sacrificar una pieza para ganar el juego», es un ejemplo perfecto de cómo la optimización avanzada supera las reglas simplistas de reducción. En lugar de aplicar un recorte general, se analiza el sistema en su conjunto y se determina el equilibrio más eficiente. Este equilibrio inteligente de materiales solo es posible si se afina otro factor clave: la geometría de la estructura.

Retos en la optimización de puentes con metamodelos

3. Más esbelto es mejor: el secreto de la «delgadez» estructural para la sostenibilidad.

En el ámbito de la ingeniería de puentes, el concepto de «esbeltez» es fundamental. En términos sencillos, se refiere a la relación entre el canto de la losa y la luz que debe cubrir. Una mayor esbeltez implica un diseño estructural, en palabras comunes, más «delgado» o «fino».

La investigación revela un hallazgo crucial: los diseños que son óptimos tanto en términos de emisiones de CO₂ como de energía incorporada se logran con relaciones de esbeltez altas, concretamente de entre 1/30 y 1/28. En otras palabras, los puentes más sostenibles son también los más delgados y se complementan con hormigones óptimos situados entre 35 y 40 MPa de resistencia característica.

¿Por qué es esto tan beneficioso? Un diseño más esbelto requiere, inherentemente, una menor cantidad de materiales, principalmente de hormigón. Lo realmente notable es cómo se consigue. Los métodos tradicionales suelen basarse en reglas generales y márgenes de seguridad amplios, mientras que la optimización computacional permite a los ingenieros explorar miles, e incluso millones, de variaciones para acercarse al límite físico de la eficiencia sin sacrificar la seguridad. El resultado es una elegancia estructural casi contraintuitiva: puentes que alcanzan su fuerza no a través de la masa bruta, sino mediante una delgadez inteligentemente calculada, donde la sostenibilidad es una consecuencia natural de la eficiencia.

4. La optimización inteligente genera ahorros reales: una reducción de costes de hasta un 6,5 %.

Más allá de los beneficios medioambientales, la aplicación de estas técnicas de optimización tiene un impacto económico directo y medible. El diseño de infraestructuras deja de ser un arte basado únicamente en la experiencia para convertirse en una ciencia precisa que busca la máxima eficiencia económica.

El resultado principal del estudio sobre la optimización de costes es claro: el uso de modelos sustitutos (metamodelos Kriging) guiados por algoritmos heurísticos, como el recocido simulado, logró una reducción de costes del 6,54 % en comparación con un diseño de referencia.

Estos ahorros no son teóricos, sino que provienen directamente de la reducción de materiales. En concreto, se consiguió una disminución del 14,8 % en el uso de hormigón y del 11,25 % en el acero activo (pretensado). Es crucial destacar que estas reducciones se consiguieron sin afectar a la integridad estructural ni a la capacidad de servicio del puente. No se trata de sacrificar la calidad por el precio, sino de diseñar de manera más inteligente. Esta metodología convierte la optimización del diseño en una tarea académica en una herramienta práctica y altamente eficaz para la gestión económica de grandes proyectos de ingeniería civil.

5. No todos los cerebros artificiales piensan igual; la clave está en elegir el modelo computacional adecuado.

Una de las lecciones más importantes de esta investigación es que no basta con aplicar «inteligencia artificial» de forma genérica. El éxito de la optimización depende de elegir la herramienta computacional adecuada para cada tarea específica.

La tesis comparó dos potentes metamodelos: las redes neuronales artificiales (RNA) y los modelos de Kriging. Se descubrió una diferencia crucial en su rendimiento: si bien las RNA ofrecían predicciones absolutas más precisas sobre el comportamiento de un diseño concreto, el modelo de Kriging demostró ser mucho más eficaz para identificar los «óptimos locales», es decir, las zonas del mapa de diseño donde se encontraban las mejores soluciones.

Esto revela una capa más profunda de la optimización inteligente. Un modelo puede ser excelente para predecir un resultado (RNA), mientras que otro es más eficaz para guiar la búsqueda del mejor resultado posible (Kriging). No se trata solo de utilizar IA, sino de comprender qué «tipo de pensamiento» artificial es el más adecuado para cada fase del problema: predecir frente a optimizar. La verdadera maestría de la ingeniería moderna consiste en saber elegir las herramientas adecuadas para cada fase del problema.

Conclusión: la nueva frontera del diseño de infraestructuras.

La construcción de nuestras infraestructuras entra en una nueva era. La combinación de la ingeniería estructural clásica con el poder de los modelos computacionales avanzados, como el metamodelado Kriging y las redes neuronales artificiales, está abriendo una nueva frontera en la que la eficiencia y la sostenibilidad no son objetivos opcionales, sino resultados intrínsecos de un buen diseño.

Como hemos visto, los grandes avances no siempre provienen de materiales revolucionarios. A menudo, los «secretos» mejor guardados residen en la optimización inteligente de los diseños y materiales que ya conocemos. Obtener un mayor beneficio ecológico pagando menos, utilizar estratégicamente más de un material para reducir el consumo global o diseñar estructuras más esbeltas y elegantes son lecciones que van más allá de la construcción de puentes.

Nos dejan con una pregunta final que invita a la reflexión: si podemos lograr esto con los puentes, ¿qué otras áreas de la construcción y la industria están esperando a ser reinventadas por el poder de la optimización inteligente?

Os dejo un audio en el que se discuten las ideas de la tesis doctoral. Espero que os guste.

Y en este vídeo, tenemos resumidas las ideas principales de esta tesis.

Referencias:

YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Predictive modeling for carbon footprint optimization of prestressed road flyovers. Applied Sciences15(17), 9591. DOI:10.3390/app15179591

VILLALBA, P.; SÁNCHEZ-GARRIDO, A.; YEPES-BELLVER, L.; YEPES, V. (2025). A Hybrid Fuzzy DEMATEL–DANP–TOPSIS Framework for Life Cycle-Based Sustainable Retrofit Decision-Making in Seismic RC Structures. Mathematics, 13(16), 2649. DOI:10.3390/math13162649

ZHOU, Z.; WANG, Y.J.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Intelligent monitoring of loess landslides and research on multi-factor coupling damage. Geomechanics for Energy and the Environment, 42:100692. DOI:10.1016/j.gete.2025.100692

ZHOU, Z.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Study on the failure mechanism of deep foundation pit of high-rise building: comprehensive test and microstructure coupling. Buildings, 15(8), 1270. DOI:10.3390/buildings15081270

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2025). Surrogate-assisted cost optimization for post-tensioned concrete slab bridgesInfrastructures, 10(2): 43. DOI:10.3390/infrastructures10020043.

BLIGHT, T.; MARTÍNEZ-PAGÁN, P.; ROSCHIER, L.; BOULET, D.; YEPES-BELLVER, L.; YEPES, V. (2025). Innovative approach of nomography application into an engineering educational context. Plos One, 20(2): e0315426. DOI:10.1371/journal.pone.0315426

NAVARRO, I.J.; VILLALBA, I.; YEPES-BELLVER, L.; ALCALÁ, J. Social Life Cycle Assessment of Railway Track Substructure AlternativesJ. Clean. Prod. 2024450, 142008.

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2024). Artificial neural network and Kriging surrogate model for embodied energy optimization of prestressed slab bridges. Sustainability, 16(19), 8450. DOI:10.3390/su16198450

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2023). Embodied energy optimization of prestressed concrete road flyovers by a two-phase Kriging surrogate model. Materials16(20); 6767. DOI:10.3390/ma16206767

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2022). CO₂-optimization of post-tensioned concrete slab-bridge decks using surrogate modeling. Materials, 15(14):4776. DOI:10.3390/ma15144776

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.;

Tesis doctoral: Optimización multicriterio para el diseño sostenible de puentes postesados mediante metamodelos

De izquierda a derecha: Julián Alcalá, Salvador Ivorra, Lorena Yepes, Tatiana García y Antonio Tomás.

Hoy, 6 de junio de 2025, ha tenido lugar la defensa de la tesis doctoral de Dª. Lorena Yepes Bellver, titulada “Multi-criteria optimization for sustainable design of post-tensioned concrete slab bridges using metamodels”, dirigida por el profesor Julián Alcalá González. La tesis ha obtenido la máxima calificación de sobresaliente «cum laude». A continuación, presentamos un pequeño resumen de la misma.

Esta tesis utiliza técnicas de modelización sustitutiva para optimizar los costes económicos y medioambientales en puentes losa de hormigón postesado hormigonado in situ. El objetivo principal de esta investigación es desarrollar una metodología sistemática que permita optimizar el diseño de puentes, reduciendo los costes, las emisiones de CO₂ y la energía necesaria para construir este tipo de puentes sin comprometer la viabilidad estructural o económica. El marco de optimización propuesto consta de dos fases secuenciales: la primera se centra en ampliar el espacio de búsqueda y la segunda intensifica la búsqueda de soluciones óptimas. El metamodelo basado en Kriging realiza una optimización heurística que da como resultado un diseño con emisiones de CO₂ significativamente menores que los diseños convencionales. El estudio revela que una relación de esbeltez de aproximadamente 1/30 arroja resultados óptimos, ya que se reduce el consumo de material y se mantiene la integridad estructural. Además, el aumento de la armadura pasiva compensa la reducción de hormigón y armadura activa, lo que da como resultado un diseño más sostenible. Por otra parte, se identifica una compensación entre costes y emisiones que muestra que un modesto aumento de los costes de construcción (menos del 1 %) puede reducir sustancialmente las emisiones de CO₂ (más del 2 %), lo que demuestra que el diseño de puentes sostenibles puede ser económicamente viable.

La investigación explora más a fondo la optimización de la energía incorporada en la construcción de pasos elevados de carreteras anuladas mediante el uso de muestreo por hipercubo latino y optimización basada en Kriging. La metodología permite identificar los parámetros críticos de diseño, como los altos coeficientes de esbeltez (en torno a 1/28), el uso mínimo de hormigón y armadura activa, y el aumento de la armadura pasiva para mejorar la eficiencia energética. Aunque en el estudio se emplearon Kriging y redes neuronales artificiales (RNA), Kriging demostró ser más eficaz a la hora de identificar óptimos locales, a pesar de que las redes neuronales ofrecen predicciones absolutas más precisas. Esto pone de manifiesto la eficacia de los modelos sustitutos a la hora de orientar las decisiones de diseño sostenible, incluso cuando los modelos no ofrecen predicciones absolutas perfectamente exactas.

En el contexto de la optimización de costes para puentes de losa postesada, el estudio demuestra el potencial del modelado sustitutivo combinado con la simulación del recocido. Los resultados muestran que el método de optimización basado en Kriging conduce a una reducción de costes del 6,54 %, principalmente mediante la minimización del uso de materiales, concretamente de hormigón en un 14,8 % y de acero activo en un 11,25 %. Estas reducciones en el consumo de material se consiguen manteniendo la integridad estructural y la capacidad de servicio del puente, lo que convierte al modelado sustitutivo en una herramienta práctica y eficaz para la optimización económica en el diseño de puentes.

El estudio también evalúa la forma de optimizar las emisiones de CO₂ en pasos elevados de carreteras pretensadas. Se identifican los parámetros óptimos de diseño, como grados de hormigón entre C-35 y C-40 MPa, profundidades del tablero entre 1,10 y 1,30 m, y anchuras de base entre 3,20 y 3,80 m. La red neuronal mostró las predicciones más precisas entre los modelos predictivos analizados, con los errores medios absolutos (MAE) y cuadrados medios (RMSE) más bajos. Estos resultados subrayan la importancia de seleccionar el modelo predictivo adecuado para optimizar las emisiones de CO₂ en el diseño de puentes y destacan el valor de utilizar modelos sustitutivos para mejorar la sostenibilidad en los proyectos de ingeniería civil.

Por último, la investigación integra la toma de decisiones multicriterio (MCDM) con la optimización basada en Kriging para evaluar y optimizar los diseños de puentes en relación con objetivos económicos, medioambientales y estructurales. El enfoque MCDM permite evaluar de manera más exhaustiva las alternativas de diseño al tener en cuenta las compensaciones entre coste, impacto ambiental y rendimiento estructural. Esta integración contribuye al desarrollo sostenible de las infraestructuras, ya que facilita la selección de diseños óptimos que se ajusten a los objetivos de sostenibilidad.

En conclusión, esta tesis demuestra que el modelado sustitutivo, que utiliza explícitamente el Kriging y redes neuronales artificiales, es un enfoque práctico para optimizar las dimensiones medioambiental y económica del diseño de puentes. El marco de optimización en dos fases que aquí se presenta proporciona una metodología eficiente desde el punto de vista computacional que permite identificar soluciones de diseño óptimas y sostenibles que cumplen las restricciones estructurales y económicas. Los resultados sugieren que la metodología es aplicable a proyectos de infraestructuras a gran escala y sentarán las bases para futuras investigaciones. Futuros estudios podrían investigar el uso de algoritmos y modelos de optimización adicionales para perfeccionar aún más el proceso de optimización y mejorar la aplicabilidad de estas metodologías en proyectos reales.

Referencias:

YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Predictive modeling for carbon footprint optimization of prestressed road flyovers. Applied Sciences15(17), 9591. DOI:10.3390/app15179591

VILLALBA, P.; SÁNCHEZ-GARRIDO, A.; YEPES-BELLVER, L.; YEPES, V. (2025). A Hybrid Fuzzy DEMATEL–DANP–TOPSIS Framework for Life Cycle-Based Sustainable Retrofit Decision-Making in Seismic RC Structures. Mathematics, 13(16), 2649. DOI:10.3390/math13162649

ZHOU, Z.; WANG, Y.J.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Intelligent monitoring of loess landslides and research on multi-factor coupling damage. Geomechanics for Energy and the Environment, 42:100692. DOI:10.1016/j.gete.2025.100692

ZHOU, Z.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Study on the failure mechanism of deep foundation pit of high-rise building: comprehensive test and microstructure coupling. Buildings, 15(8), 1270. DOI:10.3390/buildings15081270

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2025). Surrogate-assisted cost optimization for post-tensioned concrete slab bridgesInfrastructures, 10(2): 43. DOI:10.3390/infrastructures10020043.

BLIGHT, T.; MARTÍNEZ-PAGÁN, P.; ROSCHIER, L.; BOULET, D.; YEPES-BELLVER, L.; YEPES, V. (2025). Innovative approach of nomography application into an engineering educational context. Plos One, 20(2): e0315426. DOI:10.1371/journal.pone.0315426

NAVARRO, I.J.; VILLALBA, I.; YEPES-BELLVER, L.; ALCALÁ, J. Social Life Cycle Assessment of Railway Track Substructure Alternatives. J. Clean. Prod. 2024, 450, 142008.

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2024). Artificial neural network and Kriging surrogate model for embodied energy optimization of prestressed slab bridges. Sustainability, 16(19), 8450. DOI:10.3390/su16198450

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2023). Embodied energy optimization of prestressed concrete road flyovers by a two-phase Kriging surrogate model. Materials16(20); 6767. DOI:10.3390/ma16206767

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2022). CO₂-optimization of post-tensioned concrete slab-bridge decks using surrogate modeling. Materials, 15(14):4776. DOI:10.3390/ma15144776

¿Cómo decidir cuando tenemos un dilema? El óptimo de Pareto

Los problemas de decisión están presentes en todos los ámbitos del ser humano: finanzas, empresa, ingeniería, salud, etc. Una de las grandes dificultades al tomar una decisión ocurre cuando queremos conseguir varios objetivos distintos, muchos de ellos incompatibles o contradictorios. Por ejemplo, si queremos un vehículo que sea muy veloz, debería tener un perfil aerodinámico que a veces es incompatible con la comodidad de los usuarios;  si queremos hacer un negocio con grandes beneficios, a veces tenemos que asumir ciertos riesgos, etc. Una herramienta que permite afrontar este tipo de problemas de decisión es el denominado «óptimo de Pareto«. A continuación os paso un vídeo explicativo de este tema. Espero que os guste.