Evaluación del índice de daño estructural en entornos BIM

Acaban de publicar nuestro artículo en la revista Structures, de la editorial Elsevier, indexada en Q1 del JCR. El estudio desarrolla una metodología para evaluar un índice de daño estructural en entornos BIM, con el fin de optimizar los procesos de rehabilitación.

Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal, junto con el profesor Julián Alcalá, en la Universitat Politècnica de València.  A continuación, explicamos brevemente el contenido, que podéis descargar gratuitamente hasta el 22 de abril de 2025, en el siguiente enlace: https://authors.elsevier.com/c/1ki7v8MoIH6O8-

El artículo contextualiza la necesidad de integrar herramientas digitales en la evaluación de daños estructurales como respuesta a las exigencias de sostenibilidad y eficiencia en el sector de la construcción. Se menciona que el envejecimiento del parque edificatorio y las nuevas exigencias en materia de mantenimiento requieren un enfoque innovador. Se destaca la implementación de BIM como una solución para mejorar la gestión de activos y prolongar la vida útil de las estructuras. En este contexto, el artículo presenta Endurify, una herramienta diseñada para evaluar la durabilidad de elementos estructurales de hormigón mediante indicadores de deterioro, con el fin de optimizar los procesos de rehabilitación.

El artículo enfatiza que la rehabilitación de edificios es una estrategia fundamental para mejorar la sostenibilidad en el sector de la construcción. Al renovar estructuras existentes, se reduce el impacto ambiental al disminuir la necesidad de utilizar nuevos materiales y procesos constructivos. Además, la rehabilitación mejora el rendimiento energético de los edificios, lo que contribuye a los objetivos de desarrollo sostenible establecidos por organismos internacionales. En el contexto europeo, iniciativas como el Pacto Verde Europeo subrayan la relevancia de estas medidas para reducir las emisiones de carbono y mejorar la eficiencia en el uso de recursos.

La metodología BIM se ha convertido en un estándar en la industria de la construcción, facilitando la integración de múltiples capas de información en un único modelo digital. BIM permite almacenar y gestionar datos estructurales, materiales y operacionales, optimizando así la planificación y el mantenimiento de edificios. La literatura reciente ha demostrado que el uso de BIM mejora la sostenibilidad en la construcción, facilita la gestión de riesgos y permite realizar análisis avanzados, como simulaciones de desempeño estructural. Además, la incorporación de gemelos digitales y herramientas de simulación refuerza su capacidad para la toma de decisiones fundamentadas en datos.

El mantenimiento estructural es fundamental para garantizar la seguridad y la eficiencia de los edificios a lo largo de su vida útil. A pesar de la importancia del seguimiento del estado estructural, la investigación en este ámbito ha sido menos extensa que la dedicada al diseño y la construcción. En este contexto, BIM se presenta como una plataforma idónea para integrar estrategias de mantenimiento predictivo, ya que permite evaluar el estado real de las estructuras y anticipar las intervenciones necesarias. Sin embargo, la implementación de BIM en este ámbito enfrenta desafíos como la precisión de los datos, los costes asociados y la capacitación del personal especializado.

El desarrollo de Endurify se basó en una metodología de investigación-acción de doble ciclo, lo que permitió realizar iteraciones sucesivas para optimizar la herramienta. El proceso constó de siete etapas, que iban desde la identificación del problema hasta la validación del software en entornos reales. La herramienta se diseñó específicamente para el mercado de la vivienda en España y cumple con los requisitos del Código Estructural.

Para evaluar la durabilidad, se seleccionaron cuatro indicadores principales: carbonatación, fisuración transversal, fluencia y deformación. La metodología utilizada para determinar cada uno de estos indicadores se basa en modelos normativos y en la recopilación de datos mediante inspección visual. Los resultados se almacenan dentro del modelo BIM, lo que permite su análisis comparativo y la planificación de intervenciones de mantenimiento.

La implantación de Endurify en BIM se realizó mediante un complemento para Autodesk Revit que permite extraer datos de los elementos estructurales y realizar el análisis de daños en tiempo real. La herramienta se diseñó para trabajar con parámetros predefinidos en el modelo BIM y almacenar los resultados como atributos de los elementos analizados.

El artículo presenta Endurify, un complemento para entornos BIM que permite analizar el estado de conservación de los elementos estructurales de hormigón. La herramienta emplea cuatro indicadores de daño: carbonatación, fisuración transversal, fluencia y deformación. Su integración en BIM facilita la gestión de datos, ya que permite almacenar los resultados del análisis dentro del modelo digital. Esto posibilita una evaluación más precisa del estado estructural y contribuye a la toma de decisiones sobre el mantenimiento y la rehabilitación de edificios existentes. Cabe destacar que la herramienta evita pruebas destructivas y se ajusta a normativas como el Código Estructural de España (CE-2021).

Los estudios de caso presentados en el artículo muestran cómo se ha aplicado Endurify en elementos estructurales con distintos grados de exposición ambiental. En un primer caso, se analizó una viga interior con fisuras visibles y se determinó que la carbonatación era el factor predominante en su deterioro. En el segundo caso, se evaluó un soporte en un corredor exterior sin daños aparentes con el mismo procedimiento, confirmándose un estado avanzado de carbonatación. Los resultados demuestran que la herramienta permite identificar patrones de degradación en distintos elementos y facilita la programación de intervenciones específicas. No obstante, se reconoce que la precisión del análisis depende de la calidad de los datos de entrada y de su compatibilidad con diferentes normativas y condiciones ambientales.

El artículo sugiere que la incorporación de nuevos enfoques podría mejorar la herramienta Endurify. Se menciona la posibilidad de desarrollar un índice de daño estructural que combine los cuatro indicadores en un solo valor ponderado, aunque los autores advierten de que esto podría ocultar información relevante sobre las causas del deterioro. Asimismo, se plantea la necesidad de adaptar la metodología a distintos contextos normativos e integrar sensores IoT para obtener datos en tiempo real. Además, se destaca que una mejor definición de los parámetros de análisis podría optimizar la precisión del modelo y ampliar su aplicación a proyectos de rehabilitación a gran escala.

Por tanto, el artículo demuestra que la integración de herramientas de análisis de durabilidad en entornos BIM puede mejorar la evaluación del estado estructural de los edificios. Endurify permite almacenar y visualizar datos de deterioro en el modelo digital, lo que facilita la toma de decisiones sobre el mantenimiento y la rehabilitación. Sin embargo, su implementación depende de la calidad de los datos de entrada y de su adaptación a distintas normativas. Se identifican oportunidades para mejorar la herramienta mediante el uso de modelos predictivos y la incorporación de tecnologías emergentes, lo que podría consolidar su aplicación en la ingeniería civil.

Referencia:

FERNÁNDEZ-MORA, V.; NAVARRO, I.J.; YEPES, V. (2025). Structural damage index evaluation in BIM environmentsStructures, 74:108544. DOI:10.1016/j.istruc.2025.108544

Edificios modulares de acero: una opción sostenible y resistente en zonas sísmicas

Un estudio reciente, titulado «Life cycle assessment of seismic resistant prefabricated modular buildings» y publicado en la prestigiosa revista Heliyon, ha evaluado los beneficios de los edificios modulares prefabricados (PVMB) diseñados para resistir terremotos.

La investigación, liderada por expertos de la Universitat Politècnica de València y la Universidad Central del Ecuador, se llevó a cabo en el marco del proyecto RESILIFE y comparó cuatro sistemas estructurales, tres de ellos basados en tecnología modular (dos de hormigón armado y uno de acero), y un sistema convencional de hormigón armado in situ, en una zona de alto riesgo sísmico.

El análisis tuvo en cuenta tanto los impactos económicos como ambientales a lo largo de todo el ciclo de vida de los edificios, desde la fabricación hasta la fase final de demolición.

 

Contexto del estudio

El sector de la construcción es responsable de una parte importante del consumo de recursos y de las emisiones de gases de efecto invernadero a nivel global. Dado que el crecimiento poblacional y la demanda de infraestructuras siguen aumentando, las tecnologías como los edificios modulares prefabricados ofrecen una alternativa innovadora para reducir el impacto ambiental. Estos sistemas, que permiten construir fuera del emplazamiento y ensamblar los módulos en la obra, prometen reducir los tiempos y los costes de construcción en un 50 % y un 30 %, respectivamente, lo que los convierte en una opción atractiva en términos de sostenibilidad y eficiencia.

Sin embargo, la adopción de estas tecnologías en áreas sísmicas aún se enfrenta a barreras, principalmente por la necesidad de demostrar su capacidad para resistir cargas sísmicas y por la percepción de altos costes iniciales. Por ello, el estudio se centró en realizar un análisis integral de la vida útil para cuantificar estos beneficios y compararlos con las técnicas de construcción convencionales.

Metodología

El estudio evaluó un hospital de cuatro pisos situado en Quito, Ecuador, una región con un alto nivel de actividad sísmica debido a la presencia de dos fuentes principales de terremotos: una zona de subducción y un sistema de fallas activas. Se evaluaron cuatro soluciones estructurales:

  1. Un sistema convencional de hormigón armado construido in situ.
  2. Un sistema modular de hormigón armado con conexiones húmedas (prefabricación con ensamblaje mediante hormigonado en obra).
  3. Un sistema modular de hormigón armado con conexiones secas (ensamblaje mediante pernos y juntas metálicas).
  4. Un sistema modular de acero.

El análisis abarcó las etapas de fabricación, construcción, uso y fin de vida, y evaluó tanto el impacto ambiental como el coste económico. Para ello, se utilizaron indicadores como la cantidad de materiales empleados, las emisiones de gases de efecto invernadero y los costes asociados a cada etapa, desde la producción de los módulos hasta su mantenimiento y demolición.

Resultados principales

Los resultados revelaron que, aunque el sistema modular de acero es el más costoso en términos de construcción inicial (un 60 % más caro que el sistema convencional), presenta los mejores resultados en términos de sostenibilidad. Este sistema mostró una reducción significativa en los impactos ambientales, con una disminución del 43 % en las emisiones de gases de efecto invernadero en comparación con el sistema tradicional de hormigón. Además, los ciclos de mantenimiento fueron menores, lo que implica una mayor durabilidad y menos intervenciones durante su vida útil.

Por otro lado, las alternativas de hormigón modular, si bien también ofrecían beneficios en cuanto a reducción del tiempo de construcción, presentaban mayores impactos ambientales debido al uso intensivo de hormigón y acero de refuerzo. De hecho, el sistema modular con conexiones húmedas resultó ser el menos favorable desde el punto de vista ambiental, con un impacto un 52 % mayor que el sistema convencional.

Implicaciones del estudio

Este trabajo tiene importantes implicaciones para la construcción en zonas sísmicas. Los autores sugieren que los métodos de construcción modulares no solo son viables desde el punto de vista técnico, sino también en términos de sostenibilidad ambiental, siempre y cuando se adopten las soluciones más eficientes, como el uso de estructuras de acero. Aunque los sistemas modulares de acero son más caros, ofrecen ventajas claras en cuanto a durabilidad, menor impacto ambiental y reducción de los costos de mantenimiento a lo largo de su vida útil.

El estudio también pone de relieve la importancia de evaluar no solo los costes iniciales de construcción, sino todo el ciclo de vida de las infraestructuras. Las decisiones basadas únicamente en el precio de construcción pueden dar como resultado infraestructuras menos sostenibles a largo plazo, mientras que un enfoque integral, que tenga en cuenta el impacto ambiental y los costes futuros, puede conducir a mejores decisiones tanto para el medio ambiente como para la economía.

Conclusiones

En resumen, este estudio aporta valiosas evidencias a favor del uso de edificios modulares prefabricados, especialmente en zonas de alto riesgo sísmico. Los resultados indican que el uso de sistemas modulares de acero puede ser clave para mejorar la sostenibilidad de las infraestructuras, reducir las emisiones y asegurar una mayor durabilidad de los edificios. Las conclusiones de esta investigación son relevantes no solo para el ámbito académico, sino también para los responsables de las políticas públicas y los profesionales de la construcción que buscan soluciones más sostenibles y eficientes para las ciudades del futuro.

Referencia:

GUAYGUA, B.; SÁNCHEZ-GARRIDO, A.; YEPES, V. (2024). Life cycle assessment of seismic resistant prefabricated modular buildingsHeliyon, 10(20), e39458. DOI:10.1016/j.heliyon.2024.e39458

Este artículo está publicado en abierto, por lo que puedes descargar aquí mismo:

Descargar (PDF, 7.1MB)

 

Impacto ambiental del ciclo de vida de las baterías de NiZn de la cuna a la tumba

Acaban de publicarnos un artículo en la revista Energies, revista indexada en el JCR. El artículo analiza los impactos ambientales de las baterías de níquel-zinc utilizando modelos matemáticos basados en las normas ISO y el método ReCiPe 2016. Asimismo, compara los impactos ambientales de las baterías de NiZn con los de otras tecnologías y sugiere formas de reducir su impacto mediante la energía renovable y la tecnología de recuperación ecológica. El documento sigue las normas ISO 14040 e ISO 14044 para la metodología de evaluación del ciclo de vida (LCA) y compara la batería de NiZn con las baterías de plomo-ácido y de iones de litio. También recopila los datos principales del inventario del ciclo de vida (LCI) de una producción a escala piloto en China para la fase inicial, centrándose en el consumo de electricidad y excluyendo determinadas evaluaciones de impacto ambiental. Utiliza el método ReCiPe 2016 para la evaluación del impacto, teniendo en cuenta las categorías de impacto intermedio y final, como el potencial de calentamiento global y los daños a la salud humana y los ecosistemas. Por último, aplica el software OpenLCA para modelar los impactos e incorpora los métodos de demanda energética acumulada (CED) y ReCiE 2016 con varios indicadores de impacto para realizar un análisis ambiental exhaustivo.

Las contribuciones más relevantes de este trabajo son las siguientes:

  • Desarrolla modelos matemáticos para estimar los impactos ambientales de las baterías de níquel-zinc durante el ciclo de vida, comparándolos con otras tecnologías de baterías.
  • Analiza los impactos ambientales de las baterías recargables de níquel-zinc desde el principio hasta la tumba, en consonancia con las normas ISO para el análisis del ciclo de vida.
  • Excluye las evaluaciones de impacto ambiental relacionadas con la infraestructura y los bienes de capital, y se centra en los impactos de los productos, el transporte y las contribuciones al final de su vida útil.
  • Proporciona funciones objetivas para optimizar el coste y el impacto medioambiental de las baterías de NiZn, lo que contribuye al objetivo del proyecto LOLABAT de lograr un alto rendimiento, una rentabilidad competitiva y una sostenibilidad.
  • Recibe financiación del programa de investigación Horizonte 2020 de la Unión Europea dentro del proyecto LOLABAT, lo que refleja las opiniones de los autores sobre la posible industrialización de las baterías de NiZn en el contexto europeo.

Las conclusiones más importantes del trabajo se pueden resumir de la siguiente forma:

  • Las baterías de NiZn tienen un impacto ambiental de aproximadamente 14 MJ para la demanda energética acumulada (CED) y de 0,82 kg de CO₂ equivalentes para el potencial de calentamiento global (GWP) por kWh de energía liberada, lo que las sitúa entre las baterías de iones de litio y las de plomo-ácido.
  • La fase de uso contribuye significativamente al impacto de la energía electromagnética, ya que las baterías de NiZn tienen un menor impacto ambiental en comparación con las baterías de plomo-ácido, pero son similares a las tecnologías de iones de litio.
  • Las baterías de NiZn tienen un impacto ambiental menor que las baterías de plomo-ácido, con un impacto ligeramente mayor en comparación con las baterías de iones de litio, lo que las convierte en una opción favorable tanto desde el punto de vista económico como medioambiental.
  • Se espera que las futuras mejoras en los procesos de fabricación y los componentes de las celdas reduzcan la carga medioambiental de las baterías de NiZn y respalden su potencial como solución de almacenamiento de energía más sostenible.

Abstract:

This paper presents a comprehensive and systematic analysis of the environmental impacts (EI) of novel nickel-zinc battery (RNZB) technology, a promising alternative for energy storage applications. The paper develops mathematical models for estimating the life cycle environmental impacts of RNZB from the cradle to the grave based on an extensive literature review and the ISO standards for life cycle costing and life cycle analysis. The paper uses the ReCiPe 2016 life cycle analysis (LCA) method to calculate the EI of RNZB in terms of eighteen Midpoint impact categories and three Endpoint impact categories: damage to human health, ecosystem diversity, and resource availability. The paper also compares the EI of RNZB with those of other battery technologies, such as lead-acid and lithium-ion LFP and NMC. The paper applies the models and compares results with those provided by the software openLCA (version 1.11.0), showing its reliability and concluding that NiZn batteries contribute approximately 14 MJ for CED and 0.82 kg CO₂ eq. for global warming per kWh of released energy. This places them between lithium-ion and lead-acid batteries. This study suggests that NiZn battery technology could benefit from using more renewable energy in end-use applications and adopting green recovery technology to reduce environmental impact. Further developments can use these models as objective functions for heuristic optimization of the EI in the life cycle of RNZB.

Keywords:

Sustainable energy; nickel-zinc battery; life cycle analysis modeling; environmental impacts of battery technologies

Reference:

MALVIYA, A.K.; ZAREHPARAST MALEKZADEH, M.; LI, J.; LI, B.; SANTARREMIGIA, F.E.; MOLERO, G.D.; VILLALBA-SANCHIS, I.; YEPES, V. (2024). A formulation model for computation to estimate the Life Cycle Environmental Impact of NiZn Batteries. Energies, 17:2751. DOI:10.3390/en17112751

Descargar (PDF, 3.66MB)