Contención de agua mediante pantallas plásticas de bentonita-cemento

Figura 1. Cuchara bivalva para ejecución de pantalla plástica. https://www.archiexpo.es/prod/franki-foundations-belgium/product-61404-1536843.html

Las pantallas impermeables de bentonita-cemento, también llamadas pantallas blandas, plásticas o de lodo autoendurecible, constituyen barreras al paso del agua subterránea de construcción construcción similar a la de los muros pantalla (Figura 1). Este tipo de muros de estanqueidad se empezaron a utilizar en los años 60, en la mayoría de las ocasiones con un hormigón de bentonita-cemento como relleno de la pantalla, mientras que en España la primera realización data de 1974 (Cañizo et al., 1976). Su función es impermeabilizante, sin responsabilidad estructural, pues no deben resistir esfuerzos de flexión apreciables; por tanto son útiles cuando se trata de impedir el paso del agua pero no se va a realizar una excavación o vaciado anexo.

Se trata de abrir una zanja profunda y estrecha utilizando los procedimientos habituales de los muros pantalla, pero utilizando como fluido de perforación para contener las paredes un lodo de bentonita-cemento, en lugar de simplemente la bentonita. Son pantallas de un espesor entre 0,50 y 1,20 m, con profundidades que pueden llegar a 50 m, pero que son rentables hasta unos 25-30 m. Este procedimiento es más habitual en Europa que en Estados Unidos, donde suele utilizarse las mezclas de suelo y bentonita.

Otra forma de ejecutar este tipo de pantallas es mediante retroexcavadoras con brazos largos, que son efectivas hasta 15-20 m, aunque con brazos especialmente largos puede llegarse a 25-30 m. En otros casos, también se podrían utilizar zanjadoras de brazo inclinable.

Figura 2. Excavación con retroexcavadora para pantalla de bentonita-cemento. https://www.keller.co.uk/expertise/techniques/slurry-cut-walls

La resistencia y la permeabilidad de una pantalla de bentonita-cemento dependen de la dosificación (relación agua/cemento) y del tipo de cemento utilizado. Se trata de mezclar bentonita en la cantidad suficiente para evitar que el cemento decante antes del fraguado. Por cada metro cúbico de mezcla, la dosificación habitual es de 100 a 950 litros de agua, 20 a 80 kg de bentonita, 100 a 400 kg de cemento y de 0 a 5 kg de aditivos. En general se obtienen mayores resistencias con cementos de alto-horno o puzolánico que con cemento portland. Se pueden alcanzar con las mezclas de bentonita-cemento resistencias de 0,10 a 0,30 MPa. Esta mezcla de bentonita y cemento fragua lentamente.

En obra se necesita una planta que mezcle y dosifique el agua, la bentonita y el cemento. Transcurrido el tiempo de mezclado en planta, se manda el material al tajo. Este sistema difiere del tradicional, que deja hidratar previamente la bentonita de 12 a 24 horas; de esta forma, aunque se necesario utilizar algo más de bentonita, nos evitamos montar una planta de gran volumen, con depósitos de almacenaje de bentonita en maduración.

Durante el proceso constructivo es importante garantizar que entre paneles no existen juntas. Si la perforación de dos paneles contiguos es inmediata, se puede ejecutar una pantalla continua, sin juntas; si se retrasa la perforación, se muerde el extremo, aún en estado pastoso para que se adhiera el nuevo lodo y no se forme junta. Se pueden obtener rendimientos típicos de 100 a 150 m2/día.

Figura 3. Ejecución pantalla plástica de bentonita-cemento. https://www.terratest.com/pdf/catalogos/brochure-diaphragm-walls-spain.pdf

La ventaja de estas pantallas, aparte de la impermeabilidad y ausencia de juntas, es su adaptación a grandes deformaciones que pueda provocar el cambio del nivel freático. Además, el coste es relativamente económico debido al consumo reducido de materiales, a la mecanización de las operaciones y a la simplificación de la construcción. Son competitivas frente a otros sistemas como las tablestacas o las pantallas perforadas con hormigón bituminoso. Frente a otros sistemas de coste similar como pantallas de hormigón de arcilla o de suelo mejorado, las pantallas de bentonita-cemento son de mayor calidad, puesto que las anteriores son difíciles de compactar y por la existencia de juntas. Sin embargo, no son viables si se debe excavar en roca o si se debe levantar la pantalla como núcleo de arcilla de forma simultánea a los espaldones de presas de materiales sueltos.

Os dejo un vídeo para que veáis el procedimiento constructivo análogo a la construcción de un muro pantalla.

 

A continuación os dejo un ejemplo de Geocisa de aplicación de pantallas continuas de cemento-bentonita que han servido para mejorar las condiciones de seguridad y la corrección de filtraciones de la presa Hornotejero, en Cordobilla de Lácara (Badajoz).

Pincha aquí para descargar

REFERENCIAS:

  • CAÑIZO, L.; ERASO, A.; AGUADO, J. (1976). La bentonita-cemento y sus aplicaciones. Revista de Obras Públicas, 123(3130):67-76.
  • CASHMAN, P.M.; PREENE, M. (2012). Groundwater Lowering in Construction: A Practical Guide to Dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA (1987). Manual de ingeniería de taludes. Serie: Guías y Manuales nº 3, Ministerio de Educación y Ciencia, Madrid, 456 pp.
  • POWERS, J.P.; CORWIN, A.B.; SCHMALL, P.C.; KAECK, W.E. (2007). Construction dewatering and groundwater control: New methods and aplications. Third Edition, John Wiley & Sons.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Reciclado de firmes in situ con cemento

Tren de reciclado. http://pa-12.blogspot.com.es/2009/03/tren-de-reciclado.html

El reciclado de firmes in situ con cemento constituye una técnica de rehabilitación que consiste en transformar el firme deteriorado tomando como fuente de suministro de áridos la propia carretera. Es una técnica sostenible, puesto que podría evitar, según el IECA, la extracción de unas 800.000 t de áridos. El procedimiento constructivo consiste en disgregar el firme existente en la profundidad requerida, mezclar el material resultante con cemento y agua y compactar la mezcla a la densidad adecuada. Con ello se consigue un firme en conjunto mucho más duradero, con menor susceptibilidad al agua y mayor resistencia a la fatiga. Aquí os dejo un enlace para descargaros la Guía Técnica de IECA sobre reciclado de firmes in situ.

¿Cómo se hace?, pues aquí tienes un didáctico vídeo sobre estabilización de suelos con cemento, procedente de la sección de vídeos de IECA. Espero que os guste.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Qué es el reciclado de firmes con cemento?

https://www.eurovia-es.com/soluciones-constructivas/por-tipo-de-aplicacion/tecnicas-amigables-con-el-medioambiente/reciclado-in-situ-con-cemento

El reciclado es una técnica cuyo objetivo principal consiste en transformar un firme degradado en una estructura homogénea y adaptada al tráfico que debe soportar. Se trata de reutilizar sus materiales para la construcción de una nueva capa portante, lo que permite claras ventajas medioambientales y económicas.

Para ampliar los conocimientos sobre este tema, os dejo una videoconferencia proporcionada por Structuralia sobre aplicación del cemento en la conservación de carreteras. El ponente es Jesús Díaz Minguela, Doctor Ingeniero de Caminos, Canales y Puertos y Director Técnico de IECA. Espero que os sea de utilidad.

Referencias:

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

Hacia el «cero residuos» en los prefabricados de hormigón

http://www.ambientum.com/
http://www.ambientum.com/

La economía circular es una estrategia que tiene por objeto reducir tanto la entrada de los materiales como la producción de desechos vírgenes, cerrando los «bucles» o flujos económicos y ecológicos de los recursos.  Actualmente, es la principal estrategia de Europa para generar crecimiento y empleo, con el respaldo del Parlamento Europeo y el Consejo Europeo. De hecho, la Comisión Europea, como órgano colegiado, ha adoptado la eficiencia de los recursos como un pilar central de su estrategia económica estructural Europa 2020».

Os dejo un pequeño vídeo sobre la fabricación del cemento y economía circular de la Fundación Cema.

A continuación, os dejo un artículo de Alejandro López Vidal sobre este concepto aplicado a los prefabricados de hormigón. Actualmente, el autor es el director técnico de la Asociación Nacional de la Industria del Prefabricado de Hormigón (ANDECE). El artículo se publicó recientemente en la Revista Técnica CEMENTO HORMIGÓN, n.º 976 (2016), sobre la economía circular en los prefabricados de hormigón, en línea con el uso más eficiente de los recursos auspiciado por la Comisión Europea.

Pincha aquí para descargar

Pantallas de suelo-cemento con hidrofresa (Cutter Soil Mixing)

http://www.malcolmdrilling.com/cutter_soil_mixing/
Hidrofresa. http://www.malcolmdrilling.com/cutter_soil_mixing/

La pantalla de suelo-cemento con hidrofresa (cutter soil mixing) es una técnica de mejora de suelos que se emplea para generar pantallas impermeabilizantes verticales mediante el uso de hidrofresas. Consiste en excavar el terreno en paneles verticales mediante una cabeza cortadora (hidrofresa) suspendida de un brazo grúa articulado. Esta cabeza presenta dos elementos cortantes giratorios provistos de dientes de corte que giran en direcciones opuestas para expulsar el material excavado.

La cabeza también posee un inyector, en la parte central de las dos ruedas cortantes, por el cual se inyecta una mezcla de bentonita-cemento. Esta mezcla, gracias al movimiento giratorio de los dientes y de unas paletas giratorias, se amalgama con los detritos formando un nuevo material. Tras el fraguado del cemento se obtiene una pantalla impermeable. La ventaja del método es que se usa el propio material del terreno, no generando apenas residuos.

http://www.apgeotecnia.pt/en/papers/13cngmontaigne.html
http://www.apgeotecnia.pt/en/papers/13cngmontaigne.html

En pantallas poco profundas, de menos de 20 m, se ejecuta en una fase, que consiste en inyectar la bentonita-cemento según se tritura el terreno. Se usa con tiempos cortos de perforación para que no fragüe el cemento. En mayores profundidades se usan dos fases; en la primera se excava hasta la cota deseada y luego durante el ascenso se inyecta la mezcla.

Para ejecutar muros continuos, se divide la construcción en paneles primarios y secundarios, que se solapan con los anteriores con juntas frescas si los paneles primarios no han fraguado, o bien con solapes duros si ya han endurecido.

Os dejo un caso de estudio de la empresa Bauer, que espero que os sea de utilidad.

Pincha aquí para descargar

Os dejo algunos vídeos y animaciones al respecto.

Referencias:

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El almacenamiento de los componentes del hormigón

http://www.tusa.es/plantas_de_hormigon.html
http://www.tusa.es/plantas_de_hormigon.html

La finalidad del almacenamiento es conservar las propiedades de los constituyentes del hormigón, facilitar su extracción para la producción del hormigón, así como asegurar su continuidad.

Los áridos se suelen almacenar bien en tolvas o bien en silos compartimentados en torres. Algún tipo de central almacena los áridos directamente en el suelo y en algunos casos se observan almacenamientos secundarios de áridos en el suelo. La alimentación de los áridos en las tolvas se realiza bien directamente desde el camión cuando se encuentran semienterradas o bien mediante palas frontales de neumáticos a partir de almacenamientos secundarios. Las torres compartimentadas se alimentan por cintas transportadoras o elevador de cangilones.

Los cementos y adiciones se almacenan siempre en silos. Los aditivos se almacenan en cisterna, y el agua se almacena en cisterna, depósito o se suministra directamente de la red.

A lo largo del almacenamiento, diversas perturbaciones en el estado de los constituyentes pueden provocar efectos perjudiciales a la calidad del hormigón fabricado. Se deben tomar ciertas precauciones para limitar sus influencias negativas (Charonnat, 1999).

El conocimiento de la humedad de los áridos, sobre todo de las arenas, es muy importante para fabricar un hormigón de calidad, con lo que es frecuente la instalación de sondas de humedad en los áridos que nos permiten un seguimiento en continuo en las bocas de descarga, de este parámetro. Este dato influenciará la dosificación en agua.

http://graveravaldefuentes.es/
http://graveravaldefuentes.es/

Una buena medición de la humedad en las arenas necesita una calibración previa de la sonda y repetitiva a intervalos de tiempo regulares. La calibración consiste en relacionar las señales eléctricas a la humedad de las arenas, generalmente mediante secado de muestras de arena en laboratorio. En el contexto de una central de fabricación de hormigón preparado, esta operación de medición de la humedad mediante sondas es difícil de realizar (Lê 2007), además de aumentar considerablemente los tiempos de fabricación y perjudicar la productividad.

Os dejo un vídeo donde se muestra en una animación 3D las instrucciones del montaje de un silo de cemento.

Referencias:

Charonnat, Y. (1999). Fabrication du béton hydraulique. Technique de l’Ingénieur, traité Construction C2.

Lê, N. D. (2007). Amélioration du béton en production Tesis doct. Laboratoire Central des Ponts et Chaussées, Nantes.

Fabricación del cemento

El cemento es un conglomerante formado a partir de una mezcla de caliza y arcilla calcinadas y posteriormente molidas, que tiene la propiedad de endurecerse al contacto con el agua. Mezclado con agregados pétreos (grava y arena) y agua, crea una mezcla uniforme, maleable y plástica que fragua y se endurece, adquiriendo consistencia pétrea, denominada hormigón.

Las fases para su fabricación son las siguientes:

  1. Fragmentado y molido. En esta primera fase, la piedra calcárea y la arcilla se fragmentan y se muelen hasta quedar reducidas a polvo.
  2. Dosificación y mezcla. En una gran cuba o cisterna se mezclan las cantidades exactas de cada material y se amasan hasta obtener la textura adecuada.
  3. Cocción. Se efectúa en un horno giratorio en forma de cilindro de hasta 100 m de largo. El material recorre lentamente el tubo y se cuece a una temperatura de 1.300 a 1.500 °C. De él sale en forma de pequeñas bolas; es lo que se llama clínker.
  4. Molido del clínker. El clínker que hemos obtenido se muele hasta que se convierte en un polvo finísimo, que recibe el nombre de cemento.
  5. Almacenamiento y empaquetamiento. El cemento se almacena en silos. Después se empaqueta en sacos de 50 kg, listo para su comercialización y para ser utilizado.
Esquema del proceso de fabricación del cemento Portland, mostrando los posibles puntos de control de calidad, en los cuales el productor extrae muestras.

Sin embargo, para entender mejor este proceso, dejo unos cuantos vídeos explicativos que espero resulten de vuestro interés.

 

La estabilización de suelos

Figura 1. Suelo mejorado con cemento. https://www.360enconcreto.com/blog/detalle/caracteristicas-del-suelo-cemento-que-y-para-que

No siempre es posible encontrar el suelo adecuado que garantice la estabilidad y durabilidad de una explanada. Si a esto se suma la creciente importancia medioambiental y la presión social por minimizar la apertura de nuevos préstamos y vertederos necesarios para el movimiento de tierras de una infraestructura, queda claro que hay que hacer un esfuerzo para utilizar materiales calificados como tolerables, marginales e incluso inadecuados. La estabilización permite reemplazar un suelo de baja calidad por otro estabilizado y mejorado. Se trata de una de las técnicas más antiguas y utilizadas en bases y subbases para uso vial. No obstante, el espesor de la capa de suelo a tratar es relativamente pequeño, por lo que algunos autores no la consideran una técnica de mejora de terrenos.

La estabilización de un suelo mejora o controla su estabilidad volumétrica, aumenta su resistencia y el módulo esfuerzo-deformación, mejora su permeabilidad y durabilidad y reduce su susceptibilidad al agua. Para evaluar el rendimiento de esta técnica, son necesarios ensayos de laboratorio y pruebas de campo. De este modo, se aprovechan los suelos de baja calidad, se evita su extracción y transporte a vertedero, aumenta su resistencia a la erosión, a las heladas y a otros agentes climáticos, se puede circular por terrenos impracticables y se obtiene una plataforma estable de apoyo del firme de infraestructuras lineales que colabore estructuralmente con este.

Figura 2. Maquinaria para la estabilización de suelos. Fuente: M. López-Bachiller

La compactación y el drenaje del agua son los métodos más sencillos de estabilización. También es posible mezclar dos o más suelos para obtener uno de mejor granulometría, plasticidad o grado de permeabilidad. Además, se puede lograr mediante aditivos que actúan física o químicamente sobre las propiedades del suelo. Los más utilizados son el cemento y la cal, pero también se usan cenizas volantes, escorias granuladas, puzolanas, ligantes hidrocarbonados fluidos, cloruro cálcico, cloruro potásico, etc. Por tanto, la estabilización puede ser mecánica o química.

La estabilización mecánica se emplea en las explanadas de carreteras mediante compactación o por mezcla del suelo existente con otro de aportación. Por ejemplo, en presencia de un suelo granular sin finos se agregaría otro con finos y cierta plasticidad para conseguir una mezcla de mayor cohesión más fácil de compactar y menos permeable.

El tipo de suelo, el porcentaje de aditivo y la ejecución de la mezcla influyen en el grado de estabilización química. Se denominan suelos mejorados cuando se añaden pequeñas cantidades de aditivo para mejorar ligeramente el suelo. No obstante, ciertos suelos de buena granulometría y pequeña plasticidad mejoran considerablemente con porcentajes mínimos de aditivo.

La estabilización química puede realizarse “in situ” o bien realizarse la mezcla en central. Asimismo, en función de la profundidad del tratamiento, la estabilización puede considerarse como un método de mezcla profunda (“deep mixing method”) o una estabilización en masa (“mass stabilization”). La mezcla profunda de suelos podría clasificarse también como una técnica de mejora por inclusiones rígidas. También podrían incluirse aquí las mezclas de suelos realizadas mediante inyecciones o mediante jet grouting. Igualmente es posible dividir la estabilización de suelos en técnicas de mezcla húmeda (“wet soil mixing”), por ejemplo, en el caso de lechadas de cemento, y mezcla seca (“dry soil mixing”), como es el caso de las mezclas con cal y cemento.

Os dejo un enlace al “Manual de estabilización de suelos con cemento o cal” que creo os puede ser de ayuda. También os aconsejo acudir a la página web de ANTER (Asociación Nacional Técnica de Suelos y Reciclado de Firmes).

Aquí os he grabado un pequeño vídeo introductorio a esta técnica.

Asimismo, os dejo algunos vídeos al respecto para que veáis el procedimiento constructivo. Espero que os gusten.

Referencias:

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Cursos:

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Cuándo se inventó el primer cemento artificial?

Pont du Gard, Francia

Los datos históricos nos indican que ya se emplearon diversos morteros y hormigones en civilizaciones tan antiguas como la egipcia o la china hacia el 3000 A.C. Sin embargo, fueron los romanos los que utilizaron su famoso mortero formado de cal y adiciones de tierra volcánica abundante en Puzzoli, a las faldas del Vesubio. Con este material se construyeron numerosas obras, entre las que podemos destacar el teatro de Pompeya, los baños públicos de Roma, el Pont du Gard o el Panteón.

Hubo que esperar a 1756 cuando John Smeaton empleó morteros obtenidos por calcinación de mezclas de calizas y arcillas para reconstruir el faro de Eddystone. Años más tarde, en 1796, James Parker patenta un cemento hidráulico natural al calcinar caliza con impurezas de arcilla, denominándolo «Cemento Parker» o «Cemento Romano». Son en estos años, a caballo entre el final del siglo XVIII y el principio del XIX cuando se registran numerosas patentes de cementos naturales, detacándose el cemento de Luois Vicat, fruto de la mezcla de cales y arcillas en proporciones adecuadas y molidas de forma conjunta. Ello permitió proyectar al propio Vicat el primer puente construido con hormigón en masa, el puente de Souillac, entre 1812 y 1824.

Puente de Souillac (1812-1824), sobre el río Dordogne. Louis Vicat. Primer puente construido con hormigón en masa.
Joseph Aspdin (1778-1855)

Sin embargo, el denominado como cemento Portland es el que supone la aparición del cemento artificial propiamente dicho, patentado en 1824 por Joseph Aspdin. El invento consistió en cocer en un horno a elevadas temperaturas una mezcla molida de creta calcinada y arcilla, de una forma muy similar a la actual. El nombre se debió a que el color era parecido a la piedra natural de la localidad inglesa de Portland. Con este nuevo cemento, en 1828 Isambard K. Brunel obtuvo un hormigón con el que se repararon varias brechas aparecidas en el famoso túnel del Támesis en Londres.

La producción de este cemento artificial a escala industrial tuvo que esperar. Fue Isaac Jonson el que, en 1840, puso en marcha la primera cementera del mundo, logrando cinco años más tarde la temperatura suficientemente elevada como para clinkerizar la mezcla de cales y arcillas empleadas como materia prima. En España tuvimos que esperar más, hasta 1899, para tener la primera fábrica de cemento Portland, que se creó en Tudela Veguín (Asturias), con accionariado íntegramente español.

El uso de residuos agrícolas como material puzolánico en la construcción

En septiembre del 2012 se leyó en el Departamento de Ingeniería de la Construcción de la Universidad Politécnica de Valencia un trabajo fin de máster (Máster en Ingeniería del Hormigón) denominado «Caracterización química y reactividad de la ceniza de caña común y planta de maíz, para su uso como adición puzolánica en morteros y hormigones«, cuyo autor es Alejandro Escalera y cuyos directores fueron los profesores Jose María Monzó y Jorge Payá. Debido al interés que tiene esta línea de investigación seguida dentro del Instituto de Ciencia y Tecnología del Hormigón (ICITECH), voy a dedicar este post a divulgar la línea de trabajo realizado.

Los romanos ya acuñaron el término «puzolana» para designar a la fina ceniza volcánica que, mezclada con cal y agua, forma compuestos con propiedades cementantes capaces de presentar propiedades similares a un hormigón convencional elaborado con cemento común. Lo realmente interesante es que la combustión, bajo determinadas condiciones, los residuos agrícolas tales como la cascarilla del arroz, las hojas de bambú o la caña de azucar, presentan contenidos en sílice que pueden tener carácter puzolánico. Estos residuos agrícolas son aquellas partes de la planta que es necesario separar para obtener el fruto o para facilitar el cultivo propio o posterior; y si bien gran parte de estos residuos se consumen por la ganadería, otros no son aprovechables. Continue reading «El uso de residuos agrícolas como material puzolánico en la construcción»