Perforación mediante jumbos

Jumbo es el nombre que recibe una unidad de perforación equipada con uno o varios martillos perforadores sobre brazos hidráulicos donde puede montarse un martillo de perforación o una cesta donde pueden alojarse uno o dos operarios y que permite el acceso a cualquier parte del frente. Es una máquina diseñada para realizar labores subterráneas de forma rápida y automatizada: avance de túneles y galerías, bulonaje y perforación transversal, banqueo con barrenos horizontales y minería por corte y relleno, entre otras.

El mecanismo de traslación de los jumbos normalmente es autopropulsado por un tractor montado sobre neumáticos, cadenas o carriles, aunque existen modelos remolcados. Cuando trabajan se estacionan y su accionamiento es eléctrico, aunque pueden disponer de un motor diésel para el desplazamiento.

Los martillos perforadores son hidráulicos para conseguir mayores potencias que los neumáticos, funcionando a rotopercusión: la barrena gira continuamente ejerciendo a la vez un impacto sobre el fondo del taladro. Se precisa un aporte de agua para arrastrar los detritus y refrigerar la boca de perforación.

Con esta máquina se pueden alcanzar rendimientos que superan los 3,5 m/min de velocidad instantánea de perforación. Además, están computerizados, de forma que se automatiza la dirección de los taladros, el impacto y la velocidad de los martillos, e incluso la secuencia y disposición de los taladros. En pocas horas, un solo operario puede perforar la pega completa del frente del túnel.

A continuación os dejo varios vídeos donde podemos ver esta máquina de perforación en funcionamiento. El primero es de un jumbo AMV con 3 brazos para perforación y un brazo con canastillo.

 

Referencias:

YEPES, V. (2022). Maquinaria para sondeos, movimientos de tierras y construcción de firmes. Apuntes de la Universitat Politècnica de València, Ref. 22.

Paso inferior mediante cajones empujados

En numerosas ocasiones no podemos realizar un paso bajo una línea de ferrocarril o de carretera sin interrumpir seriamente el tráfico durante un periodo de tiempo que, en ocasiones, no es posible superar. En vez de construir una estructura tipo marco de forma tradicional, podemos acudir al procedimiento constructivo de empuje de cajones.  Se trata de realizar la estructura íntegramente fuera de la plataforma de la vía o de la carretera y posteriorrmente,  mediante una fase de excavación y otra de translación realizadas simultáneamente, se sitúa la estructura en su posición definitiva.

La estructura no va cimentada, está apoyada simplemente sobre el plano horizontal de deslizamiento constituido por la llamada “solera de deslizamiento“, que hormigonada con anterioridad, crea el plano de apoyo de la mencionada estructura.  La solera tiene la doble función de crear un plano de deslizamiento de la estructura, y por otra parte, servir de encofrado para la construcción de la misma.

El diseño de la sección estructural del cajón debe resultar compatible con los esfuerzos originados en el proceso de traslación y con las solicitaciones derivadas de la ausencia de cimentación en la estructura una vez completado el deslizamiento.

Paso inferior del metro ligero bajo la línea del ferrocarril Granada-Moreda, en la zona de Cerrillo Maracena.

Para la construcción de la losa base inferior de la estructura, se requiere la interposición entre ésta y la solera de deslizamiento, de un material idóneo que cumpla las funciones de separación de hormigones reduciendo el rozamiento en la traslación. A tal propósito se recurre por razones de funcionalidad y economía a una lámina de polietileno de espesor adecuado.

La parte frontal del cajón debe ofrecer la mayor resistencia posible al avance en el terreno y sujetar lateralmente el mismo, por lo que se proyecta prolongando su losa superior y los muros laterales, achaflanados estos últimos al fin de constituir la denominada “cuña de penetración“.

Tiene particular importancia, en la fase de empuje, la estabilidad del frente de excavación para evitar el peligro de desconsolidación lateral en “V” en los muros laterales de la cuña de penetración. En tal caso podría llegarse al asentamiento de la plataforma. La experiencia sugiere dar una inclinación achaflanado el frontal de la cuña de penetración conforme al ángulo de rozamiento del terreno y así poder proceder en fase de avance con un frente paralelo al talud del mismo.

Podemos resumir las ventajas derivadas de este sistema constructivo, en el caso de un paso inferior en una vía de ferrocarril, en las siguientes:

  • Eliminación de todos los trabajos que precisen corte de vía
  • Eliminación de trabajos nocturnos
  • Eliminación de toda actividad de maquinaria sobre la vía y de los cortes de catenaria correspondientes
  • Disminución  consecuente de interferencias con el tráfico ferroviario
  • Seguridad en el paso de circulaciones, evitando situaciones en precario
  • Eliminación de problemas de cimentación
  • Facilidad de construcción de la estructura en espacio abierto
  • Control total de la calidad de los materiales y de la ejecución
  • Impermeabilidad de la estructura
  • Acabado de paramentos en hormigón visto, sin necesidad de revestimientos posteriores

 

Os paso un vídeo de la Junta de Andalucía donde se puede ver cómo se ha realizado un paso inferior para atravesar una línea de ferrocarril mediante el empuje de cajones de hormigón. Espero que os guste.

Método belga de construcción de túneles

Figura 1. Excavación en bóveda. http://descubriendolaingenieriacivil.blogspot.com/2014/10/construccion-de-tuneles.html

El Método belga, también conocido como el Método Clásico de Madrid o el Método de Galería de Clave, es una técnica utilizada en la construcción de túneles. Se originó a partir de los principios aplicados en la construcción del Túnel del Charleroi en 1828, que conectaba Bruselas y Charleroi. Este método se distingue por su progresiva excavación de los componentes del túnel, eliminando primero los elementos más estables para evitar colapsos o inestabilidades en el frente de trabajo. El Método Clásico de Madrid recibe este nombre debido a su amplio uso en la construcción de los túneles del metro de Madrid. Es adecuado para túneles con una anchura máxima de 11 m, incluyendo un espacio máximo de 8 m de ancho y 3 m de ambos hastiales.

El Método Belga implica la excavación de una pequeña galería en clave que se ensancha gradualmente. Durante este proceso, se protege y fortalece el frente de trabajo hasta que sea posible colocar el hormigón en toda la bóveda (se suele denominar avance en bóveda o calota). La bóveda se sostiene en el terreno mediante un entramado progresivo de madera. La bóveda se asegura con un encofrado y cuando está asegurada, la parte inferior se va excavando a medida que se va asegurando el avance. De esta manera, la galería se construye mientras se avanza, sin poner en peligro a los trabajadores debido a posibles hundimientos del túnel. Al abrir pequeñas secciones es posible solucionar cualquier problema que pudiera surgir de inestabilidad, puesto que la seguridad del método se basa en que se trabaja con un frente muy pequeño, normalmente inferior a 3 m². Este método está ampliamente comprobado en la práctica de la ingeniería civil, aunque su rendimiento es limitado.

Figura 2. Esquema de ejecución de un túnel en mina por el método belga

Resumiendo, las fases serían las siguientes:

a) Excavación de la bóveda. Realmente se inicia con una galería de avance, entibada en la zona de clave, que va unos metros por delante de la bóveda, y desde la que se ensancha la excavación de esa zona. Esta excavación va unida a la debida entibación.

b) Hormigonado de la bóveda con inyección del trasdós para rellenar huecos y asegurar el contacto terreno-hormigón.

c) Excavación y entibación de hastiales por bataches, previa excavación en destroza.

d) Hormigonado de hastiales por bataches.

e) Destroza y hormigonado de la contrabóveda.

 Si la sección del túnel es grande, las fases c) y d) se cambian, se excavan los hastiales en pozo y se hormigonan antes de excavar la destroza.

En resumen, el Método Belga es efectivo cuando el terreno es lo suficientemente bueno para soportar el descalce de parte de la bóveda para ejecutar los bataches. Esto es comúnmente posible en terrenos de Madrid con luces inferiores a 9 m, siendo la cantidad de agua en terrenos arenosos el principal factor limitante. Además, su sencillez y la poca infraestructura necesaria para su implementación lo hacían un sistema económico para tramos cortos en los años 60 y 70, permitiendo atacar el túnel desde varios frentes sin grandes inversiones. Sin embargo, la escasez de mano de obra ha aumentado significativamente el costo por metro lineal.

El tipo de entibación requiere una gran participación de la mano de obra, lo que conlleva los retos propios de un trabajo artesanal. Sin embargo, brinda una supervisión personal y constante, con una gran capacidad de respuesta ante imprevistos. Es esencial trabajar continuamente en turnos de 8 horas para evitar problemas en el terreno.

En términos generales, la velocidad de avance puede variar entre 30 metros por mes en terrenos muy duros a 40-50 m por mes en terrenos de arena de miga, llegando en ocasiones a 50 m por mes en terrenos óptimos con 3 turnos de trabajo.

Os paso algunos vídeos donde se explica de forma gráfica el sistema. Espero que os gusten.

https://www.youtube.com/watch?v=6E2-4RNyxdc

En el siguiente vídeo, se explica el método tradicional de construcción de túneles de Madrid. En el vídeo no se refleja que las fases de avance están desfasadas en el tiempo, es decir, la galería en avance se realiza muchos metros por delante de la sección en la que se hormigonan los hastiales por bataches.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.

MELIS, M.J.; TRABADA, J.M. (2000). Construcción en 39 meses de 8 km de túnel por el Método Clásico de Madrid. Revista de Obras Públicas, 3405:25-40.

 

Perforación de chimeneas mediante “Jaula Jora”

Una chimenea es una excavación de dimensión reducida y una inclinación superior a los 45º. Son típicas en minería y su longitud pueden superar los 100 m. Normalmente, se utilizan para unir galerías de distinto nivel cerrando los circuitos de ventilación para el paso de mineral y estériles.

Un método para la excavación de chimeneas es el denominado “Jaula Jora”, que consiste en una máquina construida por Atlas Copco específicamente para este fin. Sus principales componentes son la plataforma de trabajo, la jaula de transporte, el mecanismo de elevación y en chimeneas inclinadas el carril guía.

El procedimiento constructivo consta de varias fases. En la primera se perfora un barreno piloto (75-100 mm de diámetro) y en la segunda se montan los equipos y herramientas. Posteriormente, en la tercera fase, tiene lugar la perforación y la voladura.

El campo propicio para este método está entre los 30 y 100 m. El problema que podemos tener es la desviación del barreno piloto. Además, en cada pega debe desengancharse la jaula. El barreno central tiene la ventaja de que permite la entrada de aire fresco y de que sirve de hueco de expansión en los cueles paralelos, con los que se consiguen avances de entre 3 y 4 m por disparo.

Una ampliación a este método la puedes ver las referencias o en este link: http://apmine.files.wordpress.com/2012/05/voladuras-en-chimenea-jaula-jora-apmine.pdf

Referencias:

López Jimeno, C. (1994). Manual de perforación y voladura de rocas. 2ª edición. Instituto Tecnológico Geominero de España, IGME. Madrid.

YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia.

Tuneladoras EPB: Escudos de presión de tierras

Dulcinea (Herrenknecht EPB Shield S-300). 4.364 toneladas de peso, longitud: 100 m (aprox.), diámetro exterior: 15,20 m, empuje: 316.000 kN, rendimiento máximo: 36 m/día y una potencia de 22.000 kW

Las tuneladoras EPB (en inglés, Earth Preasure Balance),  son escudos de presión de tierras que se utilizan normalmente  en la excavación de terrenos cohesivos. Pertenecen al grupo de tuneladoras que denominamos escudos, y que se diferencian de los topos por la carcasa metálica exterior que sostiene provisionalmente el frente de avance hasta que se coloca el sostenimiento definitivo. Los escudos EPB han sido utilizados con éxito en la construcción de túneles, aunque también puede utilizarse con la técnica de hinca de tubos. Como ventajas se encuentran sus elevados rendimientos, trabajando incluso bajo el nivel freático, su versatilidad y respeto medioambiental, aunque requieren de una elevada inversión económica.

El sostenimiento del frente de excavación se realiza con la propia tierra excavada, que se aloja en una cámara de extracción para mantener la presión sobre el frente y minimizar asientos en superficie. Esta función se puede reforzar añadiendo espumas al material extraído, lo cual amplía la aplicabilidad de la máquina, al aumentar la plasticidad de los terrenos.

El material se extrae mediante un tornillo de Arquímedes, que en función de su velocidad de extracción y bajo el control de la fuerza de avance proporcionada por los cilindros de propulsión, permite controlar la presión de balance de las tieras. El material excavado se deposita en una cinta transportadora a través de un tornillo sinfín. El transporte del material al exterior se realiza mediante vehículos sobre raíles o camiones.

El sostenimiento definitivo del túnel se consigue mediante un revestimiento de dovelas prefabricadas, formadas normalmente por unas siete piezas. En el siguiente enlace, se muestra un esquema con los componentes principales de nuestra tuneladora EPB para la colocación de dovelas.

 

 

Esquema básico de un escudo EPB

 

1.   Rueda de Corte.
2.   Accionamiento.
3.   Cámara de excavación.
4.   Sensor de presión.
5.   Esclusa de aire comprimido.
6.   Erector de dovelas.
7.   Dovelas.
8.   Cilindros de propulsión.
9.   Cinta transportadoras
10. Sinfín de extracción.

 

 

Esta máquina puede dividirse en tres partes principales:  el escudo y rueda de corte, el back up y el tren de avance. El escudo es la parte principal, donde se encuentra la rueda de corte, los cilindros de empuje y los de guía; también se aloja en esta parte el tornillo sinfín y el erector de dovelas, entre otros. El back up, que normalmente tiene más de 80 m de longitud, aloja la cabina de mando, los motores principales, la cinta de extracción de tierras, la ventilación, el transformador eléctrico, el equipo inyector de espuma y mortero así como las vías del tren. Por último, el tren dispone de vagones para el escombro, un vagón para el mortero de relleno y algún vagón para el transporte de material o personal.

Pero una imagen vale más que mil palabras. Os paso varios vídeos sobre el funcionamiento de estas máquinas que espero os gusten.

https://www.youtube.com/watch?v=g4XGQ9H2YP4

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.

Construcción de chimeneas mediante la plataforma trepadora Alimak

http://www.subterranea.com.pe/obras.html

La plataforma trepadora ALIMAK se emplea, desde 1957, en la perforación de chimeneas donde no es posible el acceso superior (frente al Jaula Jora o Raise Boring), necesitando un nivel de trabajo en el subsuelo. Es un método flexible y económico. Consta de los siguientes elementos: jaula, plataforma de trabajo, motores de accionamiento, carril guía y elementos auxiliares. La elevación de la plataforma se realiza a través, de un carril guía curvado empleando motores de aire comprimido, eléctricos o diésel. La fijación del carril a la roca se lleva a cabo con pernos de anclaje, y tanto las tuberías de aire como de agua necesaria para la perforación, ventilación y el riego se sitúan en el lado interno del carril guía para su protección.

Las fases en la construcción de la chimenea son las siguientes:

  1. perforación y carga de los barrenos (operación realizada con martillo perforador)
  2. descenso de la plataforma y voladura (cada vez que hay una voladura, hay que retirar la plataforma)
  3. ventilación y riego
  4. elevación de la plataforma y saneo del techo.

Entre las ventajas de estos equipos se encuentran las siguientes: se pueden usar en chimeneas de pequeña o gran longitud y en cualquier inclinación (la chimenea más larga efectuada hasta ahora tiene 1.040 m y una inclinación de 45º; es posible cambiar la sección y geometría de la chimenea cambiando la plataforma; se pueden excavar secciones desde 3 a 30 m²; es posible cambiar la dirección e inclinación de las chimeneas mediante el uso de carriles curvos y, además, es fácil extraer los detritus.

Os dejo un pequeño vídeo donde se puede ver este procedimiento constructivo.

Referencias:

López Jimeno, C. (1994). Manual de perforación y voladura de rocas. 2ª edición. Instituto Tecnológico Geominero de España, IGME. Madrid.
Yepes, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia.

Carros de encofrado para túnel

Carro de túnel en mina
Carro de túnel en mina. http://www.ulmaconstruction.es/

Los carros de encofrado o encofrados automotores para túneles constituyen estructuras auxiliares móviles que sirven para realizar el hormigonado de la sección. Reciben el nombre de encofrados telescópicos autoportantes, puesto que con este sistema, el carro no es solidario con el encofrado, lo que permite, una vez colocado en posición el módulo de encofrado, retirar el carro y dedicarlo a otros trabajos como el transporte y desencofrado de otros módulos.

Combina la estructura de apeo con el encofrado que da forma a la bóveda. Estos sistemas de encofrado, están formados por una subestructura interior, y paneles que cubren y se unen de forma solidaria a dicha subestructura, ambos de naturaleza metálica, conformando un carro de encofrado ajustado a la geometría de sección del túnel, cuyo avance es a través de carriles o raíles. Suelen disponer de sistemas hidráulicos para el avance, el encofrado, el desencofrado, el centraje transversal y el plegado de los hastiales, aunque también hay sistemas de accionamiento manual.

El encofrado puede estar compuesto por dos paneles hastiales y un panel clave, siendo así en la mayoría de túneles. Si la sección del túnel es próxima a circular, se añade un faldón inferior a los hastiales laterales. Los hastiales presentan ventanas de hormigonado e inspección y soportes para vibradores de superficie e instalación neumática para alimentación de los vibradores. A los paneles clave se les dota de bocas de hormigonado.

Se pueden distinguir dos tipos diferentes: los carros de túnel en mina (en espacio confinado) o bien carros empleados para la construcción de falsos túneles (en espacio abierto).

Las características de cada túnel difieren (secciones, desarrollo en planta, tipo y espesor del hormigón, etc.) por lo que no se permite el empleo de estos equipos con un estudio de adecuación, es necesario la redacción de un proyecto específico completo para la utilización del sistema con los condicionantes propios exigidos en la obra a ejecutar. Las operaciones de montaje, desmontaje, fase de trabajo, y de traslado, supervisadas y coordinadas por técnico competente (titulación universitaria habilitante) con probados conocimientos en túneles y elementos auxiliares, que deberá estar adscrito a la empresa propietaria del elemento auxiliar.

Por tanto, estos medios auxiliares automotores, presentan una serie de requisitos documentales:

  • Redacción de un proyecto específico visado con los condicionantes propios exigidos a la obra.
  • Manual de instrucciones de montaje para una correcta instalación del equipo proporcionado.
  • Como el equipo de trabajo es a través de accionamientos hidráulicos y tiene condición de máquina, Marcado CE, de acuerdo a la reglamentación de puesta en servicio y comercialización de máquinas.
  • En cumplimiento del R.D. 1627/1997 “Disposiciones mínimas de seguridad y de salud en las obras de construcción”, se debe modificar el Plan de seguridad y salud de la obra mediante la redacción de un anexo al plan. Todas las empresas afectadas por estas actividades deben recibir una copia del mismo.
  • En cumplimiento con lo estipulado en el Real Decreto 837/2003, de 27 de junio referente a grúas móviles autopropulsadas, debe designarse un jefe de maniobras.
  • De acuerdo con lo establecido en el Anexo IV, parte C del R.D. 1627/1997, persona competente para la vigilancia, control y dirección de los trabajos.
  • Previa puesta en servicio del carro, el técnico de montaje, de acuerdo a la normativa vigente, elaborará tanto el Acta de inspección inicial del carro como el Certificado de correcto montaje del carro.

 

Carro falso túnel
Carro falso túnel.  http://www.ulmaconstruction.es/

En el vídeo de Dema Formworks se puede ver el procedimiento constructivo.

El siguiente vídeo describe un carro MK para túnel en mina de la empresa ULMA Construction.

En este caso, es un carro MK para túneles a cielo abierto, de la misma empresa.

Os dejo a continuación un vídeo realizado por la empresa ADARVE PRODUCCIONES sobre carros de encofrado para túneles para la firma RÚBRICA. Espero que os guste.

Referencias:

ESPASANDÍN, J.; GARCÍA, J.I. (2002). Apeos y refuerzos alternativos. Manual de cálculo y construcción. Editorial Munilla-Lería, Madrid.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Construcción de túneles mediante empuje de tramos sucesivos

Una forma de construir un túnel consiste en ir empujando, mediante gatos, tramos sucesivos. Este método es similar al de los cajones empujados.

A continuación os paso una infografía realizada por  Hispana y Estudio da Vinci, en León, sobre este procedimiento constructivo empleado por la empresa española OPEMA. Espero que os guste.

 

 

 

Referencia:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.

Rozadora o minador de eje transversal (ripping)

Las rozadoras o minadores son máquinas autoportantes en las que la excavación se efectúa por la incidencia del útil de corte con el terreno. Tienen además los elementos necesarios para recoger el material excavado y descargarlo sobre el medio auxiliar previsto para su evacuación.

La excavación con rozadora es eficaz en rocas blandas o muy alteradas, terrenos de tránsito o suelos de cierta cohesión y estabilidad. En suelos heterogéneos tienen la ventaja de poder adecuar y dirigir el esfuerzo de la máquina a la resistencia del terreno en cada punto.

Las rozadoras de ataque frontal (“ripping”, en inglés) hacen girar el cabezal alrededor de un eje horizontal, perpendicular al brazo de la máquina. Este tipo de máquinas son las más usuales en las obras civiles. Intervienen tres fuerzas en el arranque por parte de las picas. El par de corte es proporcionado por el motor que acciona la cabeza de corte. La fuerza horizontal se ejerce con el giro del brazo y la fuerza vertical con el peso de la rozadora. Aprovecha bien el empuje en la dirección perpendicular al frente del túnel. El tipo de pica más común es la pica cónica.

En un artículo de Laureano Cornejo podréis ampliar más sobre este tipo de máquinas: http://ropdigital.ciccp.es/pdf/publico/1985/1985_marzo_3234_05.pdf

En el siguiente vídeo podremos ver la construcción del segundo túnel de Tabaza (Avilés, Asturias) con el minador Westfalia.

En este otro vídeo se puede ver la construcción de un túnel mediante un minador de ataque frontal Sandvik MT 720 (Lurpelan):

Otro vídeo donde se ve perfectamente el trabajo de la máquina:

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Ventilación en minas y túneles en fase de construcción

http://geologiavenezolana.blogspot.com.es

La ventilación en minas y túneles constituye una operación fundamental cuya función es la de renovar el aire, diluir los gases contaminantes y polvo y controlar los humos en caso de incendio. Esta operación asegura unas condiciones ambientales no peligrosas para la circulación (respiración y visibilidad) y en caso de incendio garantiza las condiciones de evacuación y de intervención de los equipos de emergencia. En base al volumen de los gases nocivos emitidos, se adecua el volumen de aire limpio y fresco necesarios.

Existen diferencias entre la ventilación en fase de construcción y de explotación, pues en la primera se emiten más contaminantes, principalmente en la zona del frente de avance, estando además allí los operarios durante toda la jornada de trabajo. Otra diferencia importante en la ventilación durante la construcción de un túnel es que sólo tiene una entrada, por lo que la ventilación debe conseguirse asegurando la circulación desde la entrada hasta el frente de avance.

Básicamente, se pueden adoptar tres tipos de ventilación en construcción:

  • Ventilación aspirante: en ella se emplea la conducción del aire como aspirante (tubería rígida) extrayendo el polvo y los gases a su través. El aire entra por la boca del túnel y atraviesa toda su sección hasta llegar al frente de avance, mezclándose así con los distintos contaminantes que puedan existir. Un ventilador acoplado a la tubería hace que el aire del frente entre en ésta y sea expulsado por su otro extremo al exterior del túnel.

Ventilación aspirante. Fuente: construmatica.com

 

  • Ventilación soplante: se alimenta el frente de ataque con aire a través de la tubería de impulsión, saliendo el aire sucio a través de la galería que se está perforando. El tapón de humos, gases y polvo que ocupa el fondo del túnel es removido por el aire fresco soplado por la tubería, siendo así diluido y empujado a lo largo del túnel hasta su emboquille, por donde es expulsado hacia el exterior.

Ventilación soplante. Fuente: construmatica.com

 

  • Ventilación mixta: es una combinación de las anteriores; cuando se produce la pega (voladura) se adopta la disposición aspirante y una vez estraída la mayor parte de los gases sucios, se cambia a soplante.

Ventilación mixta. Fuente: construmatica.com

 

La ventaja de la ventilación aspirante es que los gases y el polvo retornan por la tubería evitando que los respire el personal. Además, tras el disparo de las voladuras los gases y humos se eliminan rápidamente. Por contra, se requiere una tubería rígida o si es de lona deben estar armadas con una espiral de acero, el aire entra por el túnel lentamente, la ventilación aspirante deja algunas zonas del frente mal ventiladas, precisa una mayor potencia instalada y genera mayores pérdidas de carga.

Cuando la obra subterránea presenta una gran longitud, es práctica frecuente la utilización de dos o más ventiladores instalados en serie. Con esta disposición de racionaliza la utilización, añadiendo ventiladores a medida que avanza el frente hasta la instalación final para el último tramo de obra.

Os dejo un vídeo donde se explica la ventilación de un túnel en construcción. Espero que os guste.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.