UPV



Resultados de la búsqueda By Etiquetas: hormigon


¿Qué se estudia en la asignatura Modelos Predictivos y de Optimización de Estructuras de Hormigón?

El programa de la asignatura Modelos Predictivos y de Optimización de Estructuras de Hormigón se ha diseñado basándose en el programa presentado en el departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil por parte de la unidad docente de “Procedimientos de Construcción y Gestión de Obras”, al que está adscrita en la actualidad la asignatura, y aprobado por el Consejo del Departamento. Las líneas maestras de los contenidos se definieron previamente en la Memoria de Verificación del título oficial de “Máster Universitario en Ingeniería del Hormigón por la Universitat Politècnica de València”. Se trata de una de las asignaturas de la materia “Análisis de estructuras de hormigón”, siendo obligatoria para todos los alumnos de esta titulación y se imparte en el primer cuatrimestre del primer curso. La asignación de créditos ECTS es de 5,0, repartidos en 3,0 créditos de teoría y 2,0 de prácticas, de acuerdo con el Plan de Estudios actualmente en vigor en el Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil.

Resultados de aprendizaje

Los resultados de aprendizaje de la asignatura se definen a partir de las competencias y de los contenidos (Yepes, 2017). Como resultado de aprendizaje general, al terminar con éxito esta asignatura, los estudiantes serán capaces de “comprender los diferentes métodos predictivos y procedimientos de optimización de estructuras de hormigón de modo que dispongan de las herramientas necesarias para la toma de decisiones en el ámbito del proyecto, construcción y mantenimiento de estas estructuras considerando los aspectos de sostenibilidad económica, social y ambiental”.

En relación con los resultados específicos de aprendizaje de la asignatura, tenemos los siguientes:

  • RA1    Seleccionar y aplicar las distintas técnicas procedentes de la estadística, de la investigación operativa y de la minería de datos en la toma de decisiones en el ámbito del hormigón
  • RA2    Modelizar un problema de optimización de una estructura de hormigón y resolverlo mediante algoritmos heurísticos secuenciales y poblacionales
  • RA3    Aplicar la inferencia estadística multidimensional para interpretar el comportamiento de las variables cualitativas y cuantitativas en el ámbito del hormigón
  • RA4    Formular modelos lineales de regresión múltiple e interpretar su validez límites predictivos
  • RA5    Emplear técnicas de diseño de experimentos para conocer los efectos principales y las interacciones entre los distintos factores que afectan a una variable de respuesta en el ámbito del hormigón
  • RA6    Optimizar el comportamiento de una estructura de hormigón utilizando la metodología de la superficie de respuesta
  • RA7    Aplicar redes neuronales artificiales en la predicción de sistemas altamente no lineales en el ámbito del hormigón
  • RA8    Aplicar técnicas de decisión multicriterio en la selección de la mejor tipología estructural considerando aspectos económicos, ambientales y sociales
  • RA9    Elegir la mejor opción de una frontera de Pareto tras aplicar técnicas de decisión multicriterio
  • RA10 Aplicar programas estadísticos avanzados, tales como SPSS o Minitab, y otros como Matlab, Sap y Excel en la predicción de variables de respuesta y en problemas de optimización en el ámbito del hormigón

 

Conocimientos previos

Los alumnos que cursan esta asignatura, tienen diversas procedencias: Ingeniería de Caminos, Canales y Puertos, Ingeniería Industrial, Arquitectura, Ingeniería Agronómica, Licenciado en Químicas, Ingeniería Geológica, Ingeniería Técnica de Obras Públicas, Ingeniería Técnica Industrial, o los actuales grados en ingeniería civil, de obras públicas o máster en ingeniería de caminos, canales y puertos, entre otros. Además los alumnos, en un porcentaje significativo, proceden de universidades latinoamericanas o europeas. Como es fácil de comprender, los alumnos tienen formaciones muy diferentes, habiendo estudiado las asignaturas relacionadas con el hormigón, con los métodos numéricos o la estadística de forma muy diversa, con niveles de adquisición de conocimientos descompensados. Esta situación implica cierta nivelación en cada uno de los temas, de forma que se adquieran los niveles básicos de comprensión de los contenidos de forma progresiva con el objetivo que todos los alumnos adquieran las competencias y los resultados de aprendizaje previstos.

Según la Guía Docente de la asignatura, los conocimientos recomendados versarían sobre estadística y sobre lenguajes de programación (MATLAB, SPSS, MINITAB, SAP, etc.), aunque no son imprescindibles.  Además, resultan necesarios unos conocimientos básicos sobre el hormigón y su análisis como material estructural. Ello obliga al profesor a sintetizar el contenido previo para la correcta comprensión de la asignatura.

 

Programa resumido de la asignatura

La asignatura se desarrolla siguiendo un programa que tiene en cuenta los resultados de aprendizaje antes definidos, las actividades formativas y el sistema propuesto para la evaluación. Ello permite organizar la asignatura en 25 temas y sus prácticas de informática asociadas.

  • Tema 1. La investigación operativa y la toma de decisiones
  • Tema 2. La modelización de un problema estructural de hormigón
  • Tema 3. Algoritmos y problemas de decisión
  • Tema 4. Optimización y programación matemática
  • Tema 5. Optimización combinatoria y algoritmos heurísticos
  • Tema 6. Clasificación y uso de heurísticas y metaheurísticas
  • Tema 7. Búsqueda local de máximo gradiente
  • Tema 8. Recocido simulado, aceptación por umbrales y búsqueda tabú
  • Tema 9. Sistemas de inteligencia de enjambre
  • Tema 10. Programación evolutiva y estrategias evolutivas
  • Tema 11. Algoritmos genéticos y meméticos
  • Tema 12. GRASP, búsqueda dispersa y búsqueda de la armonía
  • Tema 13. Heurísticas de optimización multiobjetivo
  • Tema 14. Inferencia estadística bidimensional
  • Tema 15. Inferencia estadística multidimensional
  • Tema 16. Modelos lineales de regresión múltiple
  • Tema 17. Modelos de ecuaciones estructurales
  • Tema 18. Diseño de experimentos
  • Tema 19. Optimización mediante la metodología de superficie de respuesta
  • Tema 20. Modelos Kriging y diseños robustos
  • Tema 21. Redes neuronales artificiales
  • Tema 22. Programación genética y lógica difusa
  • Tema 23. La toma de decisiones en el ciclo de vida de una estructura de hormigón
  • Tema 24. Técnicas de decisión multicriterio continua
  • Tema 25. Técnicas de decisión multicriterio discreta

 

 

Los 25 temas se encuentran agrupados en 4 bloques temáticos. El primero de los bloques es introductorio. Consta de 5 temas que presentan al alumno la aplicación de las técnicas de la investigación científica en el ámbito de la toma de decisiones en las empresas a través de lo que se conoce como investigación operativa. Se introduce al alumno en la forma de abordar los problemas reales en el ámbito de las estructuras de hormigón a través de modelos de distinto tipo. Se describen los componentes básicos de un problema de optimización: función objetivo, variables de decisión, parámetros y restricciones. A continuación se describe el concepto de algoritmo y complejidad algorítmica para explicar las limitaciones de la programación matemática en la resolución de problemas reales, lo cual da paso a la introducción de los algoritmos heurísticos como aproximaciones en la búsqueda de óptimos locales de calidad en tiempos de cálculo razonables.

El segundo de los bloques se centra en la descripción y aplicación de la optimización heurística en las estructuras de hormigón. Se describe paso a paso tanto las técnicas de búsqueda secuencial de máximo gradiente y de “hill-climbing” como otras técnicas poblacionales basadas en los algoritmos genéticos o en la inteligencia de partículas. Este bloque termina con una explicación de la optimización multiobjetivo y la construcción de fronteras de Pareto de calidad en el caso de confluencia de funciones objetivo contrapuestas.

El bloque tercero se centra específicamente en los modelos predictivos de las estructuras de hormigón. Se hace un repaso de las técnicas de inferencia bidimensional y multidimensional para pasar a los modelos predictivos lineales, tanto los basados en regresiones múltiples como en los modelos de ecuaciones estructurales. Posteriormente se aborda el diseño de experimentos como técnicas estadísticas básicas en la predicción de los efectos principales y las interacciones de los distintos factores que afectan a un problema de hormigón. El estudio de los diseños factoriales lleva directamente al planteamiento de la metodología de la superficie de respuesta, que permite realizar la optimización de la respuesta. Tanto la metodología de la superficie de respuesta como los modelos Kriging o las redes neuronales, constituyen metamodelos que se explican como herramientas muy útiles para simplificar el espacio de soluciones de los problemas reales del hormigón estructural. En particular, los modelos Kriging permiten el diseño robusto óptimo, es decir, aquel que se comporta bien incluso ante cambios en las variables o en las condiciones de contorno. Para los sistemas altamente complejos, se explican las redes neuronales artificiales que, además, permiten su uso como metamodelos o como parte de un algoritmo heurístico de optimización. La programación genética y la lógica difusa también se explican en una lección como herramientas posibles en el ámbito de los modelos predictivos y cuando los parámetros o restricciones del problema no son determinísticos.

El cuarto bloque se dedica a la toma de decisión multicriterio en las estructuras de hormigón. A los alumnos se les explica cómo, antes de realizar una optimización multiobjetivo, es necesario seleccionar la mejor tipología estructural con base en criterios que no siempre son objetivos: economía, plazo, estética, medioambiente, aspectos sociales, durabilidad, etc. Se introducen las distintas técnicas de toma de decisión multicriterio y se comentan su empleo, incluso, para la obtención de pesos objetivos de criterios que pueden ser incluso subjetivo, o bien para la selección de la mejor opción dentro de una frontera de Pareto tras una optimización multiobjetivo.

En la Tabla siguiente se muestra el programa resumido de la asignatura “Modelos Predictivos y de Optimización de Estructuras de Hormigón” (T, Teoría; P, Prácticas informáticas), indicándose el número de horas asignadas a cada tema.

Referencias:

YEPES, V. (2017). Proyecto docente. Concurso de Acceso al Cuerpo de Catedráticos de Universidad. Universitat Politècnica de València, 642 pp.

 

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

 

 

Palabras de Pedro Jaén en el Acto de Graduación del Máster Universitario en Ingeniería del Hormigón

El pasado miércoles 20 de diciembre de 2017 tuvo lugar el Acto de Graduación de la Promoción 2016-2018 del Máster Universitario en Ingeniería del Hormigón. En dicho acto, el Secretario del Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil, D. Pedro Ildefonso Jaén Gómez, dirigió unas palabras a los asistentes. Ha tenido la amabilidad de pasarme su discurso y, por su interés, y con su autorización, lo transcribo a continuación:

  • Muy buenas tardes, Sr. Director del Dpto. de Ingeniería de la Construcción, Sra. Directora del Máster Universitario en Ingeniería del Hormigón, miembros de la comunidad Universitaria, señores y señoras, bienvenidos, bienvenidas a este acto de graduación de la promoción 2016-18 del Máster Universitario en Ingeniería del Hormigón. Soy Pedro Jaén, Secretario del DICPIC, y quisiera dirigirles unas palabras previas a la entrega de los Diplomas.
  • Nos encontramos en una muy buena universidad, la Politécnica de Valencia. Para sustentar esta afirmación, expondré algunos datos objetivos:

(más…)

Optimización de estructuras de hormigón mediante Simulated Annealing

Logo OptimizacionA continuación os dejo un capítulo de un libro de Simulated Annealing, escrito en abierto para su libre difusión, donde explicamos varias aplicaciones del algoritmo de Cristalización Simulada aplicada a estructuras de hormigón armado. En particular: muros ménsula, pórticos de carreteras, marcos de carreteras y pórticos de edificación. Su referencia es:

GONZÁLEZ-VIDOSA-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; CARRERA, M.; PEREA, C.; PAYÁ-ZAFORTEZA, I. (2008) Optimization of Reinforced Concrete Structures by Simulated Annealing. TAN, C.M. (ed): Simulated Annealing. I-Tech Education and Publishing, Vienna, pp. 307-320. (link)

10 noviembre, 2017
 
|   Etiquetas: ,  ,  ,  ,  ,  |  

La construcción romana, el hormigón y otras cosas en Radio Nacional

Puente de Alcántara, puente romano en arco construido entre 104 y 106, que cruza el río Tajo en la localidad cacereña de Alcántara.

Resulta gratificante tener la oportunidad de conversar tranquilamente en un medio de comunicación como es Radio Nacional de España sobre ciencia, tecnología e ingeniería. El otro día me entrevistaron en el programa “24 horas“, presentado por Miguel Ángel Domínguez sobre la construcción romana, el hormigón y otros aspectos relacionados con la ingeniería civil y la inteligencia artificial. Se trata de un programa que dedica un espacio los miércoles a la tertulia científica y es, para la ingeniería, una oportunidad para acercar la técnica al gran público, facilitando la labor tan importante de divulgación científica.

 

 

Hablamos sobre las razones por las cuales las construcciones romanas han llegado hasta nuestros días, de la calidad de los hormigones romanos, del impacto medioambiental de la fabricación del cemento Portland, de la tecnología actual de la construcción y de la aplicación de la inteligencia artificial en el diseño automático y óptimo de puentes. Aunque la entrevista se quedó muy corta y nos dejamos en el tintero muchas cosas, os paso el post para que lo escuchéis en cualquier momento. También tenéis otras entrevistas anteriores relacionadas con el puente Hong Kong-Zhuhai-Macao, o con el Golden Gate. Espero que os sean de interés.

 

 

¿Es fácil optimizar estructuras de hormigón?

Es más, ¿es posible que un ordenador sea capaz de diseñar de forma automática estructuras óptimas sin darle ninguna pista o información previa? Estoy convencido que a la vuelta de un par de años, todos los programas comerciales tendrán paquetes de optimización estructural que permitirán reducciones de coste en torno al 5-15% respecto a los programas actuales. Ya os adelanto que esta nueva tecnología va a traer consigo nuevas patologías en las estructuras de hormigón, que con la optimización se parecen más a las estructuras metálicas. Con el tiempo habrá que introducir capítulos o restricciones en las futuras versiones de la EHE o de los Eurocódigos. En este post vamos a continuar comentando aspectos relacionados con la modelización matemática, la optimización combinatoria, las metaheurísticas y los algoritmos.

Toda esta aventura la empezamos en el año 2002, con el primer curso de doctorado sobre optimización heurística en la ingeniería civil, que luego hemos ido ampliando y mejorando en el actual Máster Oficial en Ingeniería del Hormigón. Ya tenemos varias tesis doctorales y artículos científicos al respecto para aquellos de vosotros curiosos o interesados en el tema. Para aquellos que queráis ver algunas aplicaciones concretas, os recomiendo el siguiente capítulo de libro que escribimos sobre la optimización de distintas estructuras con un algoritmo tan simple como la cristalización simulada. Para aquellos otros que tengáis más curiosidad, os dejos algunas publicaciones de nuestro grupo de investigación en el apartado de referencias.

Os paso, para abrir boca, una forma sencilla de optimizar a través de este Polimedia. Espero que os guste.

Referencias:

  • MOLINA-MORENO, F.; MARTÍ, J.V.; YEPES, V. (2017). Carbon embodied optimization for buttressed earth-retaining walls: implications for low-carbon conceptual designs. Journal of Cleaner Production, 164:872-884. https://authors.elsevier.com/a/1VLOP3QCo9NDzg 
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391. DOI:10.1016/j.engstruct.2017.05.013 OPEN ACCESS
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Structural and Multidisciplinary Optimization, 56(1):139-150. doi: 10.1007/s00158-017-1653-0
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; GONZÁLEZ-VIDOSA, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4):738-749. DOI: 10.1016/j.acme.2017.02.006
  • MOLINA-MORENO, F.; GARCÍA-SEGURA; MARTÍ, J.V.; YEPES, V. (2017). Optimization of Buttressed Earth-Retaining Walls using Hybrid Harmony Search Algorithms. Engineering Structures, 134:205-216. DOI: 10.1016/j.engstruct.2016.12.042
  • GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125:325-336. DOI: 10.1016/j.engstruct.2016.07.012.
  • MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120:231-240. DOI: 10.1016/j.jclepro.2016.02.024
  • GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.; PÉREZ-LÓPEZ, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92:112-122. DOI: 10.1016/j.engstruct.2015.03.015 (link)
  • LUZ, A.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; MARTÍ, J.V. (2015). Diseño de estribos abiertos en puentes de carretera obtenidos mediante optimización híbrida de escalada estocástica. Informes de la Construcción, 67(540), e114. DOI: 10.3989/ic.14.089
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2015). Memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement. Journal of Structural Engineering ASCE, 141(2): 04014114. DOI:10.1061/(ASCE)ST.1943-541X.0001058 (descargar versión autor)
  • YEPES, V.; GARCÍA-SEGURA, T.; MORENO-JIMÉNEZ, J.M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4):1024-1036. doi:10.1016/j.acme.2015.05.001
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49:123-134. DOI: 10.1016/j.autcon.2014.10.013 (link)
  • GARCÍA-SEGURA, T.; YEPES, V.; MARTÍ, J.V.; ALCALÁ, J. (2014). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures,  11(7):1190 – 1205. ISSN: 1679-7817. (link)
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; LUZ, A. (2013). Diseño automático de tableros óptimos de puentes de carretera de vigas artesa prefabricadas mediante algoritmos meméticos híbridos. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, DOI: http://dx.doi.org/10.1016/j.rimni.2013.04.010.
  • TORRES-MACHÍ, C.; YEPES, V.; ALCALA, J.; PELLICER, E. (2013). Optimization of high-performance concrete structures by variable neighborhood search. International Journal of Civil Engineering, 11(2):90-99 . ISSN: 1735-0522. (link)
  • MARTÍNEZ-MARTÍN, F.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2013). A parametric study of optimum tall piers for railway bridge viaducts. Structural Engineering and Mechanics45(6): 723-740. (link)
  • MARTINEZ-MARTIN, F.J.; GONZALEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2012). Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering, 13(6):420-432. DOI: 10.1631/jzus.A1100304. ISSN 1673-565X (Print); ISSN 1862-1775 (Online).  (link)
  • MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J. (2013). Design of prestressed concrete precast road bridges with hybrid simulated annealing. Engineering Structures48:342-352. DOI:10.1016/j.engstruct.2012.09.014. ISSN: 0141-0296.(link)
  • YEPES, V.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J.; VILLALBA, P. (2012). CO2-Optimization Design of Reinforced Concrete Retaining Walls based on a VNS-Threshold Acceptance Strategy. Journal of Computing in Civil Engineering ASCE, 26 (3):378-386. DOI: 10.1061/(ASCE)CP.1943-5487.0000140. ISNN: 0887-3801. (link)
  • CARBONELL, A.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2011). Búsqueda exhaustiva por entornos aplicada al diseño económico de bóvedas de hormigón armado. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 27(3):227-235.  (link) [Global best local search applied to the economic design of reinforced concrete vauls]
  • CARBONELL, A.; GONZÁLEZ-VIDOSA, F.; YEPES, V. (2011). Heuristic optimization of reinforced concrete road vault underpasses. Advances in Engineering Software, 42(4): 151-159. ISSN: 0965-9978.  (link)
  • MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2011). Estudio paramétrico de pilas para viaductos de carretera. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 27(3):236-250. (link)
  • MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; ALCALÁ, J. (2011). Design of tall bridge piers by ant colony optimization. Engineering Structures, 33:2320-2329.
  • PEREA, C.; YEPES, V.; ALCALÁ, J.; HOSPITALER, A.; GONZÁLEZ-VIDOSA, F. (2010). A parametric study of optimum road frame bridges by threshold acceptance. Indian Journal of Engineering & Materials Sciences, 17(6):427-437. ISSN: 0971-4588.  (link)
  • PAYÁ-ZAFORTEZA, I.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2010). On the Weibull cost estimation of building frames designed by simulated annealing. Meccanica, 45(5): 693-704. DOI 10.1007/s11012-010-9285-0. ISSN: 0025-6455.  (link)
  • MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2010). Design of prestressed concrete precast pedestrian bridges by heuristic optimization. Advances in Engineering Software, 41(7-8): 916-922. http://dx.doi.org/10.1016/j.advengsoft.2010.05.003
  • MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2010). Heuristic Optimization of RC Bridge Piers with Rectangular Hollow Sections. Computers & Structures, 88: 375-386. ISSN: 0045-7949.  (link)
  • PAYÁ, I.; YEPES, V.; HOSPITALER, A.; GONZÁLEZ-VIDOSA, F. (2009). CO2-Efficient Design of Reinforced Concrete Building Frames. Engineering Structures, 31: 1501-1508. ISSN: 0141-0296. (link)
  • YEPES, V.; ALCALÁ, J.; PEREA, C.; GONZÁLEZ-VIDOSA, F. (2008). A Parametric Study of Optimum Earth Retaining Walls by Simulated Annealing. Engineering Structures, 30(3): 821-830. ISSN: 0141-0296.  (link)
  • PEREA, C.; ALCALÁ, J.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Design of Reinforced Concrete Bridge Frames by Heuristic Optimization. Advances in Engineering Software, 39(8): 676-688. ISSN: 0965-9978.  (link)
  • PAYÁ, I.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Multiobjective Optimization of Reinforced Concrete Building Frames by Simulated Annealing. Computer-Aided Civil and Infrastructure Engineering, 23(8): 596-610. ISSN: 1093-9687.  (link)
  • PAYÁ, I.; YEPES, V.; CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F. (2006). Optimización heurística de pórticos de edificación de hormigón armado. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 22(3): 241-259. [Heuristic optimization of reinforced concrete building frames]. (link)
26 julio, 2017
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  |  

BIM, declaraciones ambientales de producto e inercia térmica: tres vías para la consolidación de las soluciones en prefabricado de hormigón

BIM: Digitalización productos/sistemas constructivos

Resumen: En un contexto social y reglamentario cada vez más exigente, coexisten tres tendencias que se presentan como una inmejorable oportunidad para la consolidación definitiva de las soluciones prefabricadas de hormigón como la variante industrializada de la construcción de edificios e infraestructuras, con todas las ventajas que ello proporciona en términos de rapidez de ejecución, control más exhaustivo en proyecto y obra, calidad, precisión dimensional, eficiencia y rentabilidad económica. Tanto BIM, como las declaraciones ambientales de producto y la inercia térmica, son tres aspectos que guardan una correlación.

Palabras clave: prefabricado, hormigón, BIM, DAP’s, inercia térmica, sostenibilidad

Referencia:

LÓPEZ-VIDAL, A.; YEPES, V. (2017). BIM, declaraciones ambientales de producto e inercia térmica: tres vías para la consolidación de las soluciones en prefabricado de hormigón. VII Congreso de ACHE, A Coruña, junio de 2017, 9 pp.

Descargar (PDF, 591KB)

6 julio, 2017
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  ,  |  

Algunas conclusiones obtenidas del proyecto BRIDLIFE sobre puentes postesados en cajón

A punto de terminar el proyecto de investigación BRIDLIFE, a continuación se exponen algunas conclusiones de interés fruto de dicho proyecto y de la tesis doctoral y publicaciones de la profesora Tatiana García Segura. Son pequeñas “píldoras” de conocimiento que pueden ser de interés para proyectistas e investigadores relacionados con los puentes, el hormigón, la sostenibilidad y la optimización. Son las siguientes:

  1. A pesar de la reducción de durabilidad por carbonatación y la menor captura de CO2, los cementos con adiciones resultan beneficiosos desde el punto de vista ambiental [1].
  2. Mientras el uso del hormigón reciclado como árido afecta a las propiedades del hormigón y requiere en muchos casos un incremento en el contenido de cemento, la reutilización del hormigón como material granular de relleno permite una completa carbonatación del hormigón que reduce las emisiones de CO2 [1].
  3. Se puede mejorar la seguridad estructural de los puentes en cajón con un pequeño incremento de coste siempre que se escojan las variables adecuadas [2]. Este incremento de coste no es constante para todos los niveles de seguridad. Se pueden establecer diferentes puntos, a partir de los cuales resulta más caro mejorar la seguridad estructural [2].
  4. No se aconseja aumentar el espesor de la losa superior para mejorar la seguridad de los puentes en cajón, ya que ello conlleva un aumento de peso innecesario [2]. Sin embargo, el espesor de las alas en el arranque es un aspecto clave para mejorar la flexión transversal [2].
  5. A pesar de que se ha considerado la inclinación del alma como variable de optimización, su valor óptimo apenas difiere para distintos valores de seguridad.  Esto se debe a que tanto el canto como el ancho de inclinación del alma aumentan en paralelo para mejorar la seguridad estructural [2].
  6. El uso de hormigón de alta resistencia en puentes no muestra ventajas económicas a corto plazo, pues las restricciones de servicio y armadura mínima no permiten reducir el canto y la cantidad de armadura [2]. Sin embargo, el hormigón de alta resistencia retrasa el inicio de la corrosión [3] y mejora el rendimiento estructural una vez se ha iniciado la corrosión [4]. Si se diseñan estructuras con hormigones de alta resistencia se consiguen mejores resultados durante el ciclo de vida que con diseños que tienen mayores recubrimientos, a pesar de tener el mismo inicio de corrosión [4].
  7. Los diseños que tienen una mayor durabilidad tienen un mayor coste inicial pero un menor coste de ciclo de vida [4].
  8. Los resultados muestran que tanto la optimización del coste como de las emisiones de CO2 reducen el consumo de material. Por tanto, la optimización del coste es una buena estrategia para conseguir estructuras más ecológicas [2,5,6].
  9. Para gestionar el mantenimiento de las estructuras de forma sostenible se debe tener en cuenta tanto el coste y las emisiones de reparación, como el impacto que produce el desvío de tráfico sobre los usuarios de la vía [4].
  10. La optimización del mantenimiento indica que no se debe optimizar cada superficie por separado, sino que se debe coordinar el mantenimiento de todas las superficies para reducir el coste y las emisiones que ocasiona el desvío del tráfico [4].

Referencias:

[1]          T. García-Segura, V. Yepes, J. Alcalá, Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability, Int. J. Life Cycle Assess. 19 (2014) 3–12. doi:10.1007/s11367-013-0614-0.

[2]         T. García-Segura, V. Yepes, Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety, Eng. Struct. 125 (2016) 325–336. doi:10.1016/j.engstruct.2016.07.012.

[3]         T. García-Segura, V. Yepes, D.M. Frangopol, Multi-objective design of post-tensioned concrete road bridges using artificial neural networks, Struct. Multidiscip. Optim. 56 (2017) 139–150. doi:10.1007/s00158-017-1653-0.

[4]         T. García-Segura, V. Yepes, D.M. Frangopol, D.Y. Yang, Lifetime reliability-based optimization of post-tensioned box-girder bridges, Eng. Struct. 145 (2017) 381–391. doi:10.1016/j.engstruct.2017.05.013.

[5]         T. García-Segura, V. Yepes, J. Alcalá, E. Pérez-López, Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges, Eng. Struct. 92 (2015) 112–122. doi:10.1016/j.engstruct.2015.03.015.

[6]         J.V. Martí, T. García-Segura, V. Yepes, Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy, J. Clean. Prod. 120 (2016) 231–240. doi:10.1016/j.jclepro.2016.02.024.

5 junio, 2017
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  ,  ,  |  

La historia del hormigón convencional

El Salginatobel construido en Suiza en 1930, de Maillart, uno de mis puentes preferidos. Wikipedia.

La historia del hormigón constituye un capítulo fundamental de la historia de la construcción. En este post continuamos con otro anterior donde también se abordaba este tema, pero desde el punto de vista de los orígenes del hormigón en España. Aquí os dejo un vídeo del profesor Antonio Garrido, aunque con un enfoque más amplio. Espero que os guste.

Referencias:

http://www.cehopu.cedex.es/hormigon/

http://informesdelaconstruccion.revistas.csic.es/index.php/informesdelaconstruccion/article/viewArticle/3261/3674

 

29 mayo, 2017
 
|   Etiquetas: ,  ,  ,  |  

Preguntas básicas sobre el control de las estructuras de hormigón

El Capítulo 14 de la Instrucción de Hormigón Estructural EHE-08 recoge las bases generales del control de las estructuras de hormigón. Estas bases se desarrollan con mayor profundidad en los siguientes capítulos relacionados con el control de calidad del proyecto, el control de la conformidad de los productos y el control de la ejecución. A continuación se responden a ciertas preguntas que suelen hacerse respecto a este tema. El post trata de aclarar ciertos conceptos y términos que, en numerosas ocasiones, resultan confusos o poco claros. Espero que os sean de interés.

CUESTIÓN 1. ¿Qué tipo de controles debe realizar la Dirección Facultativa durante la ejecución de una estructura de hormigón armado?

El artículo 78 de la EHE-08 indica la realización de los siguientes controles:

  • Control de la conformidad de los productos que se suministren a la obra, de acuerdo con el Capítulo XVI
  • Control de ejecución de la estructura, de acuerdo con el artículo 92
  • Control de la estructura terminada, de acuerdo con el artículo 100

 

CUESTIÓN 2. ¿Cómo se debe considerar dentro de un proyecto el coste del control de recepción?

El artículo 78 de la EHE-08 indica que, siempre que la legislación aplicable lo permita, el coste del control de recepción incluido en el proyecto deberá considerarse de forma independiente en el presupuesto de la obra. Esta consideración, tal y como se explica en los comentarios de la EHE-08, se realiza con el objeto de procurar la independencia necesaria para que el control sea eficaz, es decir, se aconseja especialmente que la Propiedad contrate y abone directamente cualquier actividad de control, evitando así que dicho abono se efectúe a través de la actividad controlada (Autor del Proyecto o Constructor).

CUESTIÓN 3. A los efectos de las actividades de control contempladas por la EHE-08, ¿Qué diferencias existe entre los siguientes conceptos: partida, remesa y acopio?

El artículo 78.1 define los conceptos de partida, remesa y acopio a los efectos de las actividades de control contempladas por la EHE-08:

Partida: cantidad de producto de la misma designación y procedencia contenido en una misma unidad de transporte (contenedor, cuba, camión, etc.) y que se recibe en la obra o en el lugar destinado para su recepción. En el caso del hormigón, las partidas suelen identificarse con las unidades de producto o amasadas.

Remesa: conjunto de productos de la misma procedencia, identificados individualmente, contenidos en una misma unidad de transporte (contenedor, camión, etc.) y que se reciben en el lugar donde se efectúa la recepción.

Acopio: cantidad de material o producto, procedente de una o varias partidas o remesas, que se almacena conjuntamente tras su entrada en la obra, hasta su utilización definitiva.

CUESTIÓN 4. A los efectos de las actividades de control contempladas por la EHE-08, ¿Qué diferencias existe entre los siguientes conceptos: lote de material o producto, lote de ejecución y unidad de inspección?

El artículo 78.1 define los conceptos de lote de material o producto, lote de ejecución y unidad de inspección a los efectos de las actividades de control contempladas por la EHE-08:

Lote de material o producto: cantidad de material o producto que se somete a recepción en su conjunto.

Lote de ejecución: parte de la obra, cuya ejecución se somete a aceptación en su conjunto.

Unidad de inspección: conjunto de las actividades, correspondientes a un mismo proceso de ejecución, que es sometido a control para la recepción de un lote de ejecución.

CUESTIÓN 5. ¿Qué obligaciones tiene la Dirección Facultativa respecto al control según la EHE-08?

El artículo 78.2.1 indica que la Dirección Facultativa, en uso de sus atribuciones y actuando en nombre de la Propiedad, tendrá las siguientes obligaciones respecto al control:

  1. Aprobar un programa de control de calidad para la obra, que desarrolle el plan de control incluido en el proyecto, y
  2. Velar por el desarrollo y validar las actividades de control en los siguientes casos:
    1. Control de recepción de los productos que se coloquen en la obra,
    2. Control de la ejecución, y

En su caso, control de recepción de otros productos que lleguen a la obra para ser transformados en las instalaciones propias de la misma.

 

CUESTIÓN 6. ¿Qué implica que los laboratorios y entidades de control de calidad deban ser independientes respecto al resto de los agentes involucrados en la obra? ¿Cómo lo demuestran?

La independencia a la que se refiere el artículo 78.2.2 de la EHE-08 implica que los laboratorios y entidades de control deben poder demostrar que no existen relaciones empresariales con el resto de los agentes involucrados en la estructura de hormigón (Autor del Proyecto, Constructor, Suministrador de los productos, etc.). Esta independencia no es exigible en el caso de que estas entidades pertenezcan a la Propiedad. Para ello, previamente al inicio de las obras, estas entidades deberán entregar a la Propiedad una declaración, firmada por persona física, que avale la referida independencia y que deberá ser incorporada por la Dirección Facultativa a la documentación final de la obra.

CUESTIÓN 7. A efectos de la EHE-08, ¿qué diferencia existe entre un laboratorio de control y una entidad de control de la calidad?

Los laboratorios de control realizan los ensayos necesarios para comprobar la conformidad de los productos a su recepción en la obra. En cambio las entidades de control de la calidad realizan la asistencia técnica del control de recepción de los productos, el control de ejecución y, en su caso, el control de proyecto.

CUESTIÓN 8. ¿Qué es el “Plan de Control” necesario para cualquier proyecto de ejecución de una estructura de hormigón?

Según el artículo 79.1 de la EHE-08, el Plan de Control es un anejo de la memoria del proyecto donde se defina la estructura de hormigón que sirve para identificar cualquier comprobación que pudiera derivarse del mismo, así como la valoración del coste total del control, que se reflejará como un capítulo independiente en el presupuesto del proyecto.

CUESTIÓN 9. ¿Qué es el “Programa de Control” de una estructura de hormigón y qué tiene que contemplar?

El artículo 79.1 de la EHE-08 establece que, de forma previa al inicio de las actividades de control en la obra, la Dirección Facultativa debe aprobar un Programa de Control, que es un documento preparado de acuerdo con el Plan de Obra del Constructor y con el Plan de Control definido en el proyecto. Deberá contemplar, al menos, los siguientes aspectos:

  1. La identificación de productos y procesos objeto de control, definiendo los correspondientes lotes de control y unidades de inspección, describen para cada caso las comprobaciones a realizar y los criterios a seguir en el caso de no conformidad;
  2. La previsión de medios materiales y humanos destinados al control con identificación, en su caso, de las actividades a subcontratar;
  3. La programación del control, en función del procedimiento de autocontrol del Constructor y el plan de obra previsto para la ejecución por el mismo;
  4. La designación de la persona encargada de las tomas de muestras, en su caso; y
  5. El sistema de documentación del control que se empelará durante la obra.

CUESTIÓN 10. ¿Qué es el control del proyecto de una estructura de hormigón y quién lo puede realizar?

Según el artículo 79.2 de la EHE-08, el control del proyecto tiene como objeto comprobar su conformidad de acuerdo con dicha instrucción y con el resto de la reglamentación que le fuera aplicable. Según el artículo 82.1, el control del proyecto trata de comprobar:

  • Que las obras a las que se refiere el proyecto están suficientemente definidas para su ejecución; y
  • Que se cumplen las exigencias relativas a la seguridad, funcionalidad, durabilidad y protección del medio ambiente establecidas por la EHE-08, así como las establecidas por la reglamentación vigente que le sean aplicables.

La Propiedad puede decidir realizar un control de proyecto a cargo de una entidad de control de calidad. Se recomienda que se realice dicho control en todo tipo de obras, pero especialmente en aquellas de importancia especial por la incidencia económica o social que pudiese derivarse de un fallo estructural, de una prematura puesta fuera de servicio o de un grave impacto medioambiental. Sin embargo, el Autor del Proyecto no pierde sus atribuciones y responsabilidades por el hecho de que la propiedad realice el control de dicho proyecto.

CUESTIÓN 11. ¿Qué es el control de recepción de los productos?, ¿qué ocurre cuando el producto dispone del marcado CE según la Directiva 89/106/CEE?, ¿qué control hay que hacer cuando no existe el marcado CE?

El control de recepción tiene como objeto, según el artículo 79.3 de la EHE-08, comprobar que las características técnicas de los productos cumplen lo exigido en el proyecto. Si los productos disponen del marcado CE, puede comprobarse su conformidad mediante la verificación de que los valores declarados en los documentos que acompañan al citado marcado CE permiten deducir el cumplimiento de las especificaciones indicadas en el proyecto, y en su defecto, en la EHE-08. En otros casos, el control de recepción de los productos comprenderá:

  1. El control de la documentación de los suministros que llegan a la obra,
  2. En su caso, el control mediante distintivos de calidad,
  3. En su caso, el control mediante ensayos.

CUESTIÓN 12. ¿Qué sistemas de seguimiento debe definir y desarrollar el Constructor para controlar la producción en la ejecución de una estructura de hormigón?

El Constructor, de acuerdo con el artículo 79.4.1 tiene la obligación de definir y desarrollar un plan de autocontrol y un sistema de gestión de los acopios (cuando el proyecto establezca un nivel de control ejecución intenso), que sea suficiente para conseguir la trazabilidad requerida de los productos y elementos que se colocan en la obra.

CUESTIÓN 13. ¿Qué debe incluir el Plan de Autocontrol del Constructor?, ¿qué se debe hacer con los resultados de las comprobaciones del autocontrol?

Según el artículo 79.4.1, el plan de autocontrol deberá incluir todas las actividades y procesos de la obra, así como incorporar el programa previsto para su ejecución, contemplando las particularidades de la misma. Los resultados de todas las comprobaciones realizadas en el autocontrol deberán registrarse en un soporte, físico o electrónico, que deberá estar a disposición de la Dirección Facultativa. Cada registro deberá estar firmado por la persona física que haya sido designada por el Constructor para el autocontrol de cada actividad. Para ello debe haber un registro actualizado de las personas responsables de efectuar en cada momento el autocontrol relativo a cada proceso de ejecución. Dicho registro se incorporará a la documentación final de la obra.

CUESTIÓN 14. ¿Cuándo se debe realizar una trazabilidad de los productos?, ¿cuándo se debe realizar la trazabilidad de los suministradores?, ¿cuándo debe el Constructor introducir un sistema de gestión de los acopios?

El artículo 80 de la EHE-08 indica que la trazabilidad entre los productos que se colocan en la obra con carácter permanente (hormigón, armaduras o elementos prefabricados) y cualquier otro producto que se haya empleado para la elaboración de la estructura se debe realizar siempre para garantizar la conformidad de la estructura. Cuando el proyecto establezca un control de ejecución intenso para la estructura, la conformidad debe ampliarse a la trazabilidad de los suministradores y de las partidas o remesas de los productos con cada elemento estructural ejecutado en la obra. En este caso, y a fin de lograr esta trazabilidad, el Constructor deberá introducir en el ámbito de su actividad un sistema de gestión de los acopios, preferiblemente mediante procedimientos electrónicos.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

16 mayo, 2017
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  |  

Cálculo de la temperatura de fabricación del hormigón

Presa Ibiur, Baliarrain, España. http://www.ulmaconstruction.es

El hormigón colocado aumenta su temperatura como consecuencia del calor de hidratación del cemento. Como ese calor se disipa con el hormigón ya endurecido, se pueden producir tensiones que pueden provocar fisuras. Este fenómeno es de gran importancia cuando se vierten grandes cantidades de hormigón, como puede ser el caso de la construcción de presas. Para evitar el riesgo de fisuración, además de disponer juntas transversales y longitudinales, también se suelen tomar las siguientes medidas: disposiciones de proyecto para evitar la iniciación de grietas, precauciones para conseguir que la temperatura del hormigón colocado sea la menor posible y procedimientos para acelerar la evacuación del calor de hidratación. En este post nos centraremos en conseguir que la temperatura del hormigón colocado sea la adecuada.

El incremento de temperatura existente entre la fabricación y la puesta en obra se puede calcular aproximadamente con la siguiente expresión:

Por tanto, para conseguir la temperatura de fabricación adecuada, se debe modificar la temperatura de cada uno de los componentes necesarios para la fabricación del hormigón. Si bien el agua de amasado se puede enfriar, lo más efectivo es enfriar los áridos, puesto que cambiar la temperatura del cemento puede ser problemático. Además, los silos de almacenamiento deben estar aislados para controlar mejor la temperatura de fabricación.

Las leyes de equilibrio térmico permiten obtener la temperatura final de la mezcla, tanto cuando el agua de amasado se utiliza con hielo o sin hielo. Además, se recomienda ensayar diversas soluciones para ver qué combinación es la más sencilla de aplicar a cada caso concreto. La expresión es la siguiente:

En esta expresión observamos que el agua total de amasado incluye el agua libre de los áridos. Sin embargo, el agua total es la suma del agua de amasado más el hielo que se incorpore a la mezcla.

Referencias:

COMITÉ NACIONAL ESPAÑOL DE GRANDES PRESAS (1999). Construcción de presas y control de calidad. Guías Técnicas de Seguridad de Presas. Colegio de Ingenieros de Caminos, Canales y Puertos, 333 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

8 abril, 2017
 
|   Etiquetas: ,  ,  ,  ,  |  

Previous Posts

Universidad Politécnica de Valencia