RESILIFE: Optimización resiliente de estructuras híbridas en condiciones extremas

En este artículo se explica el proyecto RESILIFE, cuyos investigadores principales son Víctor Yepes y Julián Alcalá, de la Universitat Politècnica de València. Se trata de un proyecto de investigación de carácter internacional en el que también colaboran profesores de Brasil, Chile y China. Además, se están realizando varias tesis doctorales de estudiantes de Cuba, Perú, México y Ecuador, así como de estudiantes españoles. A continuación, se describe brevemente el proyecto y se incluye una comunicación reciente donde se explica con más detalle.

El proyecto RESILIFE se centra en optimizar de forma resiliente el ciclo de vida de estructuras híbridas y modulares para conseguir una alta eficiencia social y medioambiental, especialmente en condiciones extremas. La investigación aborda la necesidad de diseñar, construir y mantener infraestructuras que puedan resistir y recuperarse rápidamente de desastres naturales o provocados por el ser humano, minimizando las pérdidas y el impacto en la sociedad y el medioambiente. Para ello, el estudio propone utilizar inteligencia artificial, metaheurísticas híbridas, aprendizaje profundo y teoría de juegos en un enfoque multicriterio. El objetivo es mejorar la seguridad, reducir costes y optimizar la recuperación, alineándose con los Objetivos de Desarrollo Sostenible (ODS). La metodología integral incluye el análisis del ciclo de vida, así como la aplicación de lógica neutrosófica y redes bayesianas para la toma de decisiones.

¿Qué problema aborda el proyecto RESILIFE y por qué es urgente?

El proyecto RESILIFE aborda el desafío crítico que supone diseñar y mantener infraestructuras resilientes y sostenibles frente a desastres naturales y provocados por el ser humano. La urgencia es evidente debido a las enormes pérdidas humanas y económicas causadas por estos eventos (más de 1,1 millones de muertes y 1,5 billones de dólares en pérdidas entre 2003 y 2013), lo que subraya la necesidad de estructuras de alto rendimiento que protejan vidas y economías, al tiempo que se alinean con los Objetivos de Desarrollo Sostenible (ODS) de las Naciones Unidas. Además, los errores de diseño y construcción, así como la falta de mantenimiento, han demostrado ser causas significativas de colapso estructural, y solo el 50 % de las reparaciones de hormigón resultan efectivas en Europa.

¿Cuál es el objetivo principal de RESILIFE?

El objetivo general del proyecto RESILIFE es optimizar el diseño, el mantenimiento y la reparación de estructuras híbridas y modulares (MMC) de alta eficiencia social y medioambiental para que puedan resistir condiciones extremas. Para ello, se deben abordar problemas complejos de toma de decisiones en los ámbitos público y privado, integrando criterios de sostenibilidad social y medioambiental durante todo el ciclo de vida de las estructuras y teniendo en cuenta la variabilidad e incertidumbre inherentes al mundo real. El objetivo es que estas estructuras sean tan seguras como las tradicionales, pero con una mayor capacidad de recuperación rápida y un menor impacto social y medioambiental.

 

¿Qué tipos de estructuras son el foco de RESILIFE y por qué?

El proyecto se centra en estructuras híbridas (que combinan, por ejemplo, acero y hormigón) y en estructuras basadas en métodos modernos de construcción (MMC), especialmente las modulares. Estas estructuras se han elegido como objeto de estudio debido a su gran potencial para mejorar la resiliencia estructural, la eficiencia en la construcción (al reducir las interrupciones en obra y mejorar el control de calidad) y la sostenibilidad. A pesar de sus ventajas, se han identificado lagunas en la investigación sobre su optimización para eventos extremos y su aplicación en estructuras complejas, aspectos que el proyecto RESILIFE busca subsanar.

¿Qué metodologías innovadoras utiliza RESILIFE para lograr sus objetivos?

RESILIFE emplea un enfoque multidisciplinario e innovador que integra diversas técnicas avanzadas:

¿Cómo aborda RESILIFE la incertidumbre y la variabilidad en el diseño y mantenimiento de estructuras?

El proyecto aborda la incertidumbre y la variabilidad mediante varias estrategias:

  • Análisis de funciones de distribución de eventos extremos: Para el diseño óptimo basado en fiabilidad.
  • Metamodelos y metaheurísticas híbridas basadas en fiabilidad: Permiten manejar la aleatoriedad de los parámetros y asegurar que los proyectos optimizados no sean inviables ante pequeños cambios en las condiciones.
  • Técnicas de decisión multicriterio (lógica neutrosófica y redes bayesianas): Integran aspectos inciertos y criterios subjetivos en la toma de decisiones.
  • Análisis de sensibilidad: De los escenarios presupuestarios y las hipótesis del ciclo de vida para identificar las mejores prácticas.

¿Qué se entiende por «resiliencia» en el contexto de RESILIFE y cómo se cuantifica?

En el contexto de RESILIFE, la resiliencia se define como la capacidad de una estructura para resistir eventos extremos, mantener su funcionalidad o recuperarla rápidamente con reparaciones mínimas tras sufrir daños, y con un bajo coste social y medioambiental. El objetivo es ir más allá de la simple resistencia y centrarse en la capacidad de adaptación y recuperación. El proyecto tiene como objetivo desarrollar procedimientos explícitos para cuantificar la resiliencia de las estructuras e infraestructuras en el contexto de múltiples amenazas, un aspecto que actualmente presenta una laguna en la investigación. Esto incluye tener en cuenta la funcionalidad técnico-socioeconómica y los impactos a lo largo de toda su vida útil.

¿Qué tipo de casos de estudio se aplican en la metodología RESILIFE?

La metodología de RESILIFE se aplica a varios casos de estudio clave:

  • Optimización de pórticos de edificios altos: Con estructura de acero híbrido y hormigón armado, sometidos a un fuerte incremento de temperatura, o ante el fallo completo de soportes para evitar el colapso progresivo.
  • Viviendas sociales prefabricadas en zonas sísmicas: Optimizando su resistencia a acciones extremas y su capacidad de reparación rápida.
  • Mantenimiento y reparación de patologías: Resultantes de eventos extremos en diversas estructuras.
  • Otras estructuras como puentes mixtos y estructuras modulares: Ampliando el alcance más allá de las viviendas. Estos casos de estudio permiten validar la aplicabilidad de las metodologías propuestas en situaciones reales y complejas.

¿Cuáles son las principales contribuciones esperadas de RESILIFE a la ingeniería estructural y la sostenibilidad?

Las principales contribuciones esperadas de RESILIFE son:

  • Desarrollo de soluciones constructivas innovadoras: Como conexiones especiales y estructuras fusibles para aumentar la resiliencia y evitar el colapso progresivo.
  • Formulación de metodologías de participación social: Para integrar criterios objetivos y subjetivos en decisiones multicriterio.
  • Propuesta de técnicas de optimización multiobjetivo avanzadas: Basadas en metaheurísticas híbridas de deep learning, teoría de juegos y fiabilidad.
  • Introducción de nuevas métricas: Que prioricen soluciones resilientes en la frontera de Pareto.
  • Identificación de políticas presupuestarias efectivas: Y definición de buenas prácticas de diseño, reparación y mantenimiento robusto en construcciones MMC y estructuras híbridas.
  • Avances en la modelización y evaluación: De la sostenibilidad a largo plazo y el impacto ambiental de las infraestructuras, contribuyendo a normativas y software de diseño más eficientes.

Pincha aquí para descargar

Glosario de términos clave

  • Resiliencia (estructural): Capacidad de una estructura para absorber, resistir, adaptarse y recuperarse de un evento extremo, manteniendo o recuperando su funcionalidad rápidamente y con costes mínimos.
  • Estructuras híbridas: Estructuras que combinan dos o más materiales estructurales diferentes, como acero y hormigón, para optimizar sus propiedades y rendimiento.
  • Estructuras modulares: Estructuras compuestas por unidades o módulos prefabricados que se ensamblan en el lugar de la construcción, ofreciendo ventajas en velocidad de construcción y control de calidad.
  • Eventos extremos: Desastres naturales (terremotos, tsunamis, inundaciones) o provocados por humanos (explosiones, impactos) que causan daños significativos a las estructuras y la sociedad.
  • Optimización del ciclo de vida: Proceso de diseño, construcción, mantenimiento y reparación de una estructura, considerando su impacto total (económico, social, ambiental) a lo largo de toda su vida útil.
  • Sostenibilidad: Principio que busca satisfacer las necesidades actuales sin comprometer la capacidad de las futuras generaciones para satisfacer sus propias necesidades, integrando aspectos ambientales, sociales y económicos.
  • Inteligencia artificial (IA): Campo de la informática que dota a las máquinas de la capacidad de aprender, razonar y resolver problemas, utilizada aquí para evaluar y mejorar la resiliencia.
  • Metaheurísticas híbridas: Algoritmos de optimización que combinan diferentes técnicas heurísticas o metaheurísticas para encontrar soluciones eficientes a problemas complejos, especialmente en la optimización multiobjetivo.
  • Aprendizaje profundo (Deep Learning – DL): Subcampo del aprendizaje automático que utiliza redes neuronales artificiales con múltiples capas para aprender representaciones de datos, aplicado para mejorar la toma de decisiones y reducir tiempos de cálculo.
  • Teoría de juegos: Rama de las matemáticas que estudia las interacciones estratégicas entre agentes racionales, aplicada en la optimización multiobjetivo para el diseño de estructuras.
  • Lógica neutrosófica: Marco matemático para tratar la indeterminación y la inconsistencia, utilizado en la toma de decisiones multicriterio para manejar la incertidumbre.
  • Redes bayesianas: Modelos gráficos probabilísticos que representan relaciones de dependencia condicional entre variables, empleadas en el análisis multicriterio y la gestión de incertidumbre.
  • Colapso progresivo: Fenómeno en el cual un daño inicial localizado en una estructura se propaga a otras partes, llevando al colapso desproporcionado de una gran porción o de toda la estructura.
  • Modern Methods of Construction (MMC): Métodos de construcción modernos que incluyen tecnologías de prefabricación, construcción modular e impresión 3D, buscando mayor eficiencia y control de calidad.
  • BIM (Building Information Modeling / Modelos de Información en la Construcción): Proceso de creación y gestión de un modelo digital de un edificio o infraestructura, que facilita la integración del proyecto estructural y la toma de decisiones a lo largo del ciclo de vida.
  • Metamodelo (o modelo subrogado): Modelo simplificado de un sistema complejo que permite realizar cálculos más rápidos y eficientes, crucial para reducir los tiempos de computación en la optimización.
  • Diseño óptimo basado en fiabilidad: Enfoque de diseño que considera la probabilidad de fallo y las incertidumbres inherentes para optimizar las estructuras, garantizando un nivel de seguridad predefinido.
  • Frontera de Pareto: Conjunto de soluciones óptimas en problemas de optimización multiobjetivo, donde ninguna de las funciones objetivo puede mejorarse sin degradar al menos otra función objetivo.

Agradecimientos:

Grant PID2023-150003OB-I00 funded by MCIN/AEI/10.13039/501100011033, and the European Regional Development Fund (ERDF), a program of the European Union (EU).

Introducción a la teoría de juegos

https://upload.wikimedia.org/wikipedia/

La teoría de juegos es un área de las matemáticas aplicadas que utiliza modelos para estudiar interacciones en estructuras formales de incentivos, es decir, los llamados «juegos».

Se ha convertido en una herramienta clave para la economía y la administración de empresas, ya que ayuda a entender mejor la conducta humana en la toma de decisiones.

Los investigadores analizan las estrategias óptimas, así como el comportamiento previsto y observado de los individuos en dichos juegos. Tipos de interacción aparentemente distintos pueden tener estructuras de incentivos similares, lo que permite representar el mismo juego una y otra vez.

La teoría de juegos estudia las estrategias óptimas de los jugadores, así como su comportamiento previsto y observado, y ha contribuido a una mejor comprensión de la toma de decisiones humana.

La teoría de juegos aborda situaciones de decisión en las que hay dos oponentes inteligentes con objetivos opuestos. Algunos ejemplos típicos son las campañas de publicidad para productos de la competencia y las estrategias bélicas entre ejércitos. Estas situaciones difieren de las estudiadas previamente, en las que no se tiene en cuenta a la naturaleza como oponente adverso.

El juego es un modelo matemático que se utiliza para entender la toma de decisiones y la interacción entre los participantes, siendo el «dilema del prisionero» uno de los más conocidos. En este escenario, dos personas son arrestadas y encarceladas, y se fija la fecha del juicio. El fiscal se entrevista con cada prisionero por separado y les ofrece la siguiente opción: si uno confiesa y el otro no, el que confiesa queda libre y el otro recibe 20 años de prisión; si ambos confiesan, ambos cumplen 5 años; y si ninguno confiesa, ambos reciben 1 año de prisión. En este dilema, el destino de cada uno depende de la decisión del otro. Aunque confesar parece ser lo mejor, si ambos lo hacen, el castigo es peor que si guardan silencio.

https://www.bbc.com/mundo/noticias/2015/02/150220_teoria_de_juegos_que_es_finde_dv

La teoría de juegos se ha desarrollado y formalizado a partir de los trabajos de John von Neumann y Oskar Morgenstern, especialmente durante la Guerra Fría, debido a su aplicación en la estrategia militar. Los principales conceptos de la teoría de juegos incluyen los juegos de suma cero, los juegos de suma no cero, los equilibrios de Nash, los juegos cooperativos y los juegos de información perfecta e imperfecta.

En la teoría de juegos existen conceptos fundamentales para entender las interacciones estratégicas entre los agentes. Algunos de ellos son:

  • Estrategia: conjunto de acciones posibles que un jugador puede llevar a cabo en un juego. Las estrategias pueden ser puras (una acción única) o mixtas (una distribución de probabilidad sobre varias acciones).
  • Equilibrio de Nash: situación en la que ningún jugador tiene incentivos para cambiar su estrategia, dado el conjunto de estrategias de los demás. Es un concepto clave que describe una situación estable en la que las decisiones de los jugadores están equilibradas.
  • Juego de suma cero: tipo de juego en el que la ganancia total es constante, es decir, lo que uno gana, otro lo pierde. En estos juegos, el objetivo es maximizar la ganancia propia a expensas de los demás jugadores.

La matriz de recompensas es una herramienta clave en la teoría de juegos que representa las combinaciones de decisiones de los jugadores. Muestra los resultados, generalmente en forma de recompensas, para cada jugador según las decisiones de todos los participantes. Es decir, describe cómo las elecciones de cada jugador afectan a sus pagos o beneficios según las decisiones de los demás.

En un conflicto de este tipo hay dos jugadores, cada uno con una cantidad (finita o infinita) de alternativas o estrategias. Cada par de estrategias tiene una recompensa que un jugador paga al otro. A estos juegos se les llama de suma cero, ya que la ganancia de un jugador es igual a la pérdida del otro. Si los jugadores se representan por A y B, con m y n estrategias respectivamente, el juego se suele ilustrar con la matriz de recompensas para el jugador A.

La representación indica que si A usa la estrategia i y B usa la estrategia j, la recompensa para A es aij, y entonces la recompensa para B es —aij.

Aquí os dejo un esquema conceptual sobre la teoría de juegos.

Os dejo unos vídeos explicativos, que espero, os sea de interés:

En este vídeo se presentan los conceptos fundamentales de la teoría de juegos, que estudia cómo las decisiones de varios jugadores están interconectadas en situaciones estratégicas. A través de ejemplos visuales como matrices y árboles de decisión, se explica cómo los jugadores eligen estrategias para maximizar su utilidad teniendo en cuenta las acciones de los demás. Se destaca la importancia de entender los pagos y resultados de cada estrategia, lo que permite analizar comportamientos competitivos y cooperativos en diversos contextos.

En este otro vídeo se explican distintos tipos de juegos en teoría de juegos, como el dilema del prisionero, el juego del gato y el ratón y la batalla de los sexos, y se destacan sus equilibrios de Nash y las estrategias cooperativas o no cooperativas.

Referencias:

  • Binmore, K. (1994). Teoría de juegos. McGraw-Hill.
  • Friedman, J. W. (1991). Teoría de juegos con aplicaciones a la economía. Alianza Universidad.
  • Kreps, D. M. (1994). Teoría de juegos y modelación económica. Fondo de Cultura Económica.
  • Martínez-Muñoz, D., Martí, J. V., & Yepes, V. (2025). Game theory-based multi-objective optimization for enhancing environmental and social life cycle assessment in steel-concrete composite bridges. Mathematics, 13(2), 273. https://doi.org/10.3390/math13020273
  • Meyerson, R. (1991). Game theory: Analysis of conflict. Harvard University Press.
  • Nash, J. (1950). Equilibrium points in n-person games. Proceedings of the National Academy of the USA, 36(1), 48-49.
  • Poundstone, W. (1992). Prisoner’s dilemma: John von Neumann, game theory, and the puzzle of the bomb. Doubleday.

Licencia de Creative Commons

Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Teoría de juegos aplicada a la optimización multiobjetivo de puentes mixtos

Acaban de publicar nuestro artículo en la revista del primer decil del JCR Mathematics. El artículo presenta un método innovador para optimizar el diseño de puentes mixtos de acero y hormigón mediante un enfoque basado en la teoría de juegos. Este enfoque integra criterios de sostenibilidad económica, ambiental y social con la simplicidad constructiva, abordando de manera simultánea múltiples objetivos que suelen ser conflictivos en proyectos de infraestructura. La principal contribución radica en la aplicación de un método de optimización multiobjetivo (MOO) que permite equilibrar los tres pilares de la sostenibilidad, empleando el Análisis del Ciclo de Vida (LCA) para evaluar el impacto durante todo el ciclo de vida del puente, desde su fabricación hasta su desmantelamiento.

Destaca la implementación de una versión discreta del algoritmo Seno-Coseno (SCA), adaptada específicamente para resolver problemas de diseño estructural. Esta metodología no solo garantiza un diseño eficiente en términos de coste y sostenibilidad, sino que también proporciona una solución práctica que facilita la construcción al reducir los refuerzos en las losas superiores y realizar ajustes geométricos estratégicos. Este enfoque supone un avance en el campo de la ingeniería civil, ya que combina técnicas matemáticas avanzadas con consideraciones prácticas del sector. Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València.

La metodología descrita combina la teoría de juegos con un enfoque cooperativo, en el que los diferentes objetivos (coste, impacto ambiental, impacto social y facilidad constructiva) se representan como «jugadores». Estos jugadores colaboran para encontrar soluciones óptimas dentro del conjunto de soluciones Pareto-óptimas, utilizando el concepto de equilibrio de Nash y reglas de negociación.

El algoritmo Seno-Coseno (SCA) modificado desempeña un papel fundamental en este proceso, ya que permite gestionar variables discretas y restricciones estructurales mediante funciones de transferencia en forma de tangente hiperbólica. Además, se emplea la teoría de la entropía para asignar pesos objetivos, lo que asegura un equilibrio justo entre los criterios y minimiza la subjetividad en la toma de decisiones.

Los resultados muestran que la metodología basada en la teoría de juegos permite reducir el refuerzo de las losas superiores del puente y optimizar el uso de materiales sin comprometer la resistencia estructural. En comparación con un enfoque de optimización monoobjetivo centrado exclusivamente en costes, el método propuesto aumenta los costes en un 8,2 %, pero mejora sustancialmente los impactos ambientales y sociales asociados al diseño.

El estudio revela que, mediante la redistribución del material estructural, es posible mantener la rigidez necesaria en las secciones transversales del puente. En concreto, se observa un aumento en el uso de acero estructural en lugar de acero de refuerzo, lo que simplifica la construcción al reducir la cantidad de barras necesarias y, por ende, el tiempo de instalación y vibrado del hormigón. Este cambio también contribuye a mejorar la calidad del producto final, ya que reduce los errores constructivos y optimiza el tiempo de ejecución.

El análisis demuestra que las soluciones obtenidas mediante métricas de distancia Minkowski (L1, L2 y L∞) proporcionan diseños equilibrados que logran compromisos efectivos entre coste, sostenibilidad y facilidad constructiva. Estas soluciones son comparables a estudios previos en términos de costes, pero ofrecen beneficios adicionales al incluir una evaluación más integral de los impactos sociales y ambientales.

El enfoque presentado abre la puerta a diversas áreas de investigación. Una línea de investigación prometedora es la aplicación de algoritmos híbridos que combinen la teoría de juegos con otras metaheurísticas, como redes neuronales o algoritmos genéticos, para mejorar la exploración y explotación del espacio de soluciones. Esto podría reducir el tiempo de computación y permitir su aplicación a problemas más complejos.

Otra posible dirección de investigación sería ampliar el modelo para incluir criterios como la resiliencia ante desastres naturales o la evaluación de riesgos a largo plazo. También se podría explorar la incorporación de nuevos indicadores sociales, como el impacto en las comunidades locales durante la construcción y operación del puente, lo que ampliaría la evaluación de sostenibilidad. Asimismo, sería interesante aplicar esta metodología a otros tipos de estructuras, como edificios o infraestructuras de transporte masivo, para evaluar su viabilidad y adaptar el enfoque a diferentes contextos.

En definitiva, el artículo proporciona una herramienta muy valiosa para abordar los desafíos de sostenibilidad y eficiencia en el diseño de infraestructuras civiles. La combinación de la teoría de juegos y la optimización multiobjetivo es efectiva para equilibrar criterios complejos y conflictivos, y ofrece soluciones prácticas, sostenibles y viables desde el punto de vista económico y constructivo. Aunque computacionalmente intensivo, este enfoque establece una base sólida para futuras investigaciones y aplicaciones en el campo de la ingeniería civil, lo que permite avanzar en la evaluación integral de la sostenibilidad y en la mejora de los procesos de diseño estructural.

Referencia:

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2025). Game Theory-Based Multi-Objective Optimization for Enhancing Environmental and Social Life Cycle Assessment in Steel-Concrete Composite Bridges. Mathematics, 13(2):273. DOI:10.3390/math13020273

Os dejo a continuación el artículo completo, pues se ha pbulicado en abierto.

Pincha aquí para descargar

Tesis doctoral: Optimal deep learning assisted design of socially and environmentally efficient steel concrete composite bridges under constrained budgets

Hoy 19 de julio de 2023 ha tenido lugar la defensa de la tesis doctoral de D. David Martínez Muñoz titulada “Optimal deep learning assisted design of socially and environmentally efficient steel concrete composite bridges under constrained budgets“, dirigida por Víctor Yepes Piqueras y José V. Martí Albiñana. La tesis recibió la máxima calificación de sobresaliente «cum laude» y presenta la mención internacional. Presentamos a continuación un pequeño resumen de la misma.

Resumen:

El diseño de infraestructuras está fuertemente influido por la búsqueda de soluciones que tengan en cuenta el impacto en la economía, el medio ambiente y la sociedad. Estos criterios están muy relacionados con la definición de sostenibilidad que hizo la Comisión Brundtland en 1987. Este hito supuso un reto para técnicos, científicos y legisladores. Este reto consistía en generar métodos, criterios, herramientas y normativas que permitieran incluir el concepto de sostenibilidad en el desarrollo y diseño de nuevas infraestructuras. Desde entonces, se han producido pequeños avances en la búsqueda de la sostenibilidad, pero se necesitan más a corto plazo. Como plan de acción, las Naciones Unidas establecieron los Objetivos de Desarrollo Sostenible, fijando el año 2030 como meta para alcanzarlos. Dentro de estos objetivos, las infraestructuras se postulan como un punto crítico. Tradicionalmente, se han desarrollado métodos para obtener diseños óptimos desde el punto de vista del impacto económico. Sin embargo, aunque en los últimos tiempos se ha avanzado en la aplicación y utilización de métodos de análisis del ciclo de vida completo, aún falta un consenso claro, especialmente en el pilar social de la sostenibilidad. Dado que la sostenibilidad engloba diferentes criterios, que en principio no van necesariamente de la mano, el problema de la búsqueda de la sostenibilidad se plantea no solo como un problema de optimización, sino también como un problema de toma de decisiones multi-criterio.

El objetivo principal de esta tesis doctoral es proponer diferentes metodologías para la obtención de diseños óptimos que introduzcan los pilares de la sostenibilidad en el diseño de puentes mixtos acero-hormigón. Como problema estructural representativo se sugiere un puente viga en cajón de tres vanos mixto. Dada la complejidad de la estructura, en la que intervienen 34 variables discretas, la optimización con métodos matemáticos resulta inabordable. Por ello, se recomienda el uso de algoritmos metaheurísticos. Esta complejidad también se traduce en un alto coste computacional para el modelo, por lo que se implementa un modelo de redes neuronales profundas que permite la validación del diseño sin necesidad de computación. Dada la naturaleza discreta del problema, se proponen técnicas de discretización para adaptar los algoritmos al problema de optimización estructural. Además, para mejorar las soluciones obtenidas a partir de estos algoritmos discretos, se introducen métodos de hibridación basados en la técnica K-means y operadores de mutación en función del tipo de algoritmo. Los algoritmos utilizados se clasifican en dos ramas. La primera son los basados en trayectorias como el Simulated Annealing, Threshold Accepting y el Algoritmo del Solterón. Por otra parte, se emplean algoritmos de inteligencia de enjambre como Jaya, Sine Cosine Algorithm y Cuckoo Search. La metodología de Análisis del Ciclo de Vida definida en la norma ISO 14040 se usa para evaluar el impacto social y medioambiental de los diseños propuestos. La aplicación de esta metodología permite evaluar el impacto y compararlo con otros diseños. La evaluación mono-objetivo de los diferentes criterios lleva a la conclusión de que la optimización de costes está asociada a una reducción del impacto medioambiental y social de la estructura. Sin embargo, la optimización de los criterios medioambientales y sociales no reduce necesariamente los costes. Por ello, para realizar una optimización multi-objetivo y encontrar una solución de compromiso, se implementa una técnica basada en la Teoría de Juegos, recomendando una estrategia de juego cooperativo. La técnica multi-criterio empleada es la Teoría de la Entropía para asignar pesos a los criterios para la función objetivo agregada. Los criterios considerados son los tres pilares de la sostenibilidad y la facilidad constructiva de la losa superior. Aplicando esta técnica se obtiene un diseño óptimo relativo a los tres pilares de la sostenibilidad y a partir del cual se mejora la facilidad constructiva.

Referencias:

MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2023). Hybrid swarm intelligence optimization methods for low-embodied energy steel-concrete composite bridges. Mathematics, 11(1):140. DOI:10.3390/math11010140

MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2022). Optimal design of steel-concrete composite bridge based on a transfer function discrete swarm intelligence algorithm. Structural and Multidisciplinary Optimization, 65:312. DOI:10.1007/s00158-022-03393-9

GARCÍA, J.; VILLAVICENCIO, G.; ALTIMIRAS, F.; CRAWFORD, B.; SOTO, R.; MINTATOGAWA, V.; FRANCO, M.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2022). Machine learning techniques applied to construction: A hybrid bibliometric analysis of advances and future directions. Automation in Construction, 142:104532. DOI:10.1016/j.autcon.2022.104532

MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2022). Discrete swarm intelligence optimization algorithms applied to steel-concrete composite bridges. Engineering Structures, 266:114607. DOI:10.1016/j.engstruct.2022.114607

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2022). Social Impact Assessment Comparison of Composite and Concrete Bridge Alternatives. Sustainability, 14(9):5186. DOI:10.3390/su14095186.

ATA-ALI, N.; PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2021). Recycled versus non-recycled insulation alternatives LCA analysis for different climatic conditions in Spain. Resources, Conservation and Recycling, 175, 105838. DOI:10.1016/j.resconrec.2021.105838

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2021). Comparative life cycle analysis of concrete and composite bridges varying steel recycling ratio. Materials, 14(15):4218. DOI:10.3390/ma14154218

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; GARCÍA, J.; YEPES, V. (2021). Embodied energy optimization of buttressed earth-retaining walls with hybrid simulated annealing. Applied Sciences, 11(4):1800. DOI:10.3390/app11041800

NAVARRO, I.J.; PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; REMPLING, R.; YEPES, V. (2020). Life cycle sustainability assessment for multi-criteria decision making in bridge design: A review. Journal of Civil Engineering and Management, 26(7):690-704. DOI:10.3846/jcem.2020.13599.

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2020). Steel-concrete composite bridges: design, life cycle assessment, maintenance and decision making. Advances in Civil Engineering, 2020:8823370. DOI:10.1155/2020/8823370

PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; GARCÍA-SEGURA, T.; NAVARRO, I.J.; YEPES, V. (2020). Environmental and social impact assessment of optimized post-tensioned concrete road bridges. Sustainability, 12(10), 4265. DOI:10.3390/su12104265

YEPES, V.; DASÍ-GIL, M.; MARTÍNEZ-MUÑOZ, D.; LÓPEZ-DESFILÍS, V.J.; MARTÍ, J.V. (2019). Heuristic techniques for the design of steel-concrete composite pedestrian bridges. Applied Sciences, 9(16), 3253; DOI:10.3390/app9163253

Limitaciones de los métodos de toma de decisiones basados en procesos de jerarquía analítica AHP

Figura 1. Ejemplo de estructura jerárquica AHP

Cuando el profesor Thomas Saaty dió a conocer el método AHP (Analytic Hierarchy Process) en la década de los 80, ya se dio cuenta de que este procedimiento presentaba algunas limitaciones que debía solucionar más adelante. En el año 1996 presentó el modelo ANP (Analytic Network Process) como una generalización de AHP. Este modelo permitió incluir relaciones de interdependencia y realimentación entre los elementos del sistema (criterios y alternativas).

En este artículo, nos centraremos en algunas limitaciones del AHP que conviene tener en cuenta a la hora de tomar decisiones. Este aspecto no es menor, ya que existen modelos basados en AHP que pueden verse afectados por alguna de estas limitaciones.

No obstante, no todo son inconvenientes, ni mucho menos. El profesor José María Moreno ya nos advierte, tal y como se desprende del artículo que os dejo al final de esta entrada, que hasta la fecha no se ha podido probar la supremacía de ningún método o escuela de pensamiento en lo referente al paradigma de la toma de decisiones multicriterio. De hecho, el método AHP ha basado su éxito en trasladar las percepciones humanas a valores numéricos evaluados en una escala de prioridades que permiten sintetizar lo tangible y lo intangible, lo objetivo y lo subjetivo, e incluso lo racional y lo emocional. Además, constituye un procedimiento fácil de utilizar, aplicable a numerosas situaciones reales donde se trata de elegir una alternativa, y donde se puede agregar la decisión individual y la de grupo. Y no menos importante, el AHP es una de las pocas técnicas multicriterio que ofrece una axiomática teórica. Pero veamos ahora en algunos de los inconvenientes de AHP que habrá que valorar siempre que usemos este método o algún otro basado en él.

El principal problema del AHP es que, por lo general, existen relaciones de interdependencia y realimentación entre los distintos criterios, subcriterios y alternativas (figura 2). El AHP es unidireccional, con relaciones de abajo hacia arriba entre los distintos elementos, lo que puede suponer una simplificación excesiva de la realidad. La condición de independencia y jerarquía subyacente en AHP es necesaria para que quien toma las decisiones pueda disponer de una función de valor aditiva. De hecho, AHP se basa en los axiomas de reciprocidad, homogeneidad y síntesis. Sin embargo, este último axioma, que implica que los juicios sobre las prioridades de los elementos en una jerarquía no dependen de los del nivel inferior, puede rebatirse cuando existe una dependencia entre la importancia de un objetivo y el nivel inferior.

Veamos un ejemplo concreto. Si se está analizando la sostenibilidad económica, ambiental y social de una estructura de hormigón, por ejemplo, uno de los subcriterios económicos podría ser el coste de la estructura y otro subcriterio ambiental, el consumo de recursos como la cantidad de hormigón o de acero utilizada. Es evidente que el coste depende de la cantidad de recursos consumidos. Este es un ejemplo muy sencillo, pero en el mundo real las interdependencias pueden ser sutiles o difíciles de ver a priori. No es fácil encontrar, en situaciones normales, criterios y subcriterios que sean independientes entre sí.

Figura 2. Relación entre elementos en ANP en la estructura jerárquica AHP (adaptado de Aznar, 2012)

Una de las objeciones al método es que, si la jerarquía AHP es incompleta, pueden distorsionarse los pesos. Otro problema adicional está relacionado con el número de criterios en cada nivel y con su ponderación relativa. Supongamos que hay dos criterios en el primer nivel y que uno tiene un peso del 75 % y el otro del 25 %. Esta ponderación condiciona de forma drástica las ponderaciones de todas las variables que dependen de ella. De esta manera, prácticamente se anula el interés de los subcriterios que dependen jerárquicamente del menos ponderado en el primer nivel. El profesor Aznar (2012) ilustra con ejemplos concretos cómo el uso de ANP frente a AHP provoca cambios significativos en la valoración final de cada una de las alternativas.

También hay que señalar que la escala de nueve puntos de Saaty (en la que los valores siempre están entre el 1 y el 9) es arbitraria a la hora de medir las preferencias de los responsables de la toma de decisiones. Esta escala puede plantear el siguiente problema, por ejemplo: si una alternativa A es cinco veces más importante que la alternativa B y esta, a su vez, es cinco veces más importante que la alternativa C, se produce un problema serio, ya que el método AHP no puede manejar el hecho de que la alternativa A es veinticinco veces más importante que la alternativa C. Esta deficiencia se observa en la Figura 3, donde se puede ver que la alternativa círculo rojo es mejor que el resto según la escala de Saaty: 5 para el triángulo, 7 para el rombo y 9 para el cuadrado. Si comparamos el triángulo verde con el resto, la valoración debería ser: 3 para el rombo y 5 para el cuadrado. Del mismo modo, el rombo presenta una valoración de 3 respecto al cuadrado. Con esta matriz pareada, el índice de consistencia es válido. Sin embargo, si se reajustan las valoraciones dividiendo por dos las comparaciones del triángulo, el rombo y el cuadrado, el índice de consistencia baja significativamente. En ese caso, los autovectores han cambiado, aunque se mantienen las prioridades.

Figura 3. Ratio de consistencia en función de las comparaciones pareadas. Elaboración propia

Pero los inconvenientes no terminan aquí. Como contrapartida a su simplicidad, el AHP no tiene en cuenta la incertidumbre asociada a la representación de la opinión en forma de número. Además, si se añade otra alternativa durante el proceso, las clasificaciones de las alternativas originales pueden cambiar, lo que rígidiza el método. Por otra parte, si se incrementa el número de alternativas o de criterios, se puede llegar a la inconsistencia de la matriz de comparaciones parejas. Además, el método es muy laborioso si se incrementa el número de alternativas o criterios.

Un inconveniente adicional del AHP es la normalización de las matrices de preferencias, que consiste en transformar las valoraciones planteadas en utilidades definidas en la escala (0, 1) mediante la obtención del vector propio de las mismas. Esto solo es estrictamente válido si los juicios reflejados en la matriz son completamente consistentes. En caso contrario, puede resultar complicada su interpretación.

Sin embargo, los problemas con AHP se agudizan cuando aparece una situación de conflicto en la que existen intereses contrapuestos entre los decisores y, además, las decisiones de cada uno dependen de las que tomen los demás para alcanzar sus propios objetivos. En este caso, la teoría de juegos o juegos de estrategia sería la forma más razonable de abordar el problema.

En resumen, estas reflexiones se deben a que, en muchas ocasiones, utilizamos métodos e incluso recogemos alguna normativa legal con la intención de dar cuerpo de ley a un conjunto de criterios para evaluar algún aspecto de especial interés. Es el caso del método AHP, empleado, por ejemplo, como parte de otros métodos como MIVES, que han dado lugar a un índice de contribución de la estructura a la sostenibilidad (anexo 2 del Código Estructural). En cualquier caso, para tranquilidad de muchos, la teoría AHP, si bien presenta ciertos problemas como los expuestos, parece conservar su condición de ser el método de toma de decisiones multicriterio más conocido y empleado.

También os dejo, por su interés, el artículo de José Luis Zanazzi sobre las críticas recibidas por AHP y su análisis.

Pincha aquí para descargar

Pero no todo van a ser noticias negativas en relación con el AHP. Os dejo, a continuación, el artículo del profesor José María Moreno donde explica el método AHP.

Pincha aquí para descargar

Referencias:

AZNAR, J.; GUIJARRO, F. (2012). Nuevos métodos de valoración: modelos multicriterio. Editorial Universitat Politècnica de València.

SAATY, T.L. (1980). The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation, McGraw-Hill.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.