Escalas Likert: una herramienta fundamental en la ingeniería de encuestas

https://delighted.com/es/blog/likert-scale

Las escalas Likert son un estándar en la investigación social, educativa y empresarial gracias a su simplicidad y eficacia a la hora de medir percepciones y actitudes. En ingeniería, son fundamentales para recopilar datos en estudios de usabilidad, gestión de proyectos y análisis de riesgos, entre otros.

Este artículo amplía el debate sobre las escalas Likert, abordando su diseño, implementación, análisis y aplicaciones prácticas en diversos campos de la ingeniería.

¿Qué son las escalas Likert?

De University of Michigan. News and Information Services. Photographs – Bentley Historical Library, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=76306573

Desarrolladas por Rensis Likert en 1932, estas escalas son un método para medir actitudes a través de una serie de afirmaciones ante las que el encuestado expresa su nivel de acuerdo o desacuerdo. Generalmente, tienen entre 5 y 7 puntos, aunque en ciertas situaciones se utilizan versiones más específicas. Su unidimensionalidad y simplicidad las hacen ideales para capturar datos subjetivos de forma sistemática.

Las principales características son la unidimensionalidad, ya que los ítems deben medir un único constructo (satisfacción, percepción o actitud), la versatilidad, que permite evaluar dimensiones como la frecuencia, la importancia y la probabilidad en diversos contextos, y la comparabilidad, por el hecho de que la estandarización de respuestas facilita la comparación entre grupos y estudios a lo largo del tiempo.

Los componentes de una escala Likert incluyen afirmaciones o ítems, que son declaraciones sobre las que el encuestado expresa su nivel de acuerdo o desacuerdo; opciones de respuesta, que representan un rango de valores como «Totalmente en desacuerdo», «Neutral» y «Totalmente de acuerdo», y puntuación, donde las respuestas se codifican numéricamente para facilitar el análisis estadístico.

El diseño de un cuestionario con escala Likert

El diseño de un cuestionario bien estructurado es fundamental para garantizar la calidad de los datos recopilados. Esto incluye desde la redacción de las preguntas hasta la elección del tipo de respuesta.

  • Redacción de ítems: La calidad de un cuestionario depende de la claridad y precisión de sus elementos, por lo que se recomienda evitar ambigüedades, expresar una sola idea con cada elemento, utilizar afirmaciones neutrales para minimizar sesgos emocionales y adaptar el lenguaje al contexto, teniendo en cuenta el nivel de comprensión del grupo objetivo. Por ejemplo, la pregunta «Estoy satisfecho con la calidad y el precio del servicio» debería descomponerse en dos preguntas distintas. Formulaciones como «¿Está de acuerdo con que los políticos son corruptos?», introducen sesgos emocionales.
  • Opciones de respuesta: Para diseñar opciones de respuesta efectivas, es relevante que sean claras, equidistantes y exhaustivas. El número de categorías debe tenerse en cuenta; cinco es el estándar, mientras que escalas de siete puntos ofrecen mayor precisión y escalas con menos de tres puntos limitan la variabilidad. Además, elegir entre escalas pares o impares influye en los resultados: las pares eliminan el punto medio neutral, por lo que obligan a los encuestados a posicionarse en uno de los dos extremos.
  • Organización y estructura: La organización y estructura de un cuestionario debe seguir un flujo lógico, aplicando la técnica del embudo, que consiste en comenzar con preguntas generales y poco sensibles, avanzar hacia ítems más específicos y personales y agrupar por temas para mantener la coherencia y reducir la fatiga cognitiva.
  • Realización de pretests: La realización de pretests es esencial para evaluar la comprensión, fluidez y relevancia del cuestionario, lo que permite identificar y corregir errores antes de su implementación final.
De Nicholas Smithvectorization: Trabajo propio – Trabajo propio, based on File:Example Likert Scale.jpg, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=18615046

Análisis de datos obtenidos con escalas Likert

La fortaleza de las escalas Likert radica en su capacidad para adaptarse a diversos métodos analíticos. Los datos obtenidos pueden proporcionar información valiosa, ya sea en análisis descriptivos o en modelos avanzados.

1. Análisis descriptivo

  • Tendencia central: La media y la mediana resumen la tendencia general de las respuestas.
  • Dispersión: Indicadores como el rango o la desviación estándar ayudan a entender la variabilidad en las respuestas.
  • Visualización: Gráficos de barras, histogramas y diagramas de cajas facilitan la interpretación rápida.

2. Relación entre variables

El análisis bivariado permite explorar cómo se relacionan diferentes variables dentro de la escala Likert:

  • Correlación de Pearson: Evalúa la relación lineal entre dos variables continuas.
  • Tablas de contingencia: Adecuadas para analizar categorías derivadas de respuestas Likert.

3. Análisis factorial exploratorio (AFE)

Este enfoque permite identificar dimensiones latentes que subyacen en los ítems:

  • Validación estructural: Determina si los ítems agrupan un único constructo o múltiples dimensiones.
  • Técnicas de reducción: PCA (Análisis de Componentes Principales) y AFE ayudan a simplificar la interpretación.

4. Evaluación de la fiabilidad

La consistencia interna de una escala se mide comúnmente mediante el alfa de Cronbach. Valores superiores a 0,7 suelen considerarse aceptables.

Ventajas y limitaciones

Entre sus ventajas destacan su accesibilidad, ya que son fáciles de implementar y entender, su flexibilidad, al adaptarse a diversas áreas de investigación, y su simplicidad analítica, que permite análisis básicos y avanzados. Sin embargo, presentan limitaciones: la deseabilidad social, donde las respuestas pueden estar influenciadas por lo que es socialmente aceptable; la ambigüedad en las opciones medias, ya que categorías como «Neutral» pueden interpretarse de manera diferente; y la unidimensionalidad no garantizada, por lo que es necesario validar su estructura interna mediante análisis factorial.

Aplicaciones en ingeniería

Las escalas Likert tienen amplias aplicaciones en ingeniería, por ejemplo, en estudios de satisfacción para evaluar la percepción de los usuarios sobre productos o servicios, en gestión de riesgos para analizar actitudes hacia posibles escenarios de riesgo en proyectos y en usabilidad de software para medir la experiencia del usuario en diseño y funcionalidad de interfaces. En la evaluación de proyectos, sirven para recopilar información sobre aspectos como el cumplimiento de plazos, la calidad del producto y la eficiencia del equipo.

Conclusión

Las escalas Likert son una herramienta esencial para medir percepciones, actitudes y comportamientos. Su versatilidad y facilidad de implementación las convierten en una opción popular en investigaciones de ingeniería y ciencias sociales. El diseño riguroso del cuestionario y el análisis adecuado de los datos garantizan resultados fiables que pueden orientar la toma de decisiones, mejorando procesos y productos en diversos ámbitos de la ingeniería.

Os dejo a continuación una presentación que hice en Santiago de Chile, sobre el análisis de cuestionarios basados en escalas Likert. Espero que sea de vuestro interés.

Descargar (PDF, 1.78MB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Población y muestra, parámetros y estadísticos

Figura 1. Población y muestra. https://proyectodescartes.org/iCartesiLibri/

En cualquier investigación estadística, se recopila información de un conjunto de elementos específicos. Una población se define como un conjunto completo de posibles individuos, especímenes, objetos o medidas de interés que se someten a un estudio para ampliar nuestro conocimiento sobre ellos. En el caso de poblaciones finitas y de tamaño reducido, es factible medir a todos los individuos para obtener un conocimiento preciso de sus características, también conocidas como parámetros. Por ejemplo, se podría analizar la proporción de productos defectuosos o calcular la media de alguna variable relacionada con los productos.

Por otro lado, cuando la población es infinita o muy numerosa, resulta impracticable o costoso medir a todos los individuos. En tales circunstancias, es necesario extraer una muestra representativa de la población y, basándonos en las características observadas en dicha muestra (conocidas como estadísticos), podemos realizar inferencias sobre los parámetros que describen a la población en su totalidad. De manera figurativa, podríamos comparar una muestra, que se supone representativa de una población, con lo que una maqueta representa respecto al edificio que retrata. La calidad de la muestra, al igual que la de la maqueta, dependerá del grado de representatividad que pueda ofrecer.

Figura 2. Parámetros y estadísticos.

En términos generales, la inferencia estadística es el proceso de utilizar estadísticos de una muestra para hacer deducciones acerca de la distribución de probabilidad de una población. Si estas deducciones se efectúan sobre parámetros poblacionales, este proceso se denomina inferencia estadística paramétrica. Si las deducciones se hacen sobre la distribución de probabilidad completa, sin hacer referencia a parámetros específicos, se le llama inferencia estadística no paramétrica.

Dentro del ámbito industrial, las poblaciones de interés abarcan una amplia gama de elementos, que incluyen materiales, productos terminados, partes o componentes, así como procesos, entre otros. En muchas ocasiones, estas poblaciones se caracterizan por ser infinitas o de gran magnitud. Por ejemplo, en la elaboración del hormigón en una planta, resulta inviable, o al menos poco práctico, medir la resistencia a la compresión simple de cada una de las muestras que podrían obtenerse en una amasada. Incluso en situaciones donde la producción no sea masiva, es recomendable pensar en el proceso como si fuera una población infinita o de gran escala, dado que la producción puede continuar sin interrupciones, es decir, no existe un último artículo mientras la empresa siga en funcionamiento. Un ejemplo sería la fabricación de bloques de hormigón en una empresa de prefabricados. En tales circunstancias, los procesos se evalúan mediante muestras de productos extraídas en algún punto específico del proceso.

Un punto crucial a considerar es la obtención de muestras que sean verdaderamente representativas, es decir, que capturen de manera adecuada los aspectos clave que se desean analizar en la población. Para lograr esta representatividad, resulta esencial diseñar un proceso de muestreo aleatorio de manera apropiada. En este tipo de muestreo, se evita cualquier tipo de sesgo que pudiera favorecer la inclusión de elementos particulares, asegurando que todos los elementos de la población tengan las mismas oportunidades de formar parte de la muestra.

Existen varias técnicas de muestreo aleatorio, como el muestreo simple, el muestreo estratificado, el muestreo sistemático y el muestreo por conglomerados. Cada una de estas metodologías se adapta a los objetivos específicos del estudio, así como a las circunstancias y características particulares de la población, garantizando de esta manera que las muestras obtenidas sean verdaderamente representativas.

No obstante, en la práctica, la hipótesis de un muestreo aleatorio suele quedar lejos de cumplirse al lidiar con datos del mundo real. Un ejemplo ilustrativo son los registros de la temperatura diaria. En estos registros, los días calurosos tienden a agruparse, lo que significa que los valores elevados tienden a seguir a otros valores elevados. A este fenómeno se le denomina autocorrelación, y por ende, estos datos no pueden considerarse como el resultado de extracciones aleatorias. La validez de la hipótesis de muestreo aleatorio desempeña un papel fundamental tanto en el análisis como en el diseño de experimentos científicos o en el ámbito del control de la calidad.

La importancia de la aleatoriedad se destaca de manera clara en situaciones cotidianas. Por ejemplo, al seleccionar una muestra de ladrillos de un palet, si optamos por los que se encuentran en la parte superior, podríamos introducir un sesgo en nuestros resultados. Es lamentable que en muchos trabajos estadísticos, la hipótesis de muestreo aleatorio se trate como si fuera una característica inherente de los datos naturales. En realidad, cuando trabajamos con datos reales, la aleatoriedad no es una propiedad en la que podamos confiar de manera absoluta. Sin embargo, con las precauciones adecuadas en el diseño experimental o en la toma de muestras de un control estadístico de la calidad, esta suposición puede seguir siendo relevante y útil.

Os dejo a continuación un vídeo explicativo, que espero os sea de interés.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Número de observaciones a realizar en un cronometraje

Figura 1. Cronometraje industrial

El cronometraje, junto con las observaciones instantáneas, constituye un procedimiento de medición del trabajo que permite determinar los tiempos improductivos y sus causas, eliminándolas mediante su análisis. Se emplea como auxiliar del estudio de métodos para eliminar o disminuir el tiempo de trabajo. El cronometraje es más apropiado para trabajos muy sistematizados y repetitivos, efectuados por una o pocas unidades de recurso. En cambio, las observaciones instantáneas cubre el resto de los escenarios posibles, como trabajos poco sistematizados, con ciclos largos o realizados por numerosos recursos.

Una medición del tiempo requerido para una operación elemental en la que se divide un trabajo debe ofrecer brindar cierta seguridad que que se recogen todas las posibles causas que pueden influir en los tiempos, incluyendo los datos que se producen de forma esporádica. Para ello, las medidas se basan en una muestra representativa formada por un determinado número de ciclos sucesivos.

La Oficina Internacional de Trabajo recomienda cronometrar al menos 50 ciclos en operaciones breves y de 20 a 30 ciclos en operaciones más largas. Sin embargo, es posible que con un número de lecturas superiores a 10, el valor medio puede cambiar tan poco que no merece la pena aumentar el número de observaciones.

El número de ciclos a cronometrar depende, entre otros, de la duración de los elementos, de la precisión que se quiera para los tiempos representativos y de la estabilidad del operario o máquina cronometrado.

Duración de los elementos

Cuanto mayor sea la duración de los elementos, será menor la influencia de las causas de variación. Aunque los errores tengan el mismo valor absoluto, su valor relativo será menor. La Tabla 1 proporciona un ejemplo del número de lecturas según la duración de la operación (Alonso y Ruiz, 1982) .

Sin embargo, muchas empresas se basan en su propia experiencia o consideran la repetitividad de la operación. Se otorga más importancia y se busca mayor exactitud en los trabajos más frecuentes.

Precisión deseada

Figura 2. Precisión en las mediciones.

Suponiendo que la distribución de probabilidad de los tiempos es normal, entonces se puede determinar el número de observaciones a realizar, de forma que la mayoría de los valores individuales no se desvíen del valor medio más allá de unos límites aceptables de variabilidad. Por lo tanto, se puede determinar el número de observaciones teniendo en cuenta el margen de error y una probabilidad fija de no excederlo.

Si tenemos n medidas, la media muestral se expresa como:

La desviación típica muestral sería:

Y se define el error cuadrático de la media, o desviación típica de la media, como:

Teniendo en cuenta las propiedades de la distribución normal, el 95,45% de los valores probables de la media es que se encuentren en el intervalo de ±2Δx de la media.

De esta forma, si se hacen n lecturas, se puede calcular la media y su error cuadrático, lo cual nos indicará el error que tendrá la lectura. Por aproximaciones sucesivas, se podría aumentar el número de lecturas hasta que el error no supere un determinado límite.

Supongamos, por ejemplo, que el error no sobrepase el 5%, con el nivel de confianza del 95,45%, entonces, el número n’ de observaciones será:

Y por tanto,

Si el número inicial de observaciones, n, es insuficiente al aplicar la fórmula, entonces se debe aumentar las observaciones a n’ y volver a comprobar.

Estabilidad del operario

Como se ha visto anteriormente, el número de observaciones n necesarias será función de la desviación típica muestral. Si el tiempo medido varía poco, se requieren pocas observaciones. Por tanto, es conveniente cronometrar a operarios que realicen su trabajo de la forma más uniforme posible, en condiciones normalizadas. De esta forma, con un número relativamente bajo de medidas, se obtendrá el tiempo estándar como el promedio de las observaciones.

Sin embargo, no es posible desterrar la variabilidad, pues siempre existen ligeros errores en la lectura del cronómetro, pequeños cambios en el material o la posición de la herramienta, variaciones en las propiedades del material o pequeñas variaciones no intencionadas en el ritmo del operario o en el patrón de movimientos.

Os paso un vídeo explicativo al respecto.

Referencias:

ALONSO, J.; RUIZ, J.M. (1982). Ingeniería de producción. Ediciones Deusto, Bilbao.

SERPELL, A. (2002). Administración de operaciones de construcción. Alfaomega, Ediciones Universidad Católica de Chile, Colombia.

YEPES, V. (2008). Productivity and Performance, in Pellicer, E. et al.: Construction Management. Construction Managers’ Library Leonardo da Vinci: PL/06/B/F/PP/174014. Ed. Warsaw University of Technology, pp. 87-101. ISBN: 83-89780-48-8.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Control de calidad en recepción. Planes de muestreo

En una entrada anterior resolvimos un problema concreto de un plan de muestreo por atributos. Sin embargo, para los que no estén familiarizados con la jerga y las definiciones de la estadística empleada en el control de calidad, me he decidido por subir unas transparencias que a veces utilizamos en clase para cuando tenemos que explicar los planes de muestreo.

Pero antes, voy a comentar brevemente algunos conceptos relacionados con el control de calidad, el control estadístico, el control de aceptación y el control del proceso, entre otros. Vamos a ello.

El control de calidad es la parte de la gestión de la calidad orientada al cumplimiento de los requisitos de los productos o los servicios. Se trata de un método de trabajo que permite medir las características de calidad de una unidad, compararlas con los estándares establecidos e interpretar la diferencia entre lo obtenido y lo deseado para poder tomar decisiones conducentes a la corrección de estas diferencias.

En el proceso proyecto-construcción, la comprobación de los requisitos exigibles de calidad se basa fundamentalmente en el control de la calidad. Los pliegos de condiciones técnicas definen, para cada unidad de obra, qué tipo de controles deben realizarse para dar por buena la correcta ejecución de una obra, atendiendo no sólo a los materiales, sino a su puesta en obra y terminación. La misma filosofía es aplicable a la propia redacción de los proyectos de construcción por parte de las empresas de consultoría.

Una forma de controlar la calidad se basa en la inspección o la verificación de los productos terminados. Se trata establecer un filtro sobre los productos antes que éstos lleguen al cliente, de forma que los que no cumplen se desechan o se reparan. Este control en recepción normalmente se realiza por personas distintas a las que realizan el trabajo de producción, en cuyo caso los costes pueden ser elevados y pueden no considerarse las actividades de prevención ni los planes de mejora. Se trata de un control final, situado entre el productor y el cliente, que presenta la ventaja de ser imparcial, pero que adolece de muchos inconvenientes como son el desconocimiento de las circunstancias de la producción, la no-responsabilización de producción por la calidad, la lentitud en el flujo de la información, etc.

Sin embargo, una inspección al 100% de todas las unidades producidas puede ser materialmente imposible cuando los ensayos a realizar son destructivos. En estos casos, se hace necesario tomar decisiones de aceptación o rechazo de un lote completo de producto en función de la calidad de una muestra aleatoria. Este control estadístico (Statistical Control) proporciona una menor información, e incluso presenta riesgos propios del muestreo, pero sin embargo resulta más económico, requiere menos inspectores, las decisiones se toman con mayor rapidez y el rechazo a todo el lote estimula a los proveedores a mejorar la calidad.

El control estadístico se asentó plenamente a partir de la Segunda Guerra Mundial, caracterizándose por la consideración de las características de calidad como variables aleatorias, por lo que se centra básicamente en la calidad de fabricación o de producción. Este tipo de control también se identifica con el interés en conocer las causas de variación y establecer, como consecuencia, procedimientos de eliminación sistemática de dichas causas para la mejora continua de la calidad.

El control estadístico puede aplicarse en el producto final, lo que sería el control de aceptación, o bien a lo largo del proceso de producción, lo cual comprende el control del proceso. El control estadístico de recepción supone el establecimiento de planes de muestreo con criterios de aceptación o rechazo claros sobre lotes completos en función de los ensayos realizados sobre una muestra aleatoria. Este control por muestreo puede realizarse por atributos basándose en la norma ISO-2859, o bien por variables según ISO-3951. En cuanto al control estadístico de procesos, herramientas como los gráficos de control (Quality Control Chart) permiten tomar decisiones cuando el proceso se encuentra fuera de control. Igualmente, los estudios de capacidad de los procesos permiten decidir la capacidad de éstos de producir dentro de los límites de las especificaciones de calidad contratadas.

Una empresa constructora debería reducir al mínimo los costes de una mala calidad asegurándose que el resultado de sus procesos cumplieran los requisitos pactados con el cliente. Por ello, para garantizar que el control de aceptación de los productos presenta éxito –el denominado control externo-, la empresa constructora debería organizar como una actividad propia, un conjunto de controles en su cadena de producción que garantizase la calidad de las unidades de obra –actividad que recibe el nombre de control interno-.

Tanto el control interno como el externo puede ser realizado por la propia empresa constructora, por el cliente o por una organización independiente contratada al efecto. Así, por ejemplo, el control del hormigón recibido por el contratista puede ser realizado por una entidad independiente, la ejecución de la ferralla puede controlarse por parte de la dirección facultativa, o bien, la propia empresa constructora puede realizar un control interno de la ejecución de la obra.

Os paso, por tanto, la presentación que he utilizado alguna vez en clase.

Descargar (PDF, 3.97MB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Medición del trabajo a través del procedimiento de observaciones instantáneas

Las observaciones instantáneas constituye un procedimiento de medición del trabajo que, junto con el cronometraje, permite determinar los tiempos improductivos y sus causas, eliminándolas mediante su análisis. Se emplea como auxiliar del estudio de métodos para eliminar o disminuir el tiempo de trabajo. El cronometraje es más apropiado para trabajos muy sistematizados y repetitivos, efectuados por una o pocas unidades de recurso. En cambio, las observaciones instantáneas cubre el resto de los escenarios posibles, como trabajos poco sistematizados, con ciclos largos o realizados por numerosos recursos.

Las observaciones instantáneas se basan en comprobar si, en un momento dado, un recurso se encuentra trabajando o parado. Se puede estimar el tiempo de trabajo y el de parada, así como su error estadístico basándose en la distribución binomial de probabilidad. Se puede ejecutar una pasada si observamos a un conjunto de recursos y anotamos para cada uno de ellos su situación de trabajo o parada. Para planificar correctamente las observaciones, se debería garantizar que todas las actividades sean observadas un número de veces proporcional a su duración.

Detengámonos un momento en el fundamento estadístico del método. Supongamos que p es la fracción del tiempo en el que un recurso presenta una característica. Por ejemplo, si p=15% puede significar que, del tiempo total de permanencia de una máquina en una obra, el 15% del tiempo se encuentra parada. Si extraemos n elementos de la población infinita de posibilidades en las que una máquina puede estar parada en una proporción p en una obra, la probabilidad de que x máquinas se encuentren paradas sería la siguiente:

Si en la distribución binomial se cumple que n·p>15, entonces la distribución binomial —que es discontinua— se puede aproximar a la distribución normal —que es continua—.

Ahora lo que nos interesa es conocer el tamaño de la muestra n para proporciones en una población infinita. Para calcular este tamaño de muestra, antes debemos especificar el nivel de confianza con el que se desea realizar la estimación y el margen de error máximo tolerable D. De esta forma, se espera trabajar con una muestra que sea representativa y que las estimaciones sean consistentes. La expresión que utilizaremos será la siguiente:

Aquí os dejo una tabla que relaciona el nivel de confianza con los las variables utilizada en la fórmula anterior:

Nivel de confianza α Z α/2 (Z α/2)2
99% 0,01 2,576 6,636
95% 0,05 1,960 3,842
90% 0,10 1,645 2,706
80% 0,20 1,280 1,638
50% 0,50 0,674 0,454

 

También os dejo un vídeo explicativo y un problema resuelto.

Descargar (PDF, 100KB)

Referencia:

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.