Arthur Casagrande: el ingeniero que cimentó la mecánica de suelos moderna

Arthur Casagrande (1902–1981). https://gyaconstructora.wordpress.com/2015/11/30/arthur-casagrande-y-la-mecanica-de-suelos/

Arthur Casagrande (28 de agosto de 1902 – 6 de septiembre de 1981) fue un ingeniero civil estadounidense de origen austrohúngaro, cuya obra sentó las bases del desarrollo inicial de la geotecnia y de la mecánica de suelos. Su nombre está asociado a innovaciones en el diseño de aparatos experimentales y a contribuciones fundamentales al estudio de la filtración, la licuefacción de suelos y el comportamiento mecánico de las arcillas. También es conocido por crear el histórico programa de enseñanza de la mecánica de suelos en la Universidad de Harvard, que más tarde sería imitado por universidades de todo el mundo. Junto con Karl Terzaghi, es reconocido como uno de los padres de la mecánica de suelos moderna.

Casagrande nació en Ajdovščina, en la actual Eslovenia, que entonces formaba parte del Imperio austrohúngaro. Tras cursar su primer año escolar en Linz, se mudó con su familia a Trieste. Al llegar a la edad de ingresar en la enseñanza secundaria, fue admitido en la Realschule, un tipo de escuela destinada a estudiantes que posteriormente cursarían estudios técnicos o un aprendizaje profesional. Su decisión de asistir a este centro estuvo influida por la tradición familiar materna, ya que muchos de sus parientes se habían dedicado a las ingenierías mecánica y química. En 1924, se graduó como ingeniero civil en la Technische Hochschule (TH) de Viena y continuó trabajando allí como asistente a tiempo completo del profesor Schaffernak en el laboratorio de hidráulica.

La disolución del Imperio austrohúngaro tras la Primera Guerra Mundial dejó el sector de la construcción prácticamente paralizado, lo que limitó en gran medida las oportunidades para los jóvenes ingenieros. Este difícil contexto, sumado al fallecimiento de su padre en 1924, incrementó su responsabilidad económica familiar y reforzó su deseo de participar en grandes proyectos de ingeniería. A pesar de la oposición de su madre y de su profesor, decidió emprender el arriesgado viaje a Estados Unidos. Tras llegar a Nueva York en 1926, se alojó durante diez días en un albergue de la YMCA antes de mudarse a Nueva Jersey, donde trabajó durante unos meses como delineante.

Una visita al Massachusetts Institute of Technology (MIT) en busca de empleo cambiaría su carrera para siempre. Allí conoció a Karl von Terzaghi, que acababa de llegar, y le ofreció inmediatamente un puesto de asistente privado. Desde 1926 hasta 1932, Casagrande trabajó como asistente de investigación asignado al MIT para el US Bureau of Public Roads, colaborando con Terzaghi en numerosos proyectos destinados a mejorar las técnicas y los equipos de ensayo de suelos. En 1929, viajó con él a Viena para ayudarle a establecer un laboratorio de mecánica de suelos que pronto se convertiría en un centro de referencia mundial. Durante este viaje por Europa, Casagrande visitó todos los laboratorios de mecánica de suelos existentes en ese momento, lo que le permitió adquirir un conocimiento excepcional del estado del arte internacional.

A su regreso al MIT, desarrolló equipos que sentarían las bases de los utilizados actualmente: el aparato del límite líquido, la prueba del hidrómetro, el ensayo capilar horizontal, el odómetro y la caja de corte. También fue pionero en realizar ensayos triaxiales y en estudiar los cambios volumétricos de los suelos durante el esfuerzo cortante en Estados Unidos. Gracias a sus avances experimentales, realizó aportaciones fundamentales: fue uno de los primeros en comprender el desarrollo de las presiones de poros durante los cortes no drenados, destacó la diferencia crítica entre las arcillas intactas y las remoldeadas y estableció los procedimientos estándar para identificar la presión de preconsolidación en los suelos sobreeconsolidados. Además, la conocida «línea A» de la carta de plasticidad probablemente lleva su nombre.

En 1932 se trasladó a la Universidad de Harvard, donde en 1946 fue nombrado titular de la nueva cátedra de Mecánica de Suelos e Ingeniería de Cimentaciones. Allí organizó un programa de posgrado que pasó de contar con 12 estudiantes en 1932 a más de 80 tras la Segunda Guerra Mundial. Entre 1942 y 1944, a petición del Army Corps of Engineers, formó intensivamente en mecánica de suelos aplicada a la construcción de aeródromos a unos cuatrocientos oficiales. Aunque Terzaghi llegaría posteriormente a Harvard con la ayuda de Casagrande para escapar de la inestabilidad política en Europa, lo cierto es que Casagrande trabajó prácticamente solo en la sección de mecánica de suelos debido a las prolongadas ausencias de Terzaghi y a su escaso interés por las tareas administrativas. El éxito del programa de Harvard, que hacía hincapié en los cursos de laboratorio y en el estudio detallado de la filtración, se debía claramente a Casagrande y su metodología serviría más tarde de modelo en universidades de todo el mundo.

En 1936, organizó la primera Conferencia Internacional de Mecánica de Suelos e Ingeniería de Cimentaciones. Aunque Terzaghi consideraba que suponía un riesgo excesivo para una disciplina aún joven, el evento fue un éxito rotundo. La conferencia dio lugar a la creación de la actual International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE) y marcó el momento en que la mecánica de suelos se convirtió en una parte esencial de la ingeniería civil. Alec Skempton describió posteriormente el periodo comprendido entre la publicación de Erdbaumechanik (Terzaghi, 1925) y esta conferencia como la etapa formativa clave de la mecánica de suelos moderna.

En paralelo a su labor académica, Casagrande desarrolló una destacada actividad como consultor, especialmente en proyectos relacionados con presas de tierra y en la investigación de fallos en dichas estructuras. Su interés por las presas se refleja en sus estudios sobre la filtración y la licuefacción. Tras la Segunda Guerra Mundial, el Corps of Engineers le encargó investigar los posibles efectos de las explosiones atómicas sobre la estabilidad de los taludes del Canal de Panamá. Esta investigación lo convirtió en uno de los primeros especialistas en la investigación de la resistencia dinámica de los suelos. También fue él quien introdujo el término «licuefacción» en la literatura de mecánica de suelos, aunque posteriormente consideró que su uso era inadecuado para describir los fenómenos asociados a cargas sísmicas cíclicas e insistió en que el término debía reservarse para suelos que experimentaran un notable ablandamiento por deformación, lo que conlleva un comportamiento cercano al flujo.

Su reconocimiento internacional se reflejó en numerosos premios. Fue nombrado primer Rankine Lecturer por la British Geotechnical Association y recibió la prestigiosa distinción de Terzaghi Lecturer, otorgada por la ASCE. En su honor, se creó posteriormente el Arthur Casagrande Professional Development Award, destinado a impulsar la carrera de jóvenes ingenieros e investigadores en geotecnia. A lo largo de su carrera, escribió más de cien textos e informes sobre mecánica de suelos, asentamientos, comportamiento dinámico y problemas relacionados con presas y cimentaciones.

Arthur Casagrande falleció en Estados Unidos el 6 de septiembre de 1981, a los 79 años. Su legado científico y pedagógico sigue profundamente arraigado en la ingeniería geotécnica contemporánea. Su nombre sigue asociado a la rigurosidad experimental, la innovación técnica y la consolidación definitiva de la mecánica de suelos como disciplina moderna.

Os dejo un vídeo que resume los aspectos básicos de su biografía.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Karl von Terzaghi: vida, obra, controversias, método y legado del fundador de la geotecnia moderna

Karl von Terzaghi (1883–1963). https://www.tuwien.at/en/cee/geotechnik/igb/soil-mechanics-laboratory/terzaghi-archive

Karl von Terzaghi nació el 2 de octubre de 1883 en Praga, que por entonces formaba parte del Imperio austrohúngaro. Hijo del teniente coronel Anton von Terzaghi y de Amalia Eberle, creció en el riguroso ambiente cultural y disciplinario de la tradición militar austríaca. Desde niño, destacó por su curiosidad por la astronomía, la geografía y, más tarde, las matemáticas y la geometría. A los diez años ingresó en una escuela militar y, a los catorce, pasó a otra academia en Hranice, donde se graduó con honores. En 1900, inició estudios de ingeniería mecánica en la Universidad Técnica de Graz, donde reforzó su interés por la mecánica teórica, la geología, las ciencias naturales y la observación del paisaje, pasiones que conservaría toda su vida. Se graduó con honores en 1904, tras superar incluso un intento de expulsión.

Realizó el servicio militar obligatorio, durante el cual tradujo Outline of Field Geology, ampliándolo con nuevo contenido, lo que marcó el comienzo de su extensa producción escrita. Después, volvió a la universidad para estudiar asignaturas relacionadas con la geología y la ingeniería civil y publicó su primer artículo sobre las terrazas geológicas del sur de Estiria. Empezó su carrera profesional en la empresa Adolph von Pittel, donde participó en proyectos hidroeléctricos y llegó a encargarse del diseño y la construcción de estructuras de hormigón armado. Tras trabajar en presas de Croacia y pasar seis meses en Rusia, desarrolló métodos gráficos para tanques industriales que empleó en su tesis doctoral. En 1912 obtuvo el doctorado en Ciencias Técnicas por la Universidad Técnica de Graz.

Ese mismo año viajó por Estados Unidos para estudiar presas y obras hidráulicas, lo que amplió su visión sobre la ingeniería civil. Regresó a Austria en 1913, pero la Primera Guerra Mundial interrumpió su trayectoria: fue movilizado como oficial de ingenieros, llegó a dirigir hasta mil hombres y participó en misiones de combate, como la toma de Belgrado. Posteriormente, fue transferido a la aviación, donde fue comandante de la estación de ensayos aeronáuticos de Aspern.

Tras la guerra, se trasladó a Estambul, donde fue profesor en la Escuela Imperial de Ingeniería (posteriormente, la Universidad Técnica de Estambul) y también colaboró con el Robert College. Entre 1919 y 1925 llevó a cabo investigaciones experimentales fundamentales sobre permeabilidad, empujes en muros de contención y el comportamiento del suelo saturado. Durante este periodo, desarrolló sus primeras teorías unificadas y diseñó equipos experimentales originales. En 1925, publicó Erdbaumechanik auf Bodenphysikalischer Grundlage, la primera formulación integral de la mecánica de suelos moderna, en la que introdujo su mayor aportación conceptual: el principio de tensiones efectivas, piedra angular para comprender asentamientos, la resistencia al corte, la consolidación, la permeabilidad y la erosión.

Su obra llamó la atención a nivel internacional, especialmente en Estados Unidos, y ese mismo año fue invitado al MIT. Publicó artículos en la revista Engineering News-Record que contribuyeron a difundir sus ideas. En Cambridge, aunque tuvo dificultades académicas y administrativas, estableció el primer laboratorio estadounidense de mecánica de suelos y formó al joven Arthur Casagrande, que sería su asistente privado entre 1926 y 1932, y una figura clave en el desarrollo de métodos experimentales, de clasificación de suelos y de técnicas de campo. Ese mismo año, trabajó con Aurelia Schober Plath, quien tradujo manuscritos y amplió el alcance de su producción escrita. Durante este periodo, impartió cursos que sentaron las bases de los programas modernos de mecánica de suelos, desarrolló redes de flujo, métodos de medición de presiones de poros, estudios de consolidación y análisis de asentamientos, y formuló principios que todavía hoy estructuran la práctica geotécnica.

En 1928 conoció a la geóloga Ruth Dogget, con quien se casó poco después, y en 1929 aceptó una cátedra en la Technische Hochschule de Viena. Antes de instalarse, realizó consultorías en la URSS, experiencia que lo marcó políticamente: detestó el sistema soviético y se declaró en contra de él. Desde Viena, obtuvo gran prestigio internacional asesorando en proyectos en Europa, en el norte de África y en Rusia. Trabajó en inyecciones (grouting), en cimentaciones sobre diferentes suelos y en la ampliación de Erdbaumechanik. Su interés intelectual abarcaba no solo la ingeniería y la geología, sino también la filosofía, la ética, la literatura, la arquitectura, el arte, la música, las flores, los viajes, la conversación, la natación y la escritura. Era un lector y observador incansable, un excelente cronista y un prolífico corresponsal con una tendencia natural a clasificar el mundo: rocas, suelos, ideas, personas y fenómenos.

En 1935 tomó un año sabático en el que realizó una consultoría para los planes monumentales de Núremberg, donde llegó a discutir cuestiones de cimentación con Adolf Hitler, una experiencia que le resultó profundamente inquietante. En 1936, organizó y presidió en Harvard la Primera Conferencia Internacional de Mecánica de Suelos e Ingeniería de Cimentaciones, germen de la ISSMGE. Poco después, regresó a Viena, donde se enfrentó a controversias profesionales —especialmente con Paul Fillunger— y a tensiones políticas en aumento. Su amarga reflexión resumió la situación: «Mi país me tachó de nazi, los nazis de bolchevique y los bolcheviques de conservador idealista. Solo uno podía tener razón… y fueron los bolcheviques». Para escapar de ese ambiente, se dedicó a consultorías en Inglaterra, Italia, Francia, Argelia y Letonia.

En 1938 emigró definitivamente a Estados Unidos y aceptó un puesto en la Universidad de Harvard, donde sentó las bases de la ingeniería geotécnica moderna. Allí impartió clases, investigó, publicó y trabajó como consultor en proyectos emblemáticos, como el metro de Chicago, las instalaciones navales de Newport News, el reflotamiento del Normandie y numerosas presas en Norteamérica. En marzo de 1943 se hizo ciudadano estadounidense.

Durante las décadas de 1940 y 1950, amplió su ámbito técnico para abarcar la clasificación de suelos y rocas, así como los fenómenos capilares. También estudió la tubificación y su prevención, así como el diseño y la construcción de presas de tierra, roca y hormigón sobre distintos tipos de cimentación. Trabajó en el análisis de redes de flujo bidimensionales y tridimensionales, así como en el diseño de anclajes para puentes colgantes. Desarrolló aportes importantes en ingeniería de túneles, pilas de cimentación, hincado de pilotes y en la compactación y mejora del terreno. Asimismo, investigó la ingeniería del permafrost y el diseño para prevenir socavaciones.
Analizó la subsidencia regional causada por la extracción de petróleo y por el proceso de formación y colapso de sumideros. Finalmente, impulsó avances en la instrumentación de campo y de laboratorio, además de promover la documentación precisa de fallos. Su libro Soil Mechanics in Engineering Practice (junto con Ralph Peck) se convirtió en un clásico mundial.

En 1954, fue nombrado presidente del Consejo Consultivo de la Gran Presa de Asuán, cargo del que dimitió en 1959 debido a sus desacuerdos con los ingenieros soviéticos. Continuó asesorando en proyectos hidroeléctricos, en particular en Columbia Británica. Respecto a su jubilación, se citan con frecuencia dos fechas: 1953 y 1956. En ambos casos, continuó con su actividad docente y de consultoría durante varios años más.

En 1926, a los 43 años, se consolidó la evolución de sus objetivos vitales: tras haber cumplido su meta juvenil de formular una teoría analítica y empírica del comportamiento del suelo, dedicó su madurez a ajustarla y someterla a la realidad física mediante la práctica profesional. Su preocupación constante era la dificultad para conocer con suficiente antelación la morfología y las propiedades del terreno antes de construir. Esa inquietud lo llevó a desarrollar, junto con Ralph Peck, el método observacional, que se basa en la incorporación de mediciones y observaciones durante la ejecución para adaptar el diseño en tiempo real. Aunque fue un pionero teórico, solía decir que el ingeniero debía mantenerse en contacto con el comportamiento real del suelo y no dejarse cegar por modelos o teorías.

Su personalidad reflejaba ese rigor crítico: era un oyente excepcional, un lector apasionado, un observador meticuloso y un crítico severo de quienes se dejaban atrapar por teorías sin base empírica o de quienes no tenían teoría alguna. Defendía estrictos principios profesionales: aceptar solo encargos que pudiera manejar con competencia, asumir escenarios geotécnicos conservadores, examinar todos los ángulos de un problema, evitar simplificar en exceso el comportamiento del terreno, documentar fallos, publicar resultados y ajustar diseños según datos reales.

Fue un educador influyente en Estambul, el MIT, Viena y Harvard, así como conferenciante en Berlín, Texas e Illinois. Paradójicamente, desconfiaba de la educación formal cuando esta entorpecía la observación directa y admiraba a los «hombres hechos a sí mismos» que aprendían con los ojos y la mente abiertos.

A lo largo de su vida recibió numerosos honores: nueve doctorados honoris causa, cuatro Medallas Norman de la ASCE, la creación en 1960 del Premio Karl Terzaghi, la instauración en 1963 de la Karl Terzaghi Lecture y, más tarde, conmemoraciones como la emisión del sello austríaco de 1983 y el «Terzaghi Day». La presa Mission, en Columbia Británica, fue renombrada en 1965 como presa Terzaghi. Sus cenizas reposan en South Waterford (Maine).

Karl von Terzaghi murió el 25 de octubre de 1963, dejando un legado inmenso. Su combinación de teoría, observación, instrumentación, análisis, docencia y práctica sentó las bases del campo que hoy conocemos como ingeniería geotécnica y sus ideas siguen guiando esta disciplina en todo el mundo.

Os dejo un vídeo en el que se condensa parte de su biografía.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El desastre silencioso bajo tus pies: la verdad sobre los suelos expansivos

Arcillas expansivas. https://archxde.com/arcillas-expansivas/

Pocas cosas simbolizan mejor la estabilidad que los cimientos de una construcción. Representan la frontera entre la arquitectura y la tierra firme. Sin embargo, bajo esa aparente solidez se esconde un enemigo persistente y silencioso: los suelos expansivos.

Lejos de ser una masa inerte, el suelo es un sistema vivo y dinámico que responde a los cambios de humedad con una energía capaz de fracturar losas, deformar zapatas y arruinar viviendas enteras.

Estos suelos, ricos en minerales arcillosos activos (principalmente montmorillonita o esmectita), pueden aumentar de volumen cuando se humedecen y contraerse al secarse, lo que provoca movimientos verticales y horizontales que, en muchos casos, superan la resistencia de las estructuras apoyadas sobre ellos. La magnitud de estos cambios depende de la mineralogía, la fracción de arcilla, la capacidad de intercambio catiónico y la succión matricial, es decir, la tensión negativa del agua en los poros del suelo.

Su comportamiento, descrito con precisión en la teoría de los suelos no saturados por Fredlund y Rahardjo (1993), convierte a estas arcillas en uno de los materiales más complejos y peligrosos de la ingeniería civil.

1. Un desastre oculto, más costoso que los terremotos.

Los suelos expansivos no acaparan titulares, pero su impacto económico es asombroso. Según Jones y Holtz (1973), este tipo de suelos causa más daños estructurales anuales que todos los demás fenómenos naturales combinados, incluidos los terremotos y las inundaciones. Krohn y Slosson estimaron que, solo en Estados Unidos, las pérdidas anuales ascendían a 7000 millones de dólares, una cifra que no ha dejado de crecer con la expansión urbana.

La causa de esta devastación radica en la naturaleza progresiva y acumulativa del fenómeno. Mientras que un seísmo actúa en segundos, la expansión del suelo opera día a día, modificando lentamente las condiciones de apoyo. Su carácter insidioso le ha valido el apodo de «el desastre oculto».

El daño estructural comienza con movimientos diferenciales de pocos milímetros, que al principio son imperceptibles, pero que con el tiempo se transforman en grietas en los muros, inclinaciones de losas o puertas que ya no cierran. Lo más preocupante es que estos síntomas suelen interpretarse como defectos de construcción, cuando en realidad son la manifestación visible de un proceso geotécnico profundo.

Agrietamiento de estructura por movimiento céntrico (Fredlund y Rahardjo, 1993)

2. La paradoja de la ligereza: las casas pequeñas son las más afectadas.

Resulta sorprendente que las estructuras ligeras se vean más afectadas por este fenómeno. Uno podría pensar que los edificios más pesados son los más susceptibles al movimiento del terreno, pero ocurre lo contrario.

Los suelos expansivos ejercen presiones de hinchamiento considerables, pero los proyectos a gran escala suelen incluir estudios de mecánica de suelos, pruebas de laboratorio (como las de hinchamiento libre o de volumen constante, según ASTM D4546) y diseños de cimentación apropiados. En cambio, las viviendas unifamiliares y las edificaciones ligeras, al considerarse de carga reducida, se construyen con escasa o nula investigación geotécnica y, a menudo, se basan en prácticas empíricas.

Fredlund (1993) señala que las estructuras que sufren mayores daños son precisamente aquellas que tuvieron un diseño de ingeniería menor antes de la construcción. A esto se suma un factor económico: los ingenieros geotécnicos suelen mostrarse reacios a intervenir en proyectos residenciales porque los honorarios son bajos en comparación con el alto riesgo de litigio. El resultado es un círculo vicioso: casas mal cimentadas sobre suelos hiperactivos que, con el tiempo, se deforman de forma irremediable.

3. La trampa de la compactación: cuando «mejorar» el terreno lo empeora.

A primera vista, compactar un suelo parece una acción positiva. En la mayoría de los casos, aumenta la densidad y la capacidad portante. Sin embargo, en los suelos expansivos, la compactación puede ser una trampa técnica.

Holtz y Gibbs (1956) demostraron que una compactación a alta densidad y bajo contenido de humedad incrementa significativamente el potencial de hinchamiento. Las partículas de arcilla, con carga negativa, se acercan tanto que acumulan una gran energía potencial de repulsión electrostática. Cuando posteriormente penetra agua, las moléculas se insertan entre las láminas cristalinas y las separan bruscamente, lo que provoca una expansión volumétrica explosiva.

El mismo estudio reveló que compactar por encima del contenido óptimo de agua reduce el potencial de expansión. En otras palabras, la práctica tradicional de buscar la máxima densidad seca puede resultar contraproducente. Comprender esta paradoja es esencial para la ingeniería moderna: no todos los suelos deben compactarse de la misma manera y, en algunos casos, un exceso de «mejora» puede acarrear un fracaso futuro.

4. Soluciones que desafían la lógica: cómo responde la ingeniería al suelo.

El reto de los suelos expansivos no consiste en vencer su fuerza, sino en comprender su dinámica. Por ello, las soluciones más efectivas no buscan resistir el movimiento del terreno, sino controlar la humedad o aislar la estructura de sus variaciones.

Entre las estrategias más estudiadas se encuentran:

  • Prehumedecimiento, una idea fallida: En teoría, saturar el suelo antes de construir debería eliminar su capacidad de expansión. En la práctica, esto rara vez funciona. Fredlund (1993) advierte que, durante el prehumedecimiento, las capas superiores se hinchan y sellan el suelo, impidiendo que el agua alcance los estratos más profundos. El resultado es una expansión parcial y una falsa sensación de seguridad, ya que el suelo parece estable hasta que, años después, las capas profundas se hidratan lentamente y la estructura comienza a levantarse.
  • Barreras capilares, el poder de una paradoja: Una de las técnicas más elegantes es la barrera capilar, que consiste en colocar sobre el suelo expansivo una capa de material granular grueso, como grava o arena. A simple vista parece absurdo: ¿cómo se puede proteger una arcilla del agua cubriéndola con un material permeable? Sin embargo, la física de los suelos no saturados demuestra que, cuando la grava se mantiene con baja saturación, su capacidad de transmisión capilar disminuye drásticamente y el agua infiltrada se almacena cerca de la superficie. Así, la humedad se evapora antes de llegar a las arcillas subyacentes. En palabras de Fredlund y Rahardjo (1993), esta técnica «reduce significativamente el flujo descendente de agua y estabiliza el régimen de humedad del perfil».
  • Estabilización química y control ambiental: El tratamiento con cal puede reducir la plasticidad y la actividad de las arcillas, convirtiéndolas en materiales prácticamente inertes. Asimismo, son indispensables el control del drenaje superficial, la prevención de fugas subterráneas y la exclusión de raíces profundas. No se trata solo de una cuestión estructural, sino también de una cuestión hidrológica y ambiental: la humedad del suelo debe mantenerse lo más constante posible.

Conclusión: hay que escuchar al suelo antes de construir.

El suelo no es un enemigo, sino un sistema natural que exige ser comprendido. Su comportamiento responde a leyes físico-químicas y climáticas que la ingeniería puede medir, modelar y respetar. Ignorarlas es, literalmente, construir sobre terreno inestable. El fenómeno de los suelos expansivos nos recuerda una verdad fundamental: no hay cimiento sólido sobre un terreno mal entendido. Cada grieta que aparece en una pared, cada losa que se levanta, es la voz del subsuelo que nos recuerda que el diseño estructural comienza mucho antes de colocar el primer ladrillo; comienza con el conocimiento del terreno.

Referencias

  • Fredlund, D. G., & Rahardjo, H. (1993). Soil mechanics for unsaturated soils. John Wiley & Sons.

  • Fredlund, D. G. (1983). Prediction of ground movements in swelling clays. En 31st Annual ASCE Soil Mechanics and Foundation Engineering Conference (Ponencia). Minneapolis, MN, Estados Unidos.

  • Holtz, W. G., & Gibbs, H. J. (1956). Engineering properties of expansive soils. Transactions of the American Society of Civil Engineers, 121, 641–663.

  • Jones, D. E., Jr., & Holtz, W. G. (1973). Expansive soils — The hidden disaster. Civil Engineering (ASCE), 43(8), 49–51.

  • Krohn, J. P., & Slosson, J. E. (1980). Assessment of expansive soils in the United States. En D. J. Miller (Ed.), Proceedings of the Fourth International Conference on Expansive Soils (pp. 596–608). ASCE.

  • Nelson, J. D., & Miller, D. J. (1992). Expansive soils: Problems and practice in foundation and pavement engineering. John Wiley & Sons.

  • Van der Merwe, D. H. (1964). The prediction of heave from the plasticity index and percent fraction of soils. Civil Engineering in South Africa, 6(6), 103–107.

  • Skempton, A. W. (1953). The colloidal activity of clays. En Proceedings of the 3rd International Conference on Soil Mechanics and Foundation Engineering (Vol. 1, pp. 57–61). International Society for Soil Mechanics and Foundation Engineering.

  • Hamilton, J. J. (1969). Effects of environment on the performance of shallow foundations. Canadian Geotechnical Journal, 6(1), 65–80.

Cursos:

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

En este audio tenéis una conversación sobre este tema tan relevante.

Un vídeo que resume el contenido del tema, con carácter divulgativo, lo tenéis aquí:

Aquí también tenéis un vídeo sobre cómo identificar estas arcillas expansivas en el laboratorio de suelos.

Os dejo un documento técnico de la empresa Geopier. Espero que os resulte de interés.

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Ralph B. Peck: Una vida dedicada a la ingeniería geotécnica

Ralph B. Peck (1912 – 2008). https://www.ngi.no/en/about-ngi/ngis-historical-libraries/peck/

Ralph Brazelton Peck (23 de junio de 1912 – 18 de febrero de 2008) fue uno de los ingenieros civiles más influyentes del siglo XX. Su legado en el campo de la geotecnia se forjó a lo largo de décadas de investigación, enseñanza y práctica profesional. Nacido en Winnipeg (Canadá), creció en un ambiente técnico, ya que su padre, Orwin K. Peck, era ingeniero estructural especializado en obras ferroviarias. Esa influencia temprana marcó su destino profesional.

Aunque de niño soñaba con ser operador de tranvías, su padre lo persuadió para que estudiara ingeniería. A los 18 años rechazó becas de la Universidad de Colorado y de la Escuela de Minas de Colorado y se matriculó en el Instituto Tecnológico de Rensselaer (RPI) de Nueva York en 1930. Ese verano trabajó en la Denver & Rio Grande Railroad, donde comenzó su experiencia práctica en el mundo ferroviario. Durante sus estudios en RPI, diseñó su primer puente ferroviario, un puente con vigas de 20 m sobre el río Ánimas en Nuevo México, construido durante sus vacaciones de invierno de 1930, aunque más tarde fue destruido por una crecida del río.

En 1934, se graduó en Ingeniería Civil, pero como no encontró trabajo a causa de la Gran Depresión, aceptó una beca para cursar estudios de posgrado en estructuras, geología y matemáticas. En 1937 se doctoró en ingeniería civil con una tesis sobre rigidez en puentes colgantes, revisada por el reconocido ingeniero David Barnard Steinman.

Ese verano trabajó en la American Bridge Company, pero perdió su empleo al cabo de unos meses debido a la falta de proyectos. En marzo de 1938, cuando aún no había recibido ofertas de trabajo, tomó una decisión trascendental: pidió un préstamo de 5000 dólares a su suegro para estudiar mecánica de suelos en la Universidad de Harvard, bajo la tutela de Arthur Casagrande. Esta formación definiría el rumbo de su carrera profesional. Pocos días después, rechazó una oferta de trabajo como diseñador de puentes en la empresa Waddell & Hardesty, en Nueva York, para dedicarse a la geotecnia.

Casagrande lo aceptó en sus clases, primero como oyente y luego como ayudante de laboratorio. También colaboró con Ralph E. Fadum en el campo. Pronto, Peck comenzó a relacionarse con algunas de las figuras más destacadas del ámbito geotécnico: además de Casagrande, conoció y trabajó con Albert E. Cummings —pionero en cimentaciones con pilotes, quien más tarde le legó su biblioteca técnica—, Laurits Bjerrum, Alec W. Skempton y, especialmente, Karl Terzaghi, con quien forjaría una profunda amistad y colaboración profesional.

En enero de 1939, Terzaghi lo eligió como su representante en la obra del metro de Chicago, proyecto en el que había sido contratado como consultor. Peck asumió un papel central, manteniendo correspondencia constante con Terzaghi, a quien entregaba datos, informes y observaciones. También recibió la guía de Ray Knapp, jefe de inspección de obras del metro, a quien Peck consideró una influencia igual de formativa que Terzaghi por enseñarle a desenvolverse con eficacia en organizaciones complejas. Otra figura relevante en esta etapa fue Ralph Burke, ingeniero jefe de varios grandes proyectos en Chicago, con quien colaboró más adelante como consultor.

Su trabajo en el metro de Chicago fue clave en su desarrollo profesional. Allí aplicó, junto a Terzaghi, métodos avanzados de muestreo, medición de deformaciones e interpretación de suelos. Esta experiencia se materializó en el libro Soil Mechanics in Engineering Practice, publicado en 1948, escrito conjuntamente con Terzaghi y basado en gran medida en su experiencia conjunta. En esta obra se introdujo por primera vez el término «prueba de penetración estándar» (SPT), un concepto desarrollado a partir de un instrumento creado por Charley Gow en Boston. Terzaghi elogió públicamente la ética, el carácter y la rigurosidad de Peck durante el proceso de redacción.

En 1942, Peck se incorporó como profesor asistente de investigación en la Universidad de Illinois, donde impartió clases durante 32 años, hasta 1974. Aunque inicialmente dictaba cursos de estructuras, pronto se dedicó por completo a la geotecnia. En 1945, Terzaghi se unió como profesor visitante y su colaboración continuó en los años siguientes.

En 1953, Peck publicó junto con Thomas H. Thornburn y Walter E. Hanson el libro Foundation Engineering, que fue adoptado como texto en más de 50 universidades, consolidando aún más su influencia educativa. Su dedicación a la formación de ingenieros fue incuestionable y muchos de sus alumnos se convirtieron en figuras destacadas en el campo de la geotecnia.

Tras jubilarse, Peck mantuvo una intensa actividad como consultor, participando en más de mil proyectos en cuarenta y cuatro estados de EE. UU. y veintiocho países de cinco continentes. Su experiencia fue requerida en presas como la de Itezhi-Tezhi, en Zambia, y la de Saluda, en Carolina del Sur; en proyectos de transporte como el BART de San Francisco y los metros de Washington, Los Ángeles y Baltimore; así como en la cimentación del puente Rion-Antirion, en Grecia, y el oleoducto Trans-Alaska.

Entre 1969 y 1973, fue presidente de la Sociedad Internacional de Mecánica de Suelos e Ingeniería de Cimentaciones. A lo largo de su carrera publicó más de 200 artículos y fue ampliamente galardonado:

  • 1944: Medalla Norman de la ASCE

  • 1965: Premio Wellington de la ASCE

  • 1969: Premio Karl Terzaghi

  • 1975: Medalla Nacional de Ciencia, otorgada por el presidente Gerald Ford

  • 1988: Medalla John Fritz

  • 1999: La ASCE estableció el Ralph B. Peck Award, que premia contribuciones destacadas al desarrollo profesional de la ingeniería geotécnica mediante estudios de caso e innovaciones en metodología de diseño.

En 2009, el Instituto Geotécnico Noruego inauguró la Biblioteca Ralph B. Peck, junto a la Biblioteca Karl Terzaghi, en Oslo. En ella se conserva correspondencia entre ambos ingenieros, documentos históricos, diarios técnicos y informes que dan fe de su legado compartido.

Ralph Peck también influyó en figuras como Karl Terzaghi, quien lo consideró no solo un colega brillante, sino también un ejemplo de integridad profesional. Su enfoque metódico, su respeto por la observación cuidadosa y su compromiso con la excelencia lo convierten en una figura clave en la historia de la geotecnia.

Se casó con Marjorie E. Truby en 1937 y tuvo dos hijos. Falleció el 18 de febrero de 2008 a los 95 años, víctima de una insuficiencia cardíaca. Su vida representa una combinación única de rigor científico, habilidad práctica y vocación docente. Hoy, su legado perdura en cada estructura que ayudó a construir y en cada ingeniero al que inspiró.

Una de las frases que más me impactaron a nivel profesional es la que figura en mi blog. Dice lo siguiente:

En mi opinión, nadie puede ser un buen proyectista, un buen investigador, un buen líder en la profesión de la ingeniería civil, a menos que entienda los métodos y los problemas de los constructores

(Ralph B. Peck, 1912-2008)

Os dejo algunos vídeos de este insigne ingeniero.

La magia de las tensiones efectivas en geotecnia

Karl von Terzaghi (1883 – 1963) ://es.wikipedia.org/wiki/Karl_von_Terzaghi

Os presento uno de los conceptos básicos utilizados en geotecnia que, en ocasiones, complica a muchos de mis estudiantes cuando en la asignatura Procedimientos de Construcción explicamos algunos aspectos de la mejora de terrenos (columna de grava, precarga, drenes verticales, etc.). Se trata del concepto de «tensiones efectivas», que hoy es sencillo, pero que confundió a numerosos ingenieros durante mucho tiempo.

La ley de elasticidad Hooke, donde la aplicación de una fuerza supone una deformación proporcional a la misma, desde luego no era aplicable directamente a muchos problemas que los ingenieros tenían con el terreno. Desde siempre se conoce que el comportamiento mecánico del suelo es algo complejo, pero era sorprendente, por ejemplo, que una carga aplicada sobre un terreno con nivel freático elevado, no se deformase. Y lo más sorprendente, es que, al cabo de cierto tiempo, sin modificar el estado de cargas, el terreno se deformara «por arte de magia».

Este problema ingenieril traía de cabeza a muchos ingenieros hasta los primeros años del siglo XX. Si se analiza un suelo desde el punto de vista «microscópico», la transmisión de esfuerzos se realiza mediante cadenas de partículas, unas apoyadas con otras. Lo que es peor, si este suelo es de partículas tan finas como son las arcillas, la fuerza de gravedad pierde importancia frente a las fuerzas fisico-químicas. La solución es entender la mecánica del suelo como si fuera un medio continuo, es decir, desde el punto de vista «macroscópico». Tal simplificación necesita un marco teórico de partida que fue postulado por uno de los grandes genios y padre de la mecánica de suelos: Karl von Terzaghi (Praga, 2 de octubre de 1883 – Winchester, Massachusetts, 25 de octubre de 1963).

Su aportación genial fue formular un postulado acerca de lo que denominó como «tensiones efectivas«. Como todo postulado que se precie, se trata de una proposición no evidente por sí misma, ni demostrada, pero que se acepta, ya que no existe otro principio al que pueda ser referida. De todos modos, las evidencias empíricas del correcto funcionamiento de este postulado hace que hoy día se admita en el campo de la mecánica de suelos porque permite explicar multitud de problemas geotécnicos. Terzaghi definió el concepto de tensiones efectivas, en 1923, partiendo de resultados experimentales. De forma muy simple, diremos que las tensiones efectivas que actúan en el terreno son el exceso de tensión sobre la presión intersticial del agua presente en él. Y lo más importante de todo ello es que son las tensiones efectivas las que pueden provocar cambios en la deformación del terreno. Pero vamos a reproducir (González de Vallejo et al., 2004) las dos partes fundamentales del enunciado de su postulado, según las propias palabras de Terzaghi:

«Las tensiones en cualquier punto de un plano que atraviesa una masa de suelo pueden ser calculadas a partir de las tensiones principales totales σ1, σ2 y σ3 , que actúan en ese punto. Si los poros del suelo se encuentran rellenos de agua bajo una presión u, las tensiones principales totales se componen de dos partes. Una parte, u, llamada presión neutra o presión intersticial, actúa sobre el agua y sobre las partículas sólidas en todas direcciones y con igual intensidad. Las diferencias σ’1 = σ1 – u, σ’2 = σ2 – u, σ’3 = σ3 – u  representan un exceso de presión sobre la presión neutra u, y actúan exclusivamente en la fase sólida del suelo. Estas fracciones de las tensiones principales totales se denominan tensiones efectivas.

Cualquier efecto medible debido a un cambio de tensiones, tal como la compresión, la distorsión o la modificación de la resistencia al corte de un suelo, es debido exclusivamente a cambios en las tensiones efectivas».

Podemos sacar varias conclusiones directamente de este postulado:

  1. Si en un suelo saturado no hay cambios de volumen ni de distorsión, eso significa que las tensiones efectivas no han cambiado.
  2. Como el agua no es capaz de soportar tensiones tangenciales, las que existan en un suelo saturado la debe absorber el esqueleto sólido del suelo.
  3. Si a un suelo saturado se le permite el drenaje (disipación de la tensión intersticial), entonces este suelo se deforma y se modifica su resistencia a corte. Al fenómeno se denomina consolidación.

Como entretenimiento práctico podéis deducir cómo la tensión efectiva en un punto de un estrato situado bajo nivel freático es igual al producto de la profundidad del punto en el estrato multiplicado por el peso específico sumergido del material de dicho estrato. Asimismo, si existen distintos estratos, es la suma de las alturas de los posibles estratos por sus correspondientes pesos específicos sumergidos.

Referencias:

  • DAS, B. (2005). Fundamental of Geotechnical Engineering – 2nd ed, Technomic Publishing Co.
  • GONZÁLEZ DE VALLEJO, L.I. et al. (2004). Ingeniería Geológica. Pearson, Prentice Hall, Madrid.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.