Marco Vitruvio Polión

Marco Vitruvio Polión (c. 80 a. C.-70 a. C., 15 a. C.). https://www.bbc.com/mundo/noticias-62321557

Marco Vitruvio Polión (en latín Marcus Vitruvius Pollio; c. 80 a. C.-70 a. C., 15 a. C.), conocido simplemente como Vitruvio, fue un arquitecto e ingeniero romano del siglo I a. C. Se desconoce su lugar y año de nacimiento exactos, pero existen varias hipótesis. Maffei lo consideraba originario de Verona; otros estudios señalan Placentia, y algunos autores sostienen que nació en Mola di Gaeta (la antigua Formia), siendo esta última suposición la que parece estar mejor fundada, especialmente por la presencia de la gens Vitruvia en esa zona de la Campania. A pesar de la incertidumbre sobre su biografía, se sabe con certeza que tuvo una vida larga y activa y que su obra ha dejado una huella perdurable en la historia de la arquitectura y la ingeniería.

Vitruvio vivió en un periodo de fuertes transformaciones políticas. Tras décadas de guerras civiles, Roma se encontraba en plena transición de la República al Imperio y nuevos grupos sociales accedían a posiciones de poder antes inaccesibles. Este escenario de expansión territorial, riqueza y cambios culturales generó un gran interés por la construcción, tanto pública como privada, y constituyó el marco en el que Vitruvio desarrolló su carrera. En su juventud, sirvió como soldado bajo el mando de Julio César en Hispania y Grecia, donde trabajó como ingeniero militar especializado en la fabricación de piezas de artillería, como ballistae y scorpiones. En esas campañas adquirió experiencia en construcción militar e infraestructuras que después aplicaría en obras civiles. Posteriormente, residió en Roma, donde trabajó en obras imperiales. Tanto Julio César como Augusto le concedieron una subvención vitalicia en su vejez, lo que constituyó un reconocimiento explícito de su valía profesional y prestigio técnico. La obra que compuso en los últimos años de su vida, ya anciano y enfermo, fue el tratado De Architectura, dedicado a Augusto, su protector, y probablemente terminado antes del año 27 a. C., dado que no menciona los grandes edificios de mármol que caracterizaron el final del reinado de Augusto.

La influencia de Vitruvio también se extiende a su relación con la familia imperial. En su obra se insinúa que contó con la protección de Octavia, hermana de César Augusto, lo que refuerza la idea de que su carrera profesional estuvo vinculada al círculo más próximo al poder. En cuanto a su legado material, sus obras se han perdido casi por completo. Aun así, se conservan vestigios en la ciudad de Fano, donde construyó una famosa basílica y un arco de triunfo augusteo, que aún es visible, aunque ha sido modificado. En el ámbito técnico, se le atribuye la invención del módulo quinario en la construcción de acueductos, lo que constituye una importante aportación a la ingeniería hidráulica romana, y se detalla, además, el uso de la chorobates para nivelar el terreno con una precisión asombrosa. También diseñó máquinas de guerra y construyó numerosos monumentos, aunque la mayoría no han llegado hasta nuestros días.

El Hombre de Vitruvio, de Leonardo da Vinci ilustra, cinco siglos después, las proporciones del cuerpo humano descritas por Vitruvio. https://es.wikipedia.org/wiki/Vitruvio

La fama de Vitruvio se debe, sobre todo, a su tratado De Architectura, la única obra de estas características que se conserva de la Antigüedad clásica. Probablemente compuesto hacia el año 27 a. C., tiene carácter de manual resumido y divulgativo y refleja los procedimientos de la arquitectura romana del último siglo de la República. Aunque en ocasiones resulta incompleto u oscuro, el tratado se organiza en diez libros que abarcan de forma sistemática los distintos aspectos de la arquitectura, desde la teoría hasta la práctica constructiva. Su estructura y contenido constituyen un documento insustituible, también por la información que aporta sobre la pintura y la escultura griegas y romanas, con referencias a artistas y obras.

El libro I comienza con consideraciones sobre las cualidades y los deberes del arquitecto y define la arquitectura como ciencia y arte. Vitruvio expone que la aedificatio incluye la construcción de edificios públicos, clasificados según su finalidad en defensio, religio u oportunitas, y la construcción de edificios privados, en los que se integran aspectos como la gnomónica y la machinatio. El primer libro también aborda problemas urbanísticos, como la elección de lugares adecuados para fundar ciudades, el trazado de calles orientadas para evitar los vientos dominantes, la construcción de murallas defensivas y la distribución de edificios dentro del recinto urbano.

En el libro II, tras repasar la evolución de la arquitectura desde los primeros tiempos, Vitruvio aborda la elección y el uso de materiales y de estructuras murales, con ejemplos prácticos de obras romanas y griegas, destacando especialmente las propiedades de la arena volcánica de Pozzuoli (pulvis puteolanus) para la fabricación de hormigón hidráulico. El libro III describe los distintos tipos de templos y establece normas de proporción y simetría para sus planimetrías y sus partes, prestando especial atención al orden jónico. La columna adquiere una importancia central, ya que regula matemáticamente las proporciones del templo. El libro IV trata sobre los templos dóricos, corintios y toscanos e incorpora preceptos técnicos y rituales de construcción.

El libro V se dedica a los edificios de utilidad pública: foros, basílicas, erarios, cárceles, curias, teatros, pórticos, baños, palestras y puertos. En este apartado, Vitruvio demuestra sus conocimientos técnicos, especialmente en lo relativo a teatros y puertos, donde describe el uso de vasos de bronce afinados armónicamente para mejorar la acústica (echea). Se aprecia un carácter innovador al mencionar y describir brevemente una obra propia: la basílica de Fano. El libro VI trata sobre los edificios privados y supone un distanciamiento respecto a los tratadistas griegos, pues Vitruvio reflexiona sobre cómo el clima y las costumbres determinan las diferencias en la disposición de las viviendas griegas y romanas. El libro VII ofrece preceptos prácticos para los acabados, como enjalbegados, pavimentos y decoraciones esculpidas o pintadas, que confieren a los edificios venustatem y firmitatem.

En el libro VIII, Vitruvio se presenta como un estudioso de la hidráulica y constructor de conductos hidráulicos y aborda cuestiones relacionadas con la ingeniería del agua, incluyendo métodos para descubrir manantiales subterráneos observando la vegetación y los vapores matutinos. El libro IX trata de problemas geométricos y astronómicos aplicados a la gnomónica. Finalmente, en el libro X, retomando conocimientos griegos, se abordan la mecánica y las máquinas de paz y de guerra. En esta última parte, el autor se adentra en un campo de gran interés para él, aunque su lectura resulta difícil para el lector moderno debido a la pérdida de las ilustraciones originales y a la ausencia de un lenguaje técnico consolidado en latín. En este sentido, Vitruvio intentó crear un nuevo lenguaje técnico para describir la arquitectura, transliterando términos griegos o inventándolos en latín, un esfuerzo que algunos especialistas modernos han valorado como innovador.

Conceptualmente, el pensamiento de Vitruvio se inspira en un racionalismo aritmético heredado de la escuela pitagórica, que se complica al combinarse con principios prácticos. La experiencia constructiva interviene continuamente en su juicio, por lo que, desde un punto de vista teórico, algunas ideas resultan confusas y otras categorías no pueden interpretarse con seguridad, como ordinatiodispositiodistributioeuritmia o symmetria.  Entre sus conceptos más influyentes se encuentra la tríada vitruviana: la estabilidad, la utilidad y la belleza (firmitas, utilitas y venustas), que se presentan como cualidades inseparables de una estructura bien concebida. Estas ideas no solo se aplican a edificios públicos, sino también a las residencias privadas, especialmente a las villas de los más ricos, en las que Vitruvio hace hincapié en la decoración interior, la pintura mural y el estuco, así como en la orientación y la función de cada estancia.

A lo largo de los siglos, De Architectura tuvo una fortuna variable. Aunque se conoció y se empleó en la Edad Media —siendo copiado en monasterios como el de Saint Gall—, no ejerció una verdadera influencia sobre el pensamiento artístico hasta el Renacimiento, cuando figuras como León Battista Alberti retomaron y difundieron sus ideas. El redescubrimiento y la difusión del tratado se vieron favorecidos por la imprenta y la edición príncipe de 1486, publicada en Roma por Giovanni Sulpicio da Veroli, resultó decisiva para que los artistas renacentistas accedieran a las formas arquitectónicas de la antigüedad grecorromana. En el siglo XVI, la fama de Vitruvio superó los méritos reales de su obra y se convirtió en un canon rígido de la arquitectura antigua, interpretado de manera normativa en muchos tratados posteriores. En este periodo, el tratado se publicó en numerosos países y se consolidó como una fuente documental insustituible, no solo por su información sobre arquitectura, sino también sobre pintura y escultura, así como por las noticias que aporta sobre artistas y obras.

La influencia de Vitruvio se observa tanto en la evolución de la arquitectura renacentista como en la creación de imágenes emblemáticas como el Hombre de Vitruvio de Leonardo da Vinci (c. 1490). Este dibujo se basó en pasajes de De Architectura y refleja la idea, que se remonta al pensamiento pitagórico y platónico, de que el cuerpo humano es un modelo de proporción y armonía. La idea de que la geometría se deriva de la forma humana y de que las proporciones del cuerpo pueden inscribirse en figuras geométricas como el círculo y el cuadrado convirtió al Hombre de Vitruvio en un símbolo de la conexión entre la naturaleza, las matemáticas y la arquitectura.

Entre las traducciones más importantes destaca la versión italiana de Cesare Cesariano, publicada en 1512 en Como bajo el título Di Lucio Vitruvio Pollione e Cesare Augusto de Architetture… translato in vulgare sermone commentato et affigurato da Cesare Cesariano. Esta edición fue el primer intento de traducir el tratado al italiano y se acompañó de un extenso comentario con numerosas citas de autores clásicos como Plinio el Viejo. Aunque fue criticada por la oscuridad de su lenguaje, supuso un avance importante, ya que se revisaron los códices con método y se ofreció una rica presentación tipográfica. Sus adiciones y comentarios ejercieron una gran influencia en ediciones posteriores hasta que la traducción veneciana de Daniele Barbaro, ilustrada por Andrea Palladio, la superó en claridad y rigor.

En conjunto, Vitruvio puede considerarse una figura clave en la historia de la arquitectura y la ingeniería. Su tratado no solo documenta la técnica constructiva romana, sino que también plantea principios teóricos sobre proporción, belleza y funcionalidad que han perdurado a lo largo de los siglos y siguen siendo una referencia en la cultura arquitectónica occidental.

Dejo un par de videos sobre este eminente personaje. Espero que os sean de interés.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Los puentes de madera: evolución, tipología y relevancia actual

Puente de madera de Cofrentes, sobre el río Cabriel, junto al puente nuevo construido en 1911 (Sanchis, 1993).

1. Definición y tipología estructural.

La madera fue el primer material estructural utilizado en la construcción de puentes, mucho antes que la piedra, el metal o el hormigón. La madera permite fabricar piezas lineales aptas para resistir esfuerzos de compresión y tracción y, por tanto, también de flexión. Su uso ha evolucionado desde los rudimentarios troncos apoyados en los cauces hasta las complejas estructuras actuales de madera laminada y materiales compuestos. En la actualidad, este material está experimentando un notable resurgimiento, impulsado por sus virtudes técnicas: una excelente relación resistencia-peso, facilidad de mecanizado y de transporte, y la capacidad de crear elementos prefabricados de gran longitud.

A diferencia de la mampostería, que requiere morteros y recurre al arco para salvar grandes luces, la madera permite ensamblajes con continuidad estructural. Esto permite diseñar diseños lineales, ligeros y flexibles que se adaptan a una amplia variedad de vanos. El desarrollo de la madera laminada encolada (en inglés, glulam), los adhesivos estructurales, los tratamientos de protección en autoclave y las normativas estandarizadas, como el Eurocódigo 5, han consolidado la madera como una alternativa duradera y viable frente a los materiales convencionales.

Clasificación estructural

Los puentes de placas de madera son estructuras que funcionan como placas continuas, normalmente compuestas por tableros de madera contralaminada (CLT), y tienen luces limitadas o se combinan con vigas para alcanzar dimensiones mayores. Por otro lado, los puentes de barras de madera están formados por piezas lineales que configuran vigas, arcos o cerchas (vigas reticuladas), lo que les permite cubrir luces más amplias.

Tipo estructural Descripción Luz típica
Vigas Vigas macizas o de glulam, a menudo en configuraciones triarticuladas. 3 a 24 m
Viga reticulada (cercha) Sistema triangulado (p. ej., tipo Howe o Pratt) de barras que operan bajo esfuerzo axial. 9 a 45 m
Arco triarticulado Fabricado en glulam, sometido predominantemente a compresión. 12 a 70 m
Colgante El tablero está suspendido mediante cables de acero anclados a mástiles. Luces variables
De apertura Tablero con piezas móviles o deslizantes. Hasta 24 m

2. Evolución histórica de los puentes de madera.

  • Orígenes antiguos e ingeniería primitiva: La madera es uno de los materiales estructurales más antiguos que la humanidad ha utilizado para superar obstáculos naturales. Desde la prehistoria, concretamente desde la invención del hacha de piedra, alrededor del año 15 000 a. C., los seres humanos utilizaban troncos como puentes sobre ríos o arroyos. Los palafitos eran construcciones de madera levantadas sobre el agua, similares a los puentes. En algunas culturas subtropicales también empleaban lianas, que prefiguraban los puentes colgantes. No obstante, los ejemplos más sofisticados datan de épocas posteriores. Aunque en la Antigüedad clásica los puentes de piedra en arco fueron los más duraderos, la madera desempeñó un papel esencial en la ingeniería militar. Uno de los ejemplos más conocidos es el puente que Julio César construyó sobre el Rin, diseñado para montarse y desmontarse rápidamente aprovechando las corrientes del río para estabilizar sus uniones. Otro ejemplo es el legendario Ponte Sublicio (c. 642 a. C.) sobre el Tíber, concebido para ser destruido en caso necesario, lo que subraya la importancia estratégica de los puentes de madera en la Antigüedad.
Puente de Julio César en el Rin. https://www.cienciahistorica.com/2015/08/25/acojonar-enemigo/
  • Edad Media, Renacimiento y «siglo de oro» europeo: Aunque durante la Edad Media predominaban las estructuras de mampostería, la madera seguía utilizándose en puentes, especialmente en forma de cubiertas que protegían la superestructura de las inclemencias del tiempo. Ya desde el Renacimiento, ingenieros como Leonardo da Vinci idearon puentes de madera desmontables o de montaje rápido, lo que evidencia una notable anticipación técnica. En Suiza, por ejemplo, los puentes cubiertos como el Kapellbrücke y el Spreuerbrücke (siglos XIV-XVI) demuestran que la cubierta de madera prolongaba la vida útil de la estructura al protegerla de la humedad y del sol. El siglo XVIII se considera un periodo de auge de los puentes de madera en Europa. Ingenieros como Hans Ulrich Grubenmann, en Suiza, desarrollaron puentes de madera laminada empernada y arcos rebajados, logrando luces de más de 50 metros, lo que situó a la madera, en términos de vano, en niveles comparables a los de la piedra.
Puente Kapellbrücke de Lucerna (Suiza). https://worldcitytrail.com/es/2025/01/04/spreuerbrucke-en-lucerna/
  • El impulso industrial y las cerchas reticuladas: El gran salto tecnológico en la construcción de puentes de madera se produjo en el siglo XIX, como resultado de la Revolución Industrial y del desarrollo de las redes ferroviarias, sobre todo en Norteamérica. La necesidad de construir puentes de forma rápida y con luces mayores impulsó el uso de conexiones metálicas y de tipos estructurales más eficientes. Aparecieron patentes como las de Ithiel Town (cercha Town), William Howe (cercha Howe) y Thomas Pratt (cercha Pratt). Un ejemplo histórico es el puente Colossus Bridge, construido por Lewis Wernwag en 1812 sobre el río Schuylkill, en Filadelfia. Con un vano de 103,7 metros y conectores de hierro, en su época se consideró el puente de madera de vano único más largo de Estados Unidos. Estas innovaciones permitieron que la madera compitiera con otros materiales estructurales.
Puente Colossus Bridge, construido por Lewis Wernwag en 1812 sobre el río Schuylkill, en Filadelfia. https://www.structuremag.org/article/the-colossus-of-the-schuylkill-river/
  • Siglos XX y XXI: innovación tecnológica y sostenibilidad: Durante gran parte del siglo XX, los materiales dominantes fueron el acero y el hormigón, que relegaron en parte a la madera. No obstante, en ese periodo se sentaron las bases para su renacimiento: la invención de la madera laminada encolada (glulam), los adhesivos estructurales de alto rendimiento y los tratamientos en autoclave mejoraron sustancialmente la estabilidad dimensional, la durabilidad y la fiabilidad de la madera como material estructural. En la actualidad, la madera está experimentando un notable resurgimiento en la ingeniería de puentes, gracias también a los criterios de sostenibilidad y de ecología. Normativas como el Eurocódigo 5 (EN 1995-2: Puentes de madera) han aportado solidez a su uso desde el punto de vista ingenieril. Además, la aparición de la madera contralaminada (CLT) y el desarrollo de estructuras híbridas (madera-acero o madera-hormigón), junto con las herramientas de modelado digital (BIM) y la prefabricación, han devuelto a la madera su papel esencial en las infraestructuras sostenibles.
Puente de madera laminada sobre el Pisuerga. http://www.mediamadera.com/es/puentes-de-madera

3. Consideraciones técnicas y materiales

Los puentes modernos se construyen con madera de ingeniería, un material estable y de alto rendimiento.

A. Materiales estructurales clave

  • Madera laminada encolada (glulam): permite fabricar vigas curvadas o rectas de gran sección y longitud, optimizando la resistencia.
  • Madera contralaminada (CLT): paneles de gran formato y rigidez bidireccional, muy utilizados en tableros de placa por su capacidad de prefabricación modular.
  • Maderas compuestas estructurales (LVL, PSL): productos derivados de chapas o de virutas que ofrecen uniformidad y alto rendimiento mecánico.

B. Durabilidad, protección y mantenimiento

La longevidad de un puente de madera depende fundamentalmente de un diseño inteligente que controle la humedad:

  1. Protección constructiva: el diseño debe evitar la acumulación de agua mediante drenajes e inclinaciones y asegurar una ventilación adecuada. La cubierta protectora sigue siendo la mejor defensa a largo plazo.
  2. Tratamiento: selección de especies duraderas (según EN 350) o aplicación de tratamientos protectores en autoclave (sales de cobre, etc.) para alcanzar las clases de uso 3 y 4.
  3. Mantenimiento: revisiones periódicas y reaplicación de protectores superficiales para combatir la radiación UV solar.

El diseño estructural de los puentes de madera se basa en normativas internacionales rigurosas. En Europa, la referencia principal es el Eurocódigo 5 (EN 1995-2: Puentes), que establece los criterios esenciales de cálculo por el método de estados límite, la durabilidad de la madera y el dimensionamiento de las uniones e incorpora factores de modificación críticos. Además, el Manual de diseño de puentes AASHTO LRFD (Load and Resistance Factor Design) ofrece una metodología de diseño basada en factores de carga y resistencia que predomina en Norteamérica y otras regiones. Estas dos directrices se complementan con las guías técnicas detalladas del US Forest Service, que ofrecen buenas prácticas especializadas para la construcción y la durabilidad de estas estructuras.

4. Aplicaciones y mercado

Los puentes de madera tienen una amplia gama de usos:

  • Vehiculares: carreteras secundarias y entornos rurales, diseñados para soportar cargas moderadas.
  • Peatonales y para ciclistas: son los más comunes y destacan por su estética cálida y su excelente integración paisajística en parques y entornos naturales.
  • Sistemas híbridos: la combinación de glulam con losas de hormigón o acero permite construir puentes con vanos más largos y con mayor resistencia al tráfico pesado.

La sostenibilidad es el motor actual. La madera es un material renovable, reciclable y que captura carbono, y se suministra mediante sistemas de construcción industrializados (prefabricación), lo que asegura una rápida ejecución en obra. En el mercado actual se integran fabricantes de glulam, ingenierías especializadas y constructoras modulares, capaces de producir estructuras completas mediante sistemas industrializados.

5. Comparativa de materiales estructurales para puentes

Propiedad / criterio Madera estructural Acero Hormigón armado / pretensado Piedra
Resistencia específica (resistencia/peso) Muy alta (estructuras ligeras). Alta. Media. Baja.
Durabilidad natural Limitada si no se protege; mejorable con tratamientos. Alta si se protege contra la corrosión. Muy alta. Muy alta.
Mantenimiento Requiere revisiones y repintado o reaplicación de protector. Requiere control de la corrosión y de la pintura. Bajo. Mínimo.
Coste inicial Medio o bajo (según el tipo de madera y el diseño). Alto. Medio. Alto.
Coste de mantenimiento Moderado. Alto. Bajo. Muy bajo.
Comportamiento frente al fuego Predecible (carbonización superficial). Excelente. Muy bueno. Excelente.
Comportamiento ante agentes climáticos Sensible a la humedad y a los rayos UV; requiere protección. Sensible a la corrosión. Buena durabilidad. Muy buena.
Sostenibilidad y huella de carbono Excelente. Material renovable y reciclable. Elevada huella de CO₂. Alta huella de CO₂. Alta huella energética.
Estética e integración paisajística Muy alta. Calidez y naturalidad. Industrial. Neutra. Tradicional.
Rapidez de construcción Muy alta (prefabricación). Alta. Media. Muy baja.
Aplicaciones recomendadas Pasarelas, carreteras secundarias, entornos naturales. Grandes luces, tráfico intenso. Infraestructura masiva. Monumentos y obras históricas.

Conclusión

Lejos de ser obras provisionales, los puentes de madera son una síntesis de tradición e innovación tecnológica. Desde los primeros troncos prehistóricos hasta los diseños actuales con madera laminada encolada, contralaminada y estructuras híbridas, la madera ha demostrado su versatilidad, sostenibilidad y competitividad técnica. Gracias a la ingeniería moderna y a las normativas internacionales, la madera se consolida como un material estructural de referencia en el ámbito de las infraestructuras sostenibles.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Por qué los romanos fueron grandes ingenieros?

El puente de Alcántara sobre el Río Tajo.

A lo largo de estos meses hemos repasado aspectos históricos y constructivos de la ingeniería de todos los tiempos (Egipto, Mesopotamia, Grecia, por ejemplo), sin embargo aún no hemos dicho nada de Roma. Ello merece no sólo un post, sino varios (el puente de Alcántara debería contar, por méritos propios, con un post de oro). Es más, yo diría que es un atrevimiento por mi parte intentar contar en tan breve espacio  lo más relevante de la ingeniería romana, puesto que, con total seguridad nos dejaremos cosas por el camino. Grandes ingenieros españoles como Fernández Casado abordaron con gran interés estos temas, y hoy día hay verdaderos especialistas en el tema, publicaciones, congresos, páginas web, etc. El propio arquitecto e ingeniero de Julio César, Marco Vitruvio nos ha legado el tratado sobre construcción más antiguo que se conserva De Architectura, en 10 libros (probablemente escrito entre los años 23 y 27 a. C.).  Para resolver cómo abordar el problema de divulgar aspectos de interés sobre la ingeniería romana, lo mejor será hacer varias entregas, dejar cuestiones abiertas, dar enlaces a otras páginas web y recibir todas las sugerencias habidas y por haber de los amables lectores. Vamos allá.

La ingeniería tiene un gran desarrollo y perfección en Roma como lo demuestra la construcción de abastecimientos de agua o poblaciones con toda la infraestructura de canales y acueductos que ello conlleva, el saneamiento de las ciudades, las defensas y las vías de comunicación (calzadas y puentes) que tanta importancia tuvieron en el Imperio. Puede decirse que mientras Grecia fue Arquitectura, Roma fue Ingeniería (Fernández, 2001).

Sin embargo, los ingenieros romanos tuvieron más que ver con sus antiguos colegas de Egipto y Mesopotamia que con sus predecesores griegos.  Los romanos tomaron ideas de los países conquistados para usarlas en la guerra y las obras públicas. Fueron pragmáticos, empleando esclavos y tiempo para sus obras. Las innovaciones romanas en ciencia fueron, comparativamente, más limitadas que las de los griegos; sin embargo, contaron con abundantes soldados, administradores, dirigentes y juristas de gran nivel. Los romanos fueron capaces de poner en práctica muchas de las ideas que les habían precedido y se convirtieron, con toda probabilidad, en los mejores ingenieros de la antigüedad. Quizá no fueron originales, pero aplicaron su técnica ampliamente a lo largo de todo un imperio.  Los ingenieros romanos fueron superiores en la aplicación de las técnicas, entre las cuales son notables los puentes que usaron en vías y acueductos. Para juzgar la extensión de los conocimientos técnicos entre las legiones romanas basta leer en los Comentarios de César la descripción de la construcción de puentes de pilotes que tendían sus ejércitos sobre los ríos helados y los terrenos pantanosos.

Existen datos históricos que prueban el conocimiento y empleo de diversos tipos de hormigones en civilizaciones tan antiguas como la egipcia (3000 a.C.), la griega o la cartaginesa. Sin embargo, como en tantas otras ocasiones, es con los romanos cuando la utilización del hormigón en sus más variadas aplicaciones ha dado lugar a innumerables obras, muchas de las cuales -o sus vestigios- han alcanzado nuestro siglo dando fe de ello. Este material les permitía levantar estructuras laminares monolíticas de gran luz, para cúpulas y bóvedas. El hormigón romano se hacía a base de cal mezclada con arena volcánica, llamada puzolana. Se aplicaba en capas, con un material de relleno o árido, como tejas rotas, entre dos superficies de ladrillo que formaban la cara exterior e interior. Al contrario que el hormigón moderno, no iba armado y requería contrafuertes exteriores, al no poder resistir esfuerzos de tracción. Además, no era tan fluido como el actual, lo cual limitaba la complejidad de los encofrados. El hormigón romano constituía un sistema constructivo económico, rápido y eficaz. El encofrado lo construían grupos reducidos de carpinteros expertos; el hormigón se fabricaba y ponía en obra mediante grandes grupos de trabajadores no especializados.

El Puente del Diablo, en Martorell.

Pasemos ahora, brevemente, a los puentes. Una palabra tan familiar hoy día como «Pontífice» tiene su origen en la designación de los ingenieros constructores de puentes, carácter semántico que insiste en el contenido sagrado del trabajo de estos técnicos. Los romanos construyeron muchos puentes de caballete con madera, uno de los cuales se describe con detalle en la obra citada anteriormente de Julio César. Sin embargo, los puentes romanos que se mantienen en pie suelen sustentarse en uno o más arcos de piedra, como el puente de Martorell cerca de Barcelona, en España y el Ponte di Augusto en Rímini, Italia. El Pont du Gard en Nimes, Francia, tiene tres niveles de arquerías que elevan el puente a 48 m sobre el río Gard, con una longitud de 261 m; es el ejemplo mejor conservado de gran puente romano y fue construido en el siglo I a.C. La utilización de arcos de medio punto derivó más tarde en la de arcos apuntados.

Puente de Tiberio de Rímini

Ningún ingeniero hispanorromano excede en renombre al autor del puente de Alcántara. Por la importancia de su obra, de filiación incontrovertible, y por el monumento que honra su memoria, Cayo Julio Lacer ha quedado como representante arquetípico de los antiguos ingenieros españoles. La inscripción que dejó en el arco conmemorativo situado sobre la calzada es explícita acerca de sus intenciones: Pontem Perpetui Mansurum in Saecula: Dejo un puente que permanecerá por los siglos.

Pont du Gard, Francia.

Además de los notables puentes de los acueductos, visibles en Europa y Asia y de los cuales son ejemplos famosos el acueducto de Segovia, y el Pont du Gard, cerca de Nimes, con 50 m de altura y 300 de largo, son altamente notables las famosas vías imperiales como la Via Appia y la Via Flaminia, que atraviesan Italia longitudinalmente. La Vía Appia, que se inicio en 312 a.C., y fue la primera carretera importante recubierta de Europa. Al principio, la carretera medía 260 km e iba desde Roma hasta Capua, pero en 244 a.C., se alargó hasta Brindisi, siendo entonces una obra de prestigio tal, que la aristocracia flanqueó con monumentos funerarios ambos lados del camino a la salida de Capua. Además, tal era la densidad de tráfico pesado en aquella época que el propio Julio César prohibió que ningún vehículo de cuatro ruedas circulara por las calles de Roma, medida moderna a la vista de nuestros problemas actuales. En la cumbre del poder romano la red de carreteras cubría 290,000 km. desde Escocia hasta Persia.

Los ingenieros romanos mejoraron significativamente la construcción de las carreteras, tanto como herramienta al servicio del mantenimiento del poder imperial como por el hecho de que una carretera bien construida implicaba menores costes de mantenimiento a largo plazo. Esta idea de coste del ciclo de vida, tan vigente hoy día, ya era sobradamente conocida por los ingenieros romanos, pues sus carreteras podían durar cien años sin necesitar grandes reparaciones. Es apenas hasta fechas recientes que la construcción de carreteras ha vuelto a la base de “alto costo inicial – poco mantenimiento”.

Las calzadas romanas podía estar enlosadas (stratus lapidibus), afirmadas (iniecta glarea) o simplemente explanadas y sin firme (terrenae). Las sucesivas capas de firme: el statumen o cimiento de piedra gruesa, el rudus, de piedra machacada y el nucleus, de tierra. En ocasiones se disponía de la suma cresta, de grava cementada con cal, o incluso con enlosado. En este tipo de secciones se constata muchas veces una capa inicial compuesta de canto grueso, con grandes bolos en los flancos, a modo de caja y asiento de las capas superiores. Las calzadas romanas eran construidas con zahorras naturales como material básico. Cada capa tiene en torno a 15 cm, entre otras razones porque la energía de compactación que podía aplicarse en aquella época era casi nula y se reduciría al uso del agua sumado a un simple planchado con un rodillo más o menos pesado. El empleo de cal en la estabilización de suelos, terraplenes y capas de firme es también frecuente, y se debería sobre todo a la imposibilidad de dotar al material de la densidad adecuada con aporte exterior de energía de compactación. Era el factor tiempo y el agua los que realizaban la compactación. Las vías romanas estaban dotadas sistemáticamente de firme, y además adecuado tanto al tráfico rodado como al de caballerías. Incluso cuando se asentaban directamente sobre el sustrato rocoso debían de disponer de una capa mínima de rodadura compuesta por material pétreo de grano fino. Según Moreno (2001), muchos de los caminos empedrados que se imputan a los romanos no poseen las características técnicas que las vías romanas poseían, infravalorándose en numerosas ocasiones la capacidad técnica de los ingenieros romanos. Para aquellos que queráis profundizar más en la ingeniería y técnica constructiva de las vías romanas, os recomiendo la referencia de Moreno (2004)  y la página: http://www.viasromanas.net/

Nos dejamos para otros artículos aspectos de la ingeniería romana relacionados con la hidráulica, las obras marítimas, las cimentaciones o los grandes edificios.

Referencias:

ADAM, J.P. (2002).  La construcción romana. Materiales y técnicas. Editorial de los Oficios, 2ª edición, León.

FERNÁNDEZ, M. (2001). Ingeniería militar e ingeniería civil, dos ingeniería íntimamente vinculadas. Revista de Obras Públicas, 3.413: 47-57.

FERNÁNDEZ CASADO, C. (1983). Ingeniería hidráulica romana. Colegio de Ingenieros de Caminos, Canales y Puertos. Madrid.

MORENO, I. (2001). Características de la infraestructura viaria romana. OP ingeniería y territorio, 56: 4-13.

MORENO, I. (2004). Vías romanas. Ingeniería y técnica constructiva. Ed. Ministerio de Fomento CEDEX-CEHOPU.

YEPES, V. (2009). Breve historia de la ingeniería civil y sus procedimientos. Universidad Politécnica de Valencia.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.