Procedimientos para la contención del agua

Figura 1. Ejecución de muro pantalla. https://spezialtiefbau.implenia.com/

En muchas obras realizadas bajo el terreno puede ser necesario el empleo de procedimientos constructivos para impedir que el agua llegue al tajo (exclusion methods).

Estos procedimientos se pueden utilizar por sí solos o bien combinados con técnicas de agotamiento o rebajamiento del nivel freático.

Se trata de métodos basados en barreras o pantallas (ground water cutoff structures) tales como ataguías, tablestacas, muros pantalla (Figura 1), pantallas de pilotes secantes, pantallas de lodo, jet-grouting, barreras de inyección, pantallas pláticas, pantallas de suelo estabilizado in situ, o congelación del terreno.

Lo habitual es que estas barreras lleguen, en la medida de lo posible, tal y como se observa en la Figura 2, a las capas de muy baja permeabilidad (arcillas o rocas no fracturadas).

Figura 2. Pantalla impermeable en presa de materiales sueltos.

Estos métodos se pueden agrupar en tres categorías (Cashman y Preene, 2012):

  • Barreras o muros de muy baja permeabilidad que se hincan o construyen en el terreno, tales como tablestacas o muros pantalla.
  • Procedimientos que reducen la permeabilidad del terreno in situ (como la inyección y la congelación artificial del suelo)
  • Procedimientos que utilizan la presión de un fluido en cámaras confinadas para contrarrestar las presiones intersticiales (como las cámaras de presión de tierras en tuneladoras)

Las barreras hincadas, como las tablestacas, desplazan el terreno y, por tanto, afectan menos al terreno adyacente. En cambio, las barreras excavadas, como los muros pantalla, implican un vaciado que se debe sustituir por la propia barrera. Las barreras formadas por inyección bloquean el flujo del agua subterránea. Por otra parte, la congelación del suelo forma una barrera con el agua intersticial helada. De todas formas, la selección del método más adecuado dependerá de las condiciones de la obra, sin descartar la combinación de varios procedimientos. Además, algunas estructuras de contención pueden formar parte de la estructura definitiva, como es el caso de los sótanos de edificación.

La forma más habitual de utilizar estos procedimientos de contención del agua es la construcción de un muro impermeable alrededor del perímetro de excavación que penetre hasta la capa de baja permeabilidad, tal y como se observa en la Figura 3.

Figura 3. Contención de agua con muros pantalla que llegan a capa de baja permeabilidad. Adaptado de Cashman y Preene (2012)

Los costes y la aplicabilidad de una pantalla impermeable depende en gran medida de la profundidad y de la naturaleza de los estratos subyacentes. Si no existe una capa de baja permeabilidad o bien se encuentra a gran profundidad, las filtraciones pueden desestabilizar el fondo de la excavación. En estos casos se deben combinar las barreras con el bombeo (Figura 4a) o bien construir un tapón o barrera horizontal (jet-grouting, por ejemplo) para evitar las filtraciones (Figura 4b).

Figura 4. Combinación de pantallas con (a) bombeo convencional o (b) con barreras horizontales. Adaptado de Cashman y Preene (2012)

Uno de los aspectos más interesantes de las barreras de contención es que modifican en menor medida el nivel freático alrededor de la excavación frente a los bombeos convencionales. Ello implica menores incidencias en estructuras próximas, fundamentalmente por subsidencias.

No obstante, uno de los problemas a evitar son las fugas a través de las barreras. Estas filtraciones pueden interferir en los trabajos del tajo y, por tanto, son necesarios sumideros y drenajes; pero otra posibilidad más grave son los sifonamientos localizados (Figura 5) o asentamientos por encima de los previstos.

Figura 5. Sifonamiento localizado por defectos puntuales en un muro pantalla. Elaboración propia basado en Pérez Valcárcel (2004).

Las aplicaciones que hemos visto anteriormente (Figuras 1 a 5) son las más habituales, con barreras o muros verticales alrededor de una excavación. Sin embargo, algunos procedimientos como las inyecciones o la congelación del suelo, pueden utilizarse en geometrías no verticales (Figuras 6a y 6b), e incluso para sellar la base de las excavaciones (Figura 4b).

Figura 6. Barreras inclinadas y barreras horizontales en túnel. Adaptado de Cashman y Preene (2012)

A continuación os dejo un folleto de la empresa Implentia sobre barreras de contención que puede complementar la información sobre las barreras de contención al agua.

Descargar (PDF, 4.34MB)

REFERENCIAS:

  • CASHMAN, P.M.; PREENE, M. (2012). Groundwater lowering in construction. A practical guide to dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • PÉREZ VALCÁRCEL, J.B. (2004). Excavaciones urbanas y estructuras de contención. Ediciones Cat, Colegio Oficial de Arquitectos de Galicia, 419 pp.
  • POWERS, J.P.; CORWIN, A.B.; SCHMALL, P.C.; KAECK, W.E. (2007). Construction dewatering and groundwater control: New methods and aplications. Third Edition, John Wiley & Sons.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater control: design and practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pantalla de lodo autoendurecible armado

Figura 1. Cuchara para excavar pantalla. https://www.geo-solutions.com/resource-category/slurry-walls-equipment/

La pantalla de lodo autoendurecible armado, también llamada pantalla de lechada armada (reinforced slurry wall) es una pantalla compuesta, de carácter estructural, donde colaboran unos elementos portantes resistentes a flexión y un relleno intermedio que los solidariza y que descarga los empujes recibidos hacia los elementos portantes. Se trata de una técnica a medio camino entre un muro berlinés y un muro pantalla.

Los elementos resistentes suelen ser tablestacas o perfiles metálicos de sección en “I” y el relleno intermedio, de una mezcla bentonita-cemento. Es por ello que el sistema también trabaja como elemento de contención del agua. Una variante es utilizar una mezcla de suelo-cemento en vez de la lechada, las llamadas pantallas de suelo-cemento armadas (reinforced soil-mixing wall).

El procedimiento constructivo para la pantalla de lodo armado utiliza las mismas herramientas de excavación (cuchara bivalva) que los muros pantalla (Figura 1), donde la lechada de bentonita-cemento actúa también como elemento estabilizante de las paredes. En la lechada fresca se colocan perfiles verticales (Figura 2).  La transmisión del empuje activo de las tierras y del agua se moviliza en el lodo endurecido por efecto bóveda hacia los perfiles, los cuales resisten a flexión gracias a los apoyos en anclajes, arriostramientos y el empotramiento bajo el fondo de excavación. En el caso de utilizar tablestacas, la pantalla funciona como un muro continuo convencional.

Figura 2. Procedimiento constructivo de una pantalla de lodo autoendurecible armado. https://www.rodiokronsa.es/contencion/pantalla-compuesta/

 

Figura 3.  Procedimiento constructivo de una pantalla de lodo autoendurecible armado.  https://www.raitoinc.com/technologies/soil-mixing-wall/

REFERENCIAS:

  • CASHMAN, P.M.; PREENE, M. (2012). Groundwater Lowering in Construction: A Practical Guide to Dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA (1987). Manual de ingeniería de taludes. Serie: Guías y Manuales nº 3, Ministerio de Educación y Ciencia, Madrid, 456 pp.
  • POWERS, J.P.; CORWIN, A.B.; SCHMALL, P.C.; KAECK, W.E. (2007). Construction dewatering and groundwater control: New methods and aplications. Third Edition, John Wiley & Sons.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Contención de agua mediante pantallas plásticas de bentonita-cemento

Figura 1. Cuchara bivalva para ejecución de pantalla plástica. https://www.archiexpo.es/prod/franki-foundations-belgium/product-61404-1536843.html

Las pantallas impermeables de bentonita-cemento, también llamadas pantallas blandas, plásticas o de lodo autoendurecible, constituyen barreras al paso del agua subterránea de construcción construcción similar a la de los muros pantalla (Figura 1). Este tipo de muros de estanqueidad se empezaron a utilizar en los años 60, en la mayoría de las ocasiones con un hormigón de bentonita-cemento como relleno de la pantalla, mientras que en España la primera realización data de 1974 (Cañizo et al., 1976). Su función es impermeabilizante, sin responsabilidad estructural, pues no deben resistir esfuerzos de flexión apreciables; por tanto son útiles cuando se trata de impedir el paso del agua pero no se va a realizar una excavación o vaciado anexo.

Se trata de abrir una zanja profunda y estrecha utilizando los procedimientos habituales de los muros pantalla, pero utilizando como fluido de perforación para contener las paredes un lodo de bentonita-cemento, en lugar de simplemente la bentonita. Son pantallas de un espesor entre 0,50 y 1,20 m, con profundidades que pueden llegar a 50 m, pero que son rentables hasta unos 25-30 m. Este procedimiento es más habitual en Europa que en Estados Unidos, donde suele utilizarse las mezclas de suelo y bentonita.

Otra forma de ejecutar este tipo de pantallas es mediante retroexcavadoras con brazos largos, que son efectivas hasta 15-20 m, aunque con brazos especialmente largos puede llegarse a 25-30 m. En otros casos, también se podrían utilizar zanjadoras de brazo inclinable.

Figura 2. Excavación con retroexcavadora para pantalla de bentonita-cemento. https://www.keller.co.uk/expertise/techniques/slurry-cut-walls

La resistencia y la permeabilidad de una pantalla de bentonita-cemento dependen de la dosificación (relación agua/cemento) y del tipo de cemento utilizado. Se trata de mezclar bentonita en la cantidad suficiente para evitar que el cemento decante antes del fraguado. Por cada metro cúbico de mezcla, la dosificación habitual es de 100 a 950 litros de agua, 20 a 80 kg de bentonita, 100 a 400 kg de cemento y de 0 a 5 kg de aditivos. En general se obtienen mayores resistencias con cementos de alto-horno o puzolánico que con cemento portland. Se pueden alcanzar con las mezclas de bentonita-cemento resistencias de 0,10 a 0,30 MPa. Esta mezcla de bentonita y cemento fragua lentamente.

En obra se necesita una planta que mezcle y dosifique el agua, la bentonita y el cemento. Transcurrido el tiempo de mezclado en planta, se manda el material al tajo. Este sistema difiere del tradicional, que deja hidratar previamente la bentonita de 12 a 24 horas; de esta forma, aunque se necesario utilizar algo más de bentonita, nos evitamos montar una planta de gran volumen, con depósitos de almacenaje de bentonita en maduración.

Durante el proceso constructivo es importante garantizar que entre paneles no existen juntas. Si la perforación de dos paneles contiguos es inmediata, se puede ejecutar una pantalla continua, sin juntas; si se retrasa la perforación, se muerde el extremo, aún en estado pastoso para que se adhiera el nuevo lodo y no se forme junta. Se pueden obtener rendimientos típicos de 100 a 150 m2/día.

Figura 3. Ejecución pantalla plástica de bentonita-cemento. https://www.terratest.com/pdf/catalogos/brochure-diaphragm-walls-spain.pdf

La ventaja de estas pantallas, aparte de la impermeabilidad y ausencia de juntas, es su adaptación a grandes deformaciones que pueda provocar el cambio del nivel freático. Además, el coste es relativamente económico debido al consumo reducido de materiales, a la mecanización de las operaciones y a la simplificación de la construcción. Son competitivas frente a otros sistemas como las tablestacas o las pantallas perforadas con hormigón bituminoso. Frente a otros sistemas de coste similar como pantallas de hormigón de arcilla o de suelo mejorado, las pantallas de bentonita-cemento son de mayor calidad, puesto que las anteriores son difíciles de compactar y por la existencia de juntas. Sin embargo, no son viables si se debe excavar en roca o si se debe levantar la pantalla como núcleo de arcilla de forma simultánea a los espaldones de presas de materiales sueltos.

Os dejo un vídeo para que veáis el procedimiento constructivo análogo a la construcción de un muro pantalla.

 

A continuación os dejo un ejemplo de Geocisa de aplicación de pantallas continuas de cemento-bentonita que han servido para mejorar las condiciones de seguridad y la corrección de filtraciones de la presa Hornotejero, en Cordobilla de Lácara (Badajoz).

Descargar (PDF, 311KB)

REFERENCIAS:

  • CAÑIZO, L.; ERASO, A.; AGUADO, J. (1976). La bentonita-cemento y sus aplicaciones. Revista de Obras Públicas, 123(3130):67-76.
  • CASHMAN, P.M.; PREENE, M. (2012). Groundwater Lowering in Construction: A Practical Guide to Dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA (1987). Manual de ingeniería de taludes. Serie: Guías y Manuales nº 3, Ministerio de Educación y Ciencia, Madrid, 456 pp.
  • POWERS, J.P.; CORWIN, A.B.; SCHMALL, P.C.; KAECK, W.E. (2007). Construction dewatering and groundwater control: New methods and aplications. Third Edition, John Wiley & Sons.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.