En suelos suficientemente coherentes se puede ensanchar la base de la perforación, a fin de aumentar la capacidad de transmitir resistencia por punta, mediante una herramienta especial denominada balde de campana o de quijadas. Este útil puede ser de dos tipos: con articulación en la base o con articulación superior.
El ensanche del fondo de la excavación (acampanamiento o underreaming) tiene forma troncocónica. Como criterio general, la altura del ensanchamiento debe ser mayor que el diámetro del pilote y la anchura menor que tres veces el diámetro.
En algunos artículos anteriores hemos descrito algunos procedimientos constructivos de los distintos tipos de pilotes. También se han comentado en artículos anteriores algunas técnicas relacionadas con los informes geotécnicos.
Sin embargo, aquí quiero resaltar algunos casos concretos donde los informes geotécnicos pueden confundir al constructor y llevarlo a errores durante la perforación o hinca de los pilotes (Rodríguez Ortiz, 1982):
Capas delgadas de arenisca floja o vetas de arena cementadas. Las coronas de sondeo las traspasan y disgregan, confundiéndose con arenas. Las barrenas que perforan los pilotes son de diámetro mayor y no tienen potencia suficiente para romper estas capas, con lo que se hace necesario un trépano. En el caso de hinca, se suele dar rechazo al llegar a estas capas, deteniéndose la hinca, lo que supone un riesgo de punzonamiento bajo las cargas de trabajo.
Las vetas carbonatadas y costras, de naturaleza evaporítica y de espesores variables, con elevadas resistencias. Los sondeos a rotación disgregan las gravas presentes, otras veces se sacan testigos rocosos que se confunden con gravas o bolos calcáreos. Son errores de apreciación que, unido a la difícil correlación entre los cortes geotécnicos, provocan que pasen desapercibidas estas vetas y causen problemas en la hinca y en la perforación.
Las vetas silicatadas se confunden con los cantos de sílex. Son capas de extraordinaria dureza que hace difícil la penetración de los pilotes, incluso con espesores de pocos centímetros.
Bloques erráticos u obstáculos de tamaño similar al diámetro del pilote. Pueden dificultar enormemente el hincado o la perforación.
Confusión entre roca sana y alterada en el apoyo del pilote, que puede magnificar o infravalorar la capacidad portante prevista.
Evaluación de la resistencia de una capa rocosa para predecir si la excavación debe realizarse con trépano, tricono o elementos de corte rotativo.
La estructura del substrato rocoso debe caracterizarse geológicamente y con reconocimientos puntuales para determinar si las fracturas impiden la perforación rotativa para un determinado diámetro.
Los sondeos pueden interpretar una estabilidad de las paredes diferente a la perforación del pilote, pues los diámetros son diferentes. Si el terreno lo permite, se prefieren los sondeos helicoidales, pues se aproximan mejor a las condiciones de perforación del pilote.
La permeabilidad del terreno y la presencia de capas granulares abiertas pueden impedir la perforación con lodos, debiéndose recurrir a la entubación. Un sondeo convencional puede pasar por alto este aspecto, salvo que se hagan pruebas de bombeo o permeabilidad.
Referencias:
RODRÍGUEZ ORTIZ, J.M. (1982). Reconocimientos del terreno para pilotajes, en ROMANA, M. (Ed.): Apuntes sobre pilotes. Universidad Politécnica de Valencia.
En situaciones difíciles, como estratos de arcilla compacta o roca blanda, cuando la técnica de la inyección del agua no es apropiada, se puede optar por una perforación vertical previa mediante una barrena helicoidal de un diámetro bastante inferior al pilote. Al utilizar una perforación previa, se protege el pilote de un hincado demasiado difícil y, además, se reduce el ruido y las vibraciones. El diámetro del prebarrenado dependerá del tamaño y la forma del pilote, así como de las características del terreno. Suele ser 100 mm inferior que la diagonal de la sección de pilotes cuadrados o en H, y 25 mm inferior en caso de sección circular. Sin embargo, si el terreno es muy resistente, a veces el diámetro del prebarrenado es igual a la mayor dimensión exterior del pilote.
Esta técnica es aplicable a la hinca de pilotes muy próximos a otra infraestructura, de forma que el desplazamiento radial del terreno puede afectarla. También sería de interés en el caso de que la hinca del pilote transmitiera fuertes presiones hidráulicas a distancias considerables. Otro caso sería en terrenos de gran susceptibilidad tixotrópica, donde los pilotes pueden levantarse varios metros debido a la recuperación de las propiedades del suelo.
En otras ocasiones, se recurre a la técnica del punzonado cuando los pilotes son pequeños. Esta técnica consiste en hincar un perfil pesado de acero laminado para romper estratos duros. El punzón se debe extraer antes de hincar el pilote.
A continuación, os dejo un vídeo en el que se realiza un prebarrenado antes de hincar un pilote metálico de sección en H.
La hinca de pilotes con maza de caída libre (figura 1) es un sistema antiguo que ya utilizaban los romanos. Debido a su bajo coste y simplicidad, su uso se mantiene en la hinca de pequeños pilotes de madera o metálicos que se utilizan de manera provisional. Los equipos más utilizados tienen mazas de 10 a 50 kN que operan con carreras de entre 0,2 y 1 m. Sin embargo, el golpeteo es muy lento.
La maza o ariete se suspende de un cable y desliza por unas guías que hacen la función de gemelas. Existen dos variedades: las que se izan con un cabrestante con embrague, que experimentan cierto frenado por rozamiento e inercia del cabrestante; y las de escape en la propia maza, siendo estas últimas las que mayor control de energía proporcionan por la ausencia de rozamientos del cabrestante. En pilotes de gran tamaño que a veces sobrepasan los 2 m de diámetro y 100 m de profundidad, la hinca debe efectuarse sin «gemelas», pues los elementos parciales, de 20 o 30 m, se acoplan a los modelos normales.
En la actualidad, se ha recobrado el interés por este tipo de martillos debido a la facilidad de operar dentro de una cámara aislada acústicamente para cumplir las exigentes normativas de ruidos. Esto se debe al aislamiento conseguido con la colocación de chapas de acero y plástico intercaladas en torno al punto de percusión de la maza. Con esta protección se consiguen niveles de ruido tolerables, de 80 a 85 dB-A.
Las condiciones del terreno, junto con la longitud, el diámetro y el peso del pilote o la tablestaca, determinan el peso de la maza y la altura de caída más convenientes (figura 2). Designando por R la resistencia a vencer (función a su vez de la tensión de hundimiento del terreno y de la sección del pilote o tablestaca), h la penetración del elemento a cada golpe, P el peso de la maza y H su altura de caída, se cumple la siguiente condición:
Y teniendo en cuenta el peso T del pilote o de la tablestaca y los coeficientes prácticos de corrección, tenemos la siguiente expresión:
donde:
K1 = Coeficiente de eficiencia de la maza
K2 = Coeficiente de restitución del impacto
re = Rebote elástico del conjunto tablestaca-terreno
Los pesos habituales de las mazas están comprendidos entre el 75 % y el 50 % del pilote o tablestaca que se debe hincar. En las mazas de caída libre, el ritmo de golpeo es lento (del orden de 20 a 30 golpes por minuto), aunque este aspecto no es importante, ya que la hinca dura poco en comparación con el conjunto de la obra.
Relacionado con lo anterior, os envío un vídeo explicativo sobre la hinca dinámica de pilotes y tablestacas. Espero que os resulte interesante.
Aquí os dejo un vídeo ilustrativo sobre la hinca de pilotes.
Os paso un vídeo donde se utiliza una masa de 7,85 kN que se deja caer desde una altura de 10 m.
Los pilotes roscados tipo “Atlas” y sus variantes son pilotes de desplazamiento hormigonados en obra (ver Figura 1). Presentan forma de tornillo y están diseñados para aprovechar al máximo la capacidad portante del terreno. El terreno se va compactando a la vez que se introduce el pilote. Al extraer la perforadora queda una perforación en forma de tornillo que maximiza la transmisión de esfuerzos a lo largo del fuste.
El proceso constructivo, tal y como se representa en la Figura 2, consta de las siguientes fases:
Puesta a punto y colocación de una punta perdida.
Penetración de la puntera en el terreno hasta la profundidad requerida.
Colocación de armaduras.
Retirada progresiva del útil de corte y perforación girando en sentido contrario y hormigonando el pozo desde el interior del útil.
Los pilotes de desplazamiento con azuche (pilotes CPI-2 en la nomenclatura de las antiguas Normas Tecnológicas de Edificación), consiste en un tubo de acero hincado en el terreno con un azuche de punta cónica o plana en su extremo inferior, que puede ser metálica o de hormigón prefabricado. Este pilote se realiza sin extracción de terreno, por lo que durante su ejecución no puede comprobarse la naturaleza del suelo que se va atravesando. El hueco generado por la hinca de este elemento se rellena con hormigón fresco y armadura, generando el pilote propiamente dicho. El azuche posee un diámetro exterior mayor en aproximadamente 5 cm que el pilote, con la parte superior cilíndrica ya preparada para introducir en el extremo inferior de la entubación. Se utilizan con diámetros pequeños (entre 30 y 65 cm) y cuando el terreno es resistente, pero poco estable. La armadura tiene una longitud mínima que será el mayor valor de los siguientes: 6 m o 9 veces el diámetro del pilote. La longitud del pilote viene limitada por la longitud de la resbaladera sobre la que desliza la tubería, estando en torno a los 22 m.
Su uso habitual es como pilotaje de poca profundidad, trabajando por punta, apoyado en roca o capas duras de terreno, después de atravesar capas blandas. También como pilotaje, trabajando por fuste y punta en terrenos granulares, medios o flojos, o en terrenos de capas alternadas, coherentes y granulares, de alguna consistencia. Se recupera la tubería, si es preciso mediante vibradores, dejando el azuche o tapa perdido.
Con golpes de maza o martillo se hinca desde la parte superior de la entubación y se encaja hasta la profundidad que se requiere para el pilotaje. Luego se extrae la entubación con la precaución de que quede un mínimo de hormigón igual a 2 veces el diámetro interior; de esta manera se impide la entrada de agua por la parte inferior de la entubación y el corte del pilote. Durante la extracción se pierde el azuche. La forma de extraer la entubación es con un golpe en la cabeza, logrando el efecto de vibrado del hormigón, circunstancia que ha dado nombre al pilote “Vibro”, que es el más conocido dentro de este tipo. Para la hinca se usa el martinete (martillo hidráulico o diésel), que consiste en un mazo mecánico que va dando golpes periódicos sobre la cabeza del pilote para introducirlo en el terreno. Aparte del pilote Vibro, otros pilotes comerciales que utilizan técnicas parecidas son el Simplex, Alpha o Western.
Este pilote se clava hasta la capa firme y la capacidad portante se puede comprobar por el número de golpes necesarios para alcanzar una penetración determinada. Es muy frecuente emplear la denominada fórmula de los holandeses, aplicándose un coeficiente de seguridad de 6.
Se pueden describir las siguientes fases de ejecución:
Puesta en obra y colocación de un azuche metálico o tapón en la base.
Hincado de tubería hueca y azuche mediante golpeo con maza o martillo hasta llegar al rechazo.
Colocación de la armadura hasta el fondo del pilote
Hormigonado en seco.
Extracción de la camisa, dejando el azuche o tapa perdido.
Demolición de una longitud no menor a 1 m (descabezado del pilote)
Os dejo a continuación un vídeo Polimedia donde se explica la construcción de este tipo de pilotes.
Pilote de desplazamiento con azuche CPI-2. Norma Tecnológica de Edificación
Un muro pantalla o pantalla de hormigón in situ es un tipo de cimentación profunda, o estructura de contención flexible, empleado habitualmente en ingeniería civil. Funciona como un muro de contención que se construye antes de efectuar el vaciado de tierras y que transmite los esfuerzos al terreno. En algunos posts anteriores ya hemos descrito este elemento constructivo.
En este artículo nos vamos a centrar en los aspectos de seguridad. Para ello os dejamos un vídeo descriptivo de la ejecución de muros pantalla en seguridad realizado por el Comité de Seguridad de AETESS para la Guía técnica audiovisual para la promoción de la Seguridad Laboral en el sector de las Cimentaciones Especiales (www.aetess.com), así como un enlace a la guía técnica de seguridad AETESS de muros pantalla (link). Espero que os sea el material de utilidad.
Según la NTE, se denomina CPI-7 al pilote perforado a rotación y hormigonado “in situ”, en los que debido a las características del terreno, no precisa el sostenimiento de las paredes. Es un pilote rápido de ejecutar y económico, idóneo cuando el terreno es estable durante la perforación. Los diámetros habituales oscilan entre 450 y 1500 mm, con profundidades de hasta 40 m. El tipo de terreno decide la forma de excavación. En el caso de terrenos blandos y medios, la excavación se realiza mediante barrenas de hélice cortas. En cambio, con terrenos más duros deberíamos incluir en la barrena de dientes puntas de widia. En terrenos muy competentes y roca la perforación pasa por una corona circular con puntas de widia. Una vez alcanza la profundidad objetivo se efectúa la limpieza del fondo de la excavación mediante el uso de un cazo (“bucket”).
Posteriormente, al limpiado del fondo se procede a introducir la armadura de acero con la ayuda de un equipo auxiliar (grúa). Para garantizar el recubrimiento mínimo necesario de la misma, se levanta 20 cm sobre el fondo de la excavación y se colocan separadores para su correcto centrado.
Después de colocar la armadura se comienza con el hormigonado. Se utiliza un tubo “Tremie” para verter el hormigón en la perforación, de forma que se eviten segregaciones y exudaciones. Este tubo se introduce por dentro de la armadura hasta alcanzar el fondo de la perforación. A continuación se comienza a bombear el hormigón que debe ser homogéneo y de consistencia fluida, con conos de Abrams de 15-16 cm, recomendando dosificaciones de hormigón de 350 kg de cemento por m3 de hormigón y la utilización de áridos no superiores a 20 mm.
Conforme avanza la fase de hormigonado se va subiendo simultáneamente el tubo Tremie, pero teniendo la precaución de mantenerlo siempre unos dos metros introducidos en el hormigón fresco. Cuando el hormigón alcanza la cota de la rasante del terreno se concluye con el hormigonado. Por último, se procede al descabezado de los pilotes.
Os dejo una animación que describe el procedimiento.
También podéis ver a continuación un vídeo Polimedia donde se explica la construcción de este tipo de pilotes.
La hinca de elementos en suelos granulares compactos como las arenas, especialmente en terrenos secos, presentan serias dificultades que pueden resolverse mediante la inyección de agua a presión en la punta del pilote o la tablestaca o en alojamientos previamente preparados en sus caras. La presión del agua, de entre 0,4 y 4 MPa, debe ser apropiada al tipo de terreno y al elemento que se va a hincar, con un caudal de alimentación permanente de entre 72 y 900 m³/h.
Este procedimiento puede ser suficiente para la hinca, pero lo usual es combinarlo con otros sistemas de tipo dinámico, especialmente la vibración. La hinca con chorro de agua es muy recomendable en zonas donde el rechazo se presente al 100 %, como en los terrenos arenosos. Sin embargo, en suelos arcillosos, la eficacia de la inyección de agua es prácticamente nula. En terrenos granulares con gravas gruesas y bolos, la inyección de agua puede no movilizarlas, por lo que el efecto también es bajo. En cualquier caso, hay que prever las consecuencias que puede tener en el entorno de la hinca por la pérdida de cohesión que sufrirá el terreno. Este procedimiento no se recomienda en aquellos pilotes que vayan a trabajar por fuste o que soporten cargas horizontales importantes, debido justamente al aflojamiento del terreno.
Las normas obligan a que la lanza de agua se mantenga entre 1 y 4 m por encima de la profundidad prevista, puesto que el suelo se afloja. Por tanto, la hinca se terminará mediante un procedimiento ordinario. Esta prescripción es muy relevante en el caso de los pilotes que trabajan por punta. También se suspenderán los trabajos si el pilote empieza a torcerse debido a una perturbación excesiva del terreno.
A continuación, dejamos un vídeo que ilustra el procedimiento constructivo.
El pilote «monotubo» Unión es apropiado para pequeños trabajos donde no se requiera un equipo especial de hinca, como un mandril. Se trata de un tubo de acero de sección cónica y estriada de pequeño espesor que se hincan en el terreno sin ayuda de un núcleo o mandril. El estriado le permite soportar los esfuerzos de hinca sin pandeo. Presentan un diámetro de 20 cm en la punta y de 30 a 45 cm en la cabeza. Se utilizan pilotes de hasta 37 m de longitud y cargas de 300 a 600 kN. Son especialmente apropiados para trabajos pequeños, porque no requieren equipos especiales de hinca, como el mandril.