Cómo lograr que tus estudiantes transformen su forma de pensar, según la ciencia

Introducción: ¿Por qué a veces enseñar parece una batalla perdida?

Todo educador conoce esa frustración: preparamos nuestras clases con esmero, organizamos los contenidos de forma lógica, explicamos con la mayor claridad posible y ponemos toda nuestra pasión en ello. Sin embargo, al final del semestre, nos damos cuenta de que muchos estudiantes no han retenido la información, no han conectado las ideas o, simplemente, no han llegado a comprender la esencia de lo que intentábamos transmitir. Es como si nuestras palabras se hubieran desvanecido en el aire.

La reacción instintiva ante este problema es intentar perfeccionar nuestra enseñanza. Buscamos ser más claros, organizar mejor el material o encontrar ejemplos más ilustrativos. Asumimos que, si mejoramos la forma en que transmitimos el conocimiento, el aprendizaje ocurrirá de forma natural. Pero ¿y si esa premisa fuera fundamentalmente incorrecta?

Décadas de investigación rigurosa en educación superior han revelado una serie de principios sobre cómo las personas realmente aprenden. Lo sorprendente es que muchas de estas conclusiones son profundamente contraintuitivas y entran en conflicto con nuestras ideas más arraigadas sobre la enseñanza. En este artículo, sintetizamos cinco de las lecciones más impactantes de esta investigación, organizadas en un proceso de creciente sofisticación pedagógica. Empezaremos por los fundamentos de la comunicación efectiva y llegaremos hasta las formas más avanzadas de diseño curricular, revelando un mapa que transforma la frustración en un aprendizaje real y duradero.

Lección 1: no se trata de lo que enseñas, sino de lo que ellos hacen.

El primer y más importante cambio de paradigma es el siguiente: el factor que determina los resultados del aprendizaje no es la calidad de la exposición del profesor, sino la de la actividad que realiza el estudiante. Se trata de una idea sencilla en apariencia, pero con implicaciones revolucionarias para el diseño de cualquier curso.

Investigadores como John Biggs han demostrado que el enfoque de la planificación docente debe cambiar por completo. Esta es la esencia del cambio de paradigma que Barr y Tagg describieron en su artículo «From Teaching to Learning», un pilar de la pedagogía moderna. En lugar de preguntarnos «¿qué temas voy a cubrir?», la pregunta fundamental debe ser «¿qué actividades voy a diseñar para que mis estudiantes piensen y trabajen?». Este principio nos obliga a cambiar nuestro papel de «presentadores de información» a «arquitectos de experiencias de aprendizaje».

Este cambio es difícil de asimilar porque nos saca del centro del escenario. Lo que realmente importa es el reto intelectual que proponemos y el trabajo cognitivo que los estudiantes realizan para superarlo, no nuestra brillante explicación. La enseñanza más eficaz no es la que transmite mejor, sino la que provoca la mejor actividad.

«Lo que el estudiante hace, y no tanto lo que el profesor hace, es lo que determina los resultados de aprendizaje».

Lección 2: Los sentimientos importan más de lo que crees.

A menudo, concebimos la enseñanza como un proceso puramente cognitivo: si la información es clara y está bien organizada, los estudiantes aprenderán. Sin embargo, la investigación demuestra que los aspectos afectivos y relacionales son, como mínimo, tan importantes. Factores como la cercanía, la expresividad y la credibilidad del docente pueden potenciar el aprendizaje.

Estas cualidades no son meros adornos. Tienen efectos directos y medibles: aumentan la motivación, reducen la ansiedad que sienten los estudiantes ante la información compleja y, lo que es crucial, impactan en el aprendizaje afectivo. Este último se refiere a los valores, actitudes y sentimientos que el estudiante desarrolla hacia la asignatura. De hecho, un hallazgo sorprendente es que la claridad del profesorado puede tener un efecto aun mayor en la actitud positiva del alumnado hacia la asignatura que en su aprendizaje puramente cognitivo.

La comunicación en el aula nunca es solo una transacción de información. Es un acto de construcción de relaciones. Cuando un profesor se muestra cercano y creíble, fomenta un entorno en el que los estudiantes están más dispuestos a implicarse, a confiar y, en definitiva, a valorar el conocimiento que se les ofrece.

«La mayoría de los estudiantes no valora intrínsecamente el aprendizaje que se les prescribe. Hay que enseñarles a valorar ese conocimiento».

Dominar la claridad y la conexión con el estudiante (lo que la investigación denomina nivel 1) es la base. Sin embargo, el verdadero salto en la efectividad se produce cuando cambiamos el enfoque de nosotros hacia ellos y empezamos a diseñar el aprendizaje en función de su actividad.

4. Lección 3: Olvida el «aprendizaje activo». Busca el «aprendizaje constructivo».

«Aprendizaje activo» se ha convertido en un término de moda, una especie de eslogan que todo el mundo apoya, pero pocos lo definen con precisión. La dicotomía simple entre «activo» (hacer cosas) y «pasivo» (escuchar) es engañosa. Escuchar una conferencia brillante puede ser una actividad intelectual increíblemente intensa, mientras que participar en una actividad mal diseñada puede ser una pérdida de tiempo.

La investigadora Michelene Chi propone un concepto mucho más útil y preciso: el aprendizaje constructivo. La clave no está en si los estudiantes «hacen algo» físicamente, sino en el tipo de trabajo mental que realizan. El aprendizaje es constructivo cuando la actividad exige a los estudiantes producir un resultado que va más allá de la información inicialmente proporcionada.

El aprendizaje constructivo se produce cuando el estudiante reorganiza las ideas, sintetiza, critica, diseña, aplica, ofrece soluciones, realiza diagnósticos o aporta análisis. La clave es la transformación, no la mera repetición. El objetivo de una buena actividad no es simplemente mantener a los estudiantes ocupados; es involucrarlos en un trabajo cognitivo de alto nivel que propicie una comprensión nueva y personal.

«…aquellas [actividades] en las que, al realizarlas, los estudiantes producen resultados añadidos, esto es, resultados que contienen ideas relevantes que van más allá de la información de partida que se les ha dado»

Lección 4: el mayor obstáculo es lo que los estudiantes ya «saben».

Uno de los descubrimientos más sólidos y, a la vez, más ignorados de la investigación educativa es que el mayor obstáculo para el aprendizaje no es la falta de conocimientos, sino las ideas preconcebidas, ingenuas o erróneas que los estudiantes traen al aula. Estas ideas, a menudo implícitas y profundamente arraigadas, pueden ser increíblemente resistentes al cambio y bloquear la asimilación de conceptos científicos o de expertos.

La magnitud de este problema es enorme. Un ejemplo famoso proviene de la física: cuando se diseñó el Force Concept Inventory (FCI), una prueba para evaluar la comprensión de los conceptos básicos de la mecánica newtoniana, los profesores universitarios predijeron que sus alumnos la superarían con facilidad. Los resultados reales fueron un shock: las puntuaciones medias se situaban en un desolador 20-25 %. Esto reveló que incluso los estudiantes más brillantes albergaban ideas profundamente erróneas sobre el movimiento. Sus cursos no los habían corregido porque la enseñanza tradicional simplemente añade capas de información nueva sobre estas concepciones resistentes sin llegar nunca a desplazarlas.

Una enseñanza verdaderamente eficaz no puede ignorar este hecho. Debe diseñarse explícitamente para facilitar el cambio conceptual. Para ello, es necesario crear situaciones y problemas que obliguen a los estudiantes a expresar sus ideas previas, a confrontarlas con las pruebas y, en última instancia, a modificar su forma de pensar. Si no se lleva a cabo este proceso deliberado, corremos el riesgo de que los estudiantes memoricen únicamente las respuestas correctas para el examen, mientras sus ideas erróneas originales permanecen intactas.

«¿Con qué frecuencia el profesor invierte un gran esfuerzo en ofrecer una explicación concienzuda de algún fenómeno sin darse cuenta de que los estudiantes están formando interpretaciones significativamente diferentes en sus cabezas?».

Si este «cambio conceptual» es el objetivo, ¿cómo diseñamos un curso entero en torno a él? La respuesta está en identificar los «portales» donde este cambio sea más necesario y transformador.

Lección 5: No enseñes temas; diseña «portales» de conocimiento.

El nivel más avanzado de diseño curricular abandona la idea de un temario como una mera lista de contenidos por cubrir. En su lugar, se centra en identificar y enseñar los conceptos umbral (threshold concepts). Esta idea, desarrollada por Meyer y Land, parte del concepto de «conocimiento problemático» (troublesome knowledge) de David Perkins, que se refiere a aquellas ideas contraintuitivas o complejas que, por tanto, resisten el aprendizaje superficial.

Un concepto umbral funciona como un portal: cuando el estudiante lo atraviesa, su forma de ver la disciplina (e incluso el mundo) cambia por completo. Abrirá una forma de pensar antes inaccesible. Estos conceptos suelen ser precisamente los puntos en los que los estudiantes se atascan, ya que a menudo resultan contraintuitivos, problemáticos o complejos. Son las ideas clave que, una vez comprendidas, conectan todo lo demás y permiten al estudiante empezar a pensar como un experto en la materia.

Pensemos, por ejemplo, en el concepto de «coste de oportunidad» en economía. Cuando un estudiante lo comprende de verdad, ya no ve las decisiones como simples elecciones, sino como un campo de renuncias y de alternativas. Este concepto transforma su manera de analizarlo todo, desde una política gubernamental hasta qué hacer el sábado por la noche. Ese es el poder de un portal conceptual.

La docencia de excelencia consiste, por tanto, en identificar estos portales conceptuales en una disciplina. El curso deja de ser una secuencia de temas para convertirse en un viaje cuidadosamente diseñado que guía a los estudiantes a través de estos umbrales transformadores. El objetivo ya no es «cubrir el temario», sino provocar saltos cualitativos en la comprensión.

«Un concepto umbral puede considerarse como un portal que abre una nueva forma de pensar sobre algo previamente inaccesible. Representa una forma transformada de comprender, interpretar o ver algo, sin la cual el estudiante no puede progresar».

Conclusión: un pequeño cambio, un gran impacto.

Estas cinco lecciones suponen una evolución coherente en nuestra forma de entender la docencia. Nos invitan a evolucionar desde el papel de profesor que presenta información de forma clara y cercana (lecciones 1 y 2), hasta el de arquitecto que diseña desafíos cognitivos (lección 3), diagnosticador que identifica los modelos mentales de sus estudiantes (lección 4) y, por último, guía que acompaña a los estudiantes a través de los portales intelectuales más transformadores de su disciplina (lección 5). El enfoque cambia de la perfección en la transmisión de contenidos a la creación de experiencias que faciliten un aprendizaje auténtico.

De estas cinco lecciones, ¿qué cambio podrías implementar en tu próxima clase para empezar a centrarte en lo que hace el estudiante?

En este audio podemos escuchar una conversación sobre este tema.

En este vídeo se sintetizan las ideas más importantes sobre el aprendizaje activo.

En este documento puedes ver las ideas más importantes.

Pincha aquí para descargar

Referencias:

Barr, R. B., & Tagg, J. (1995). From teaching to learning: A new paradigm for undergraduate education. Change Magazine, Nov/Dec.

Biggs, J. (1999). What the student does: Teaching for enhanced learning. Higher Education Research and Development, 18(1), 57–75.

Biggs, J. B., & Tang, C. (1999). Teaching for quality learning at university: What the student does. Society for Research into Higher Education & Open University Press.

Chi, M. T. H. (2005). Commonsense conceptions of emergent processes: Why some misconceptions are robust. Journal of the Learning Sciences, 14, 161–199.

Chi, M. T. H. (2008). Three types of conceptual change: Belief revision, mental model transformation, and categorical shift. En S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 61–82). Routledge.

Chi, M. T. H. (2009). Active-constructive-interactive: A conceptual framework for differentiating learning activities. Topics in Cognitive Science, 1(1), 73–105. https://doi.org/10.1111/j.1756-8765.2008.01005.x

Meyer, J. H. F., & Land, R. (2003). Threshold concepts and troublesome knowledge: Linkages to ways of thinking and practising within the disciplines. ETL Project, University of Edinburgh.

Meyer, J. H. F., & Land, R. (2005). Threshold concepts and troublesome knowledge (2): Epistemological considerations and a conceptual framework for teaching and learning. Higher Education, 49, 373–388. https://doi.org/10.1007/s10734-004-6779-5

Meyer, J. H. F., & Land, R. (2006). Threshold concepts and troublesome knowledge: An introduction. En J. H. F. Meyer & R. Land (Eds.), Overcoming barriers to student understanding: Threshold concepts and troublesome knowledge (pp. 3–18). Routledge.

Paricio, J. (2020). La calidad de «lo que el estudiante hace»: aprendizaje activo y constructivo. En J. Paricio, A. Fernández March y J. M. Carot Sierra (Eds.), Cartografía de la buena docencia universitaria (pp. 57-88). Narcea.

Perkins, D. (1999). The many faces of constructivism. Educational Leadership, 57(3), 6–11.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

ABP, método del caso y proyectos: Claves para una enseñanza más significativa.

El aprendizaje activo supone un cambio de paradigma educativo, ya que desplaza el foco del docente al estudiante y concibe el aprendizaje como un proceso constructivo en lugar de receptivo. Se basa en tres pilares: la psicología cognitiva, que sostiene que el conocimiento se estructura en redes semánticas asociativas; el fomento del aprendizaje autodirigido para desarrollar habilidades metacognitivas; y la contextualización del aprendizaje mediante problemas del mundo real para aumentar la motivación y facilitar la transición al entorno profesional.

Los componentes clave de estas metodologías incluyen la presentación de un escenario contextualizado y el trabajo en grupo para fomentar la colaboración y la comprensión. También implican resolver problemas complejos, similares a los de los profesionales, y adquirir nuevos conocimientos, motivados por esa necesidad. Además, incorporan un enfoque basado en el mundo real que prepara a los estudiantes para su futuro profesional.

La adopción de estas metodologías se justifica por su capacidad para generar una comprensión más profunda y duradera que los formatos de conferencia tradicionales, que conllevan una baja retención de conocimientos. Al centrarse en lo que el estudiante aprende, se fomenta una mayor comprensión, motivación y participación. Las principales metodologías activas analizadas son el aprendizaje basado en problemas (ABP), el método del caso (MdC), el aprendizaje basado en proyectos (ABP) y el aprendizaje cooperativo (AC), que puede combinarse con las demás.

Fundamentos teóricos del aprendizaje activo.

Las metodologías activas se sustentan en principios pedagógicos y psicológicos que buscan optimizar el proceso de aprendizaje del estudiante, centrándose en su participación directa y en la construcción activa del conocimiento.

1. El aprendizaje como proceso constructivo.

Estas estrategias rechazan la idea del aprendizaje como una mera recepción y acumulación de información. En su lugar, lo conciben como un proceso constructivo.

La psicología cognitiva ha demostrado de manera consistente que una de las estructuras más importantes de la memoria es la asociativa. El conocimiento está organizado en redes de conceptos relacionados, denominadas redes semánticas. La nueva información se integra a la red ya existente. Según cómo se realice esta conexión, la nueva información podrá utilizarse o no para resolver problemas o reconocer situaciones (Glaser, 1991).

2. Fomento del aprendizaje autodirigido.

Un segundo pilar es el desarrollo de las habilidades metacognitivas, lo que se traduce en un aprendizaje autodirigido más eficaz y profundo.

Se trata de promover habilidades que permitan al estudiante valorar la dificultad de los problemas, detectar si ha comprendido un texto, saber cuándo debe utilizar estrategias alternativas para comprender la documentación y evaluar su progreso en la adquisición de conocimientos (Brunning et al., 1995).

En este contexto, los estudiantes trabajan en equipo, discuten, argumentan y evalúan constantemente lo que aprenden, apoyados por estrategias específicas de las metodologías activas.

3. La contextualización en el mundo real.

El aprendizaje se vuelve más significativo y motivador cuando se enmarca en problemas reales o en la práctica profesional.

La contextualización de la enseñanza fomenta una actitud positiva y la motivación en los estudiantes, aspectos imprescindibles para un aprendizaje comprensible. Además, permite que los estudiantes se enfrenten a problemas reales con un nivel de dificultad y complejidad similares a los que se encontrarán en la práctica profesional.

Componentes clave de las metodologías activas.

Estos principios se materializan mediante una serie de componentes estructurales comunes, según sintetizaron Johnson et al. (2000).

  • El escenario: establece el contexto del problema, caso o proyecto. A menudo, se asigna a los estudiantes un rol profesional específico (investigadores, programadores, etc.). A menudo, incluye un «objeto de información» (una noticia, una imagen, un poema) que actúa como elemento contextualizador y motivador y crea una necesidad de aprendizaje sin ofrecer pistas directas para la solución.
  • Trabajo en grupo: los estudiantes se organizan en pequeños grupos para probar y desarrollar su comprensión. Esta dinámica imita entornos de trabajo reales y permite abordar problemas complejos mediante la división de tareas. Los estudiantes asumen una responsabilidad tanto individual como colectiva para que el grupo funcione de manera eficiente.
  • Solución de problemas: Los problemas que se plantean son, por naturaleza, complejos y requieren razonamiento e indagación. Reflejan los desafíos a los que se enfrentan los profesionales de su campo. La dificultad del problema y las instrucciones para resolverlo deben ajustarse al nivel del curso universitario.
  • Descubrimiento de nuevos conocimientos: Para encontrar una solución significativa, los estudiantes deben buscar activamente nuevos conocimientos.
  • Basado en el mundo real: el objetivo principal es que los estudiantes piensen como profesionales desde el principio de su formación, para facilitar la transición de la universidad al mundo laboral. Los estudiantes se enfrentan a problemas para los que no existe necesariamente una única respuesta correcta, aunque sí se fundamentan en las leyes y en los modelos teóricos de la disciplina.

Justificación para la adopción de metodologías activas.

El cambio hacia un modelo de enseñanza activa se basa en el deseo de superar las limitaciones del formato de conferencia tradicional y promover un aprendizaje más significativo.

  • Comprensión profunda frente a la memorización: La razón principal es que queremos proporcionar a los estudiantes una comprensión más profunda. Las investigaciones demuestran que, con el formato de conferencia tradicional, los estudiantes retienen muy poco de lo enseñado (Duch et al., 2001) y, a menudo, se limitan a memorizar para el examen sin establecer conexiones entre los conceptos.
  • Enfoque en el aprendizaje del estudiante: las metodologías activas cambian el enfoque de lo que enseña el docente a lo que aprende el estudiante.

Tipos de aprendizaje activo y sus características.

Cada una de ellas presenta particularidades que la hacen más adecuada para ciertas áreas de conocimiento o contextos educativos.

Aprendizaje Basado en Problemas (ABP)

  • Punto de partida: se presenta un problema (escenario o gancho) diseñado para cubrir uno o varios resultados de aprendizaje (conocimientos, habilidades, etc.).
  • Proceso y producto: el proceso de resolución conduce a una «salida» o producto del grupo, que puede ser desde un informe o un cartel hasta resultados experimentales.
  • Estructura: los problemas pueden incluir etapas en las que la información se revela progresivamente, así como esquemas de evaluación.
  • Autonomía gradual: en los primeros cursos, la estrategia puede estar más guiada y se va otorgando progresivamente más autonomía al estudiante en cursos posteriores o incluso dentro de una misma asignatura.
  • Adaptación a contenidos abstractos: En asignaturas de alta dificultad conceptual, el profesor puede mantener un papel directivo en la secuencia de actividades, guiando al alumnado mediante discusiones para que deduzca los pasos a seguir.

Método del Caso (MdC)

  • Variante 1 (Aplicación): se plantea el caso tras que el estudiante ha adquirido conocimientos previos. El objetivo es integrar y aplicar dichos conocimientos en una situación real.
  • Variante 2 (Descubrimiento): el caso se presenta como punto de partida para el aprendizaje. La resolución del caso guía a los estudiantes para que adquieran los conocimientos necesarios.
  • Características: Los casos pueden variar en extensión (de dos a cincuenta páginas) y se centran en el desarrollo de capacidades de análisis, toma de decisiones, emisión de juicios y evaluación.

Aprendizaje Basado en Proyectos (ABPy)

  • Envergadura: implica realizar un trabajo a gran escala, que puede consistir en un proyecto cuatrimestral único, un proyecto interdisciplinar entre varias asignaturas o un proyecto de un mes.
  • Competencias desarrolladas: requiere dividir el proyecto en problemas más pequeños, planificar su desarrollo, establecer responsabilidades, aplicar la teoría, diseñar productos, analizar la viabilidad de las alternativas y justificar las decisiones tomadas.
  • Aplicación: se utiliza con frecuencia en cursos avanzados, donde se pueden aplicar más conocimientos. También es común en proyectos interdisciplinares que integran los contenidos de varias asignaturas. A nivel de una sola asignatura, sirve para que el alumnado comprenda la relación entre los diferentes temas al aplicarlos conjuntamente.

Aprendizaje Cooperativo (AC)

  • Definición: Es una estrategia didáctica en la que los estudiantes trabajan en pequeños grupos de manera coordinada para resolver tareas y desarrollar su aprendizaje.
  • Cinco aspectos fundamentales:
    1. Interdependencia positiva: todos los miembros del grupo son necesarios para el éxito de la tarea.
    2. Exigibilidad individual: cada miembro rinde cuentas de su parte y del trabajo global del grupo.
    3. Interacción cara a cara: se promueve la comunicación directa.
    4. Habilidades interpersonales: se desarrollan habilidades de trabajo en equipo.
    5. Reflexión del grupo: el equipo evalúa su propio funcionamiento.
  • Funcionamiento: las decisiones se toman en grupo y todos son responsables del resultado final. La evaluación individual está parcialmente condicionada al logro del grupo, lo que fomenta la ayuda mutua.
  • Versatilidad: puede utilizarse de forma aislada o combinada con ABP, MdC o ABPy.

En este vídeo se resumen las ideas más interesantes sobre este tema.

Os dejo un documento de síntesis, por si os interesa.

Pincha aquí para descargar

Referencias:

Brunning, R. H., Schraw, G. J., & Ronning, R. R. (1995). Cognitive psychology and instruction (2ª ed.). Englewood Cliffs, NJ: Prentice Hall.

Duch, B. J., Groh, S. E., & Allen, D. E. (2001). The power of problem-based learning. Sterling, VA: Stylus.

Glaser, R. (1991). The maturing of the relationship between the science of learning and cognition and educational practice. Learning and Instruction, 1(2), 129–144.

Johnson, D. W., Johnson, R. T., & Smith, K. A. (2000). Active learning: Cooperation in the college classroom. Edina, MN: Interaction Book.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

5 revelaciones sobre el aprendizaje que la educación tradicional ignora.

¿Te has preguntado alguna vez por qué se olvida la información justo después de un examen? No se trata de un fallo personal, sino del resultado previsible de un modelo educativo anticuado que suele priorizar la memorización a corto plazo sobre la comprensión profunda. De hecho, la investigación ha demostrado que los estudiantes retienen muy poco de lo que se les enseña en una clase magistral tradicional.

Frente a este desafío, surge el «aprendizaje activo» como una alternativa poderosa. Su enfoque no se centra en lo que enseña el profesor, sino en lo que el estudiante construye. En lugar de ser receptores pasivos, los estudiantes se convierten en protagonistas de su propio proceso de aprendizaje.

A continuación, revelaremos cinco aspectos fundamentales de este enfoque que están redefiniendo el éxito educativo y transformando tu manera de entender el aprendizaje.

Revelación 1: tu cerebro no es un disco duro; es una red en construcción.

El modelo tradicional considera la mente como un recipiente vacío o un disco duro que hay que llenar de datos. La revelación es que la mente no es un almacén, sino un telar. Cada nueva idea es un hilo que solo tiene valor cuando se entreteje con los demás.

La psicología cognitiva nos enseña que el conocimiento se organiza en «redes semánticas». Para que una nueva información sea útil y duradera, debe conectarse con la red existente en nuestra mente. Sin esa conexión, se trata de un dato aislado, fácil de olvidar e inútil para resolver problemas. Aprender no es acumular, sino construir significado.

La enseñanza basada en metodologías activas se centra en el estudiante y en su formación en competencias propias de la disciplina. Estas estrategias conciben el aprendizaje como un proceso constructivo y no como un proceso receptivo.

Revelación 2: no importa tanto lo que sabes, sino cómo aprendes.

En un mundo saturado de información, la habilidad más valiosa no es memorizar datos, sino aprender de forma autónoma. Las metodologías activas se centran en el desarrollo del «aprendizaje autodirigido», cultivando las habilidades metacognitivas que nos serán útiles a lo largo de toda la vida.

Esto significa ser conscientes de nuestro propio proceso de aprendizaje: evaluar la dificultad de un problema, comprender si hemos entendido un texto, saber cuándo debemos buscar estrategias alternativas y medir nuestro progreso. Esta autonomía es crucial en un panorama laboral cambiante que exige un aprendizaje continuo, por lo que se convierte en una capacidad mucho más relevante que cualquier dato memorizado.

Se trata de promover habilidades que permitan al estudiante valorar la dificultad de los problemas, detectar si ha comprendido un texto, saber cuándo debe utilizar estrategias alternativas para comprender la documentación y evaluar su progreso en la adquisición de conocimientos.

Revelación 3: el aprendizaje se enciende con problemas reales, no con teoría abstracta.

¿Por qué aprendemos? La respuesta más potente es para resolver problemas. Esta revelación sostiene que la enseñanza debe producirse en el contexto de los desafíos del mundo real o de la práctica profesional. Al enfrentar situaciones complejas y significativas, el aprendizaje adquiere un propósito claro y tangible.

Esta contextualización no solo aumenta la motivación, sino que también facilita la transición de la universidad al mundo laboral. Cuando el conocimiento se ancla en la realidad, deja de ser un ejercicio abstracto para convertirse en una herramienta poderosa y fundamental para el futuro profesional.

Revelación 4: el profesor no es un orador, sino un arquitecto de experiencias.

El modelo tradicional nos dio al «sabio en el escenario» (sage on the stage). La metodología activa nos ofrece la figura del «guía a tu lado» (guide on the side) o, más precisamente, la de un «arquitecto de experiencias de aprendizaje». Su papel ya no consiste en transmitir información, sino en diseñar escenarios que despierten la curiosidad.

En estos escenarios, el profesor asigna un papel profesional a los estudiantes («ustedes son un equipo de ingenieros…») y plantea un problema. A menudo, utiliza un «objeto de información» —una noticia de periódico, una imagen intrigante, un poema— que actúa como catalizador. Este objeto no da pistas, sino que crea una «necesidad de aprendizaje», un motor que impulsa a los estudiantes a buscar el conocimiento necesario para cumplir su misión.

Revelación 5: el equipo no es un grupo de amigos, sino una estructura de responsabilidades.

El trabajo en grupo es un pilar fundamental de este enfoque, que se estructura según los principios del «aprendizaje cooperativo» para recrear entornos profesionales y garantizar la participación de todos. La complejidad de los problemas del mundo real a menudo es tal que los miembros del grupo necesitan repartirse las tareas para avanzar.

Hay dos conceptos clave. El primero es la interdependencia positiva: la tarea está diseñada de modo que todos los miembros del grupo sean necesarios para alcanzar el éxito. El segundo es la exigibilidad individual: cada estudiante es responsable de su parte del trabajo y de comprender la labor del resto del equipo. No se trata solo de una tarea académica, sino de un entrenamiento directo para el mundo laboral, donde la colaboración y la responsabilidad compartida son la norma.

Conclusión: una invitación a repensar el aprendizaje.

Estas revelaciones nos obligan a redefinir el concepto de éxito educativo. Ya no se trata de cuánta información se ha transmitido, sino de qué capacidades se han desarrollado. Suponen un cambio de paradigma fundamental: el foco deja de estar en lo que enseña el docente para ponerse en lo que el estudiante es capaz de hacer con lo que aprende.

Este enfoque fomenta una comprensión más profunda, una mayor motivación y habilidades de colaboración y resolución de problemas, tan demandadas en el mundo actual. Supone dejar de ser receptores pasivos para convertirnos en constructores activos de nuestro propio conocimiento.

Si pudieras aplicar solo una de estas ideas a tu forma de aprender o de enseñar, ¿cuál elegirías y por qué?

Aquí te dejo una conversación que ilustra bien lo expuesto.

Y si quieres un resumen, puedes ver este vídeo.

Referencias:

Brunning, R. H., Schraw, G. J., & Ronning, R. R. (1995). Cognitive psychology and instruction (2ª ed.). Englewood Cliffs, NJ: Prentice Hall.

Duch, B. J., Groh, S. E., & Allen, D. E. (2001). The power of problem-based learning. Sterling, VA: Stylus.

Glaser, R. (1991). The maturing of the relationship between the science of learning and cognition and educational practice. Learning and Instruction, 1(2), 129–144.

Johnson, D. W., Johnson, R. T., & Smith, K. A. (2000). Active learning: Cooperation in the college classroom. Edina, MN: Interaction Book.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Entornos de aprendizaje emergentes en la educación en ingeniería

La formación en ingeniería está experimentando una transformación profunda, impulsada por desafíos globales como el cambio climático, la revolución digital y la creciente brecha entre la enseñanza académica y las exigencias del mercado laboral. A continuación, analizamos el trabajo de Hadgraft y Kolmos (2020), donde se explora cómo la educación en ingeniería está evolucionando para hacer frente a estos retos mediante cuatro tendencias clave: el aprendizaje centrado en el estudiante, el aprendizaje contextual, la digitalización de la enseñanza y el desarrollo de competencias profesionales. A partir de estas líneas de cambio, se propone que la educación futura debe pasar de un enfoque en disciplinas individuales a currículos integrados que aborden problemas complejos y promuevan trayectorias de aprendizaje personalizadas. En última instancia, se hace hincapié en la necesidad de un cambio sistémico en el diseño curricular para preparar a los ingenieros para un futuro laboral en constante cambio.

La educación en ingeniería se enfrenta a tres desafíos fundamentales: la sostenibilidad y el cambio climático, la Cuarta Revolución Industrial (Industria 4.0) y la empleabilidad de los graduados. Estos desafíos exigen que los ingenieros del futuro posean habilidades transdisciplinares, pensamiento sistémico y contextual, y la capacidad de actuar en situaciones complejas y caóticas. Para responder a estas necesidades, la educación en ingeniería ha evolucionado hacia un enfoque centrado en el estudiante, la integración de la teoría y la práctica, el aprendizaje digital y en línea, y el desarrollo de competencias profesionales. A largo plazo, se tenderá a modelos curriculares más personalizados y centrados en proyectos que permitan a los estudiantes construir sus propias trayectorias de aprendizaje y documentar sus competencias para el aprendizaje a lo largo de la vida.

1. Desafíos clave para la educación en ingeniería

Se identifican tres desafíos principales que están impulsando la necesidad de transformar la educación en ingeniería:

  • Sostenibilidad y cambio climático: la ingeniería es fundamental para abordar los 17 Objetivos de Desarrollo Sostenible (ODS) de la ONU, especialmente en lo que respecta a la pobreza, el hambre, la salud, el agua, la energía, el crecimiento económico y la acción climática. La educación en ingeniería debe preparar a los graduados para responder a estos desafíos humanitarios, sociales y económicos.
  • Cuarta Revolución Industrial (Industria 4.0): Esta revolución implica la integración generalizada de tecnologías como la automatización, el internet de las cosas (IoT), la inteligencia artificial (IA), la robótica y la fabricación aditiva. Tradicionalmente, la ingeniería no se ha enseñado de manera integradora, pero el éxito de la Industria 4.0 depende de la interacción y la integración de estas tecnologías. Esto requiere una mayor colaboración interdisciplinaria entre diferentes programas y disciplinas universitarias, como informática, análisis de datos, robótica, automatización, producción, gestión, electrónica y materiales. La segunda revolución industrial, que está en la agenda política e industrial, implica la integración generalizada de tecnologías como la automatización, el IoT, la IA, la robótica, los materiales avanzados, la fabricación aditiva, la impresión multidimensional, las bio-, nano- y neurotecnologías, y las realidades virtuales y aumentadas.
  • Empleabilidad y competencias de innovación: a pesar de la creciente importancia de habilidades como el emprendimiento y el pensamiento de diseño, aún existe una brecha entre la formación en ingeniería y la preparación para el mundo laboral. La integración de la teoría y la práctica mediante pasantías, proyectos en colaboración con el sector y laboratorios de aprendizaje son soluciones parciales. El aprendizaje basado en problemas o proyectos (PBL) se presenta como un mecanismo para abordar este desafío. La brecha entre la educación en ingeniería y la preparación para el trabajo sigue existiendo, por lo que se deben integrar la teoría y la práctica mediante un enfoque centrado en la empleabilidad y la colaboración con la industria mediante pasantías, proyectos de asociación y laboratorios de aprendizaje.
Desafíos principales que están impulsando la necesidad de transformar la educación en ingeniería

Estos tres desafíos exigen, en conjunto, un mayor énfasis en la responsabilidad social, la integración del contexto social y la interdisciplinariedad, combinados con habilidades digitales y genéricas.

2. Respuestas actuales y tendencias emergentes

La educación en ingeniería ha respondido a estos desafíos con cuatro tendencias principales que se materializarán a corto plazo:

  1. Aprendizaje centrado en el estudiante: Un cambio significativo de la enseñanza tradicional (el profesor da la clase, los estudiantes escuchan) a un currículo más interactivo donde los estudiantes influyen en la dirección de su propio aprendizaje. Esto incluye metodologías como el aprendizaje activo, el aprendizaje colaborativo, el aprendizaje basado en equipos, el aprendizaje basado en el diseño, el aprendizaje basado en la investigación y, en particular, el aprendizaje basado en problemas y proyectos (PBL). El PBL ha demostrado su eficacia para aumentar la motivación, reducir las tasas de abandono y desarrollar competencias, y constituye una respuesta clave a la necesidad de un aprendizaje más complejo. El aprendizaje centrado en el estudiante es un área bien investigada. Los estudios sobre aprendizaje activo, aprendizaje basado en la investigación, aprendizaje basado en el diseño y aprendizaje basado en desafíos muestran efectos positivos en los resultados del aprendizaje. La motivación aumenta cuando los estudiantes inician proyectos, en los que identifican problemas y tienen un alto grado de influencia en la dirección del proyecto.
  2. Aprendizaje contextual y basado en la práctica: Incorporación de elementos curriculares relacionados con situaciones laborales futuras, como pasantías, proyectos de la industria, emprendimiento y centros de innovación. Los proyectos iniciados externamente (por empresas o la comunidad) son particularmente valiosos porque son auténticos y exponen a los estudiantes a la complejidad del mundo real. Junto con la tendencia del aprendizaje centrado en el estudiante, existe una tendencia de aprendizaje contextual y relacionado con la práctica, en la que los estudiantes cuentan con elementos del currículo relacionados con situaciones laborales posteriores, como pasantías, proyectos de la industria, emprendimiento y centros de innovación.
  3. Aprendizaje digital y en línea: Evolución del aprendizaje a distancia a estrategias de aprendizaje combinado (blended learning) que utilizan nuevas tecnologías como la realidad aumentada y la visualización 3D. El modelo del «aula invertida» (flipped classroom) es un ejemplo destacado, en el que los estudiantes se preparan con contenido en línea antes de clase y utilizan el tiempo en el aula para actividades interactivas y resolución de problemas. Este enfoque es una respuesta a la ineficacia de las clases magistrales tradicionales para los niveles superiores de la taxonomía de Bloom y los aspectos complejos del marco Cynefin. En la actualidad, el aprendizaje digital se centra en las estrategias de aprendizaje combinado. La digitalización es más que ofrecer plataformas y entornos de aprendizaje en línea como Blackboard o Moodle; consiste en usar nuevas tecnologías para el aprendizaje, como la realidad aumentada, la visualización 3D, etc. El modelo de «aula invertida», como enfoque centrado en el estudiante, es una respuesta a la metodología de enseñanza y aprendizaje más extendida en la educación en ingeniería, que consiste en un aprendizaje instructivo basado en libros de texto organizado como conferencias, tutoriales y laboratorios, combinado con la resolución de pequeños ejercicios.
  4. Competencias profesionales: Reconocimiento de la creciente importancia de desarrollar competencias profesionales integradas para la empleabilidad en el siglo XXI. Esto incluye el «aprendizaje meta» para que los estudiantes identifiquen y desarrollen sus propias competencias de manera personalizada, a menudo a través de portafolios que les permitan articular su aprendizaje y trayectoria profesional. Se enfatiza la responsabilidad individual en la construcción de la trayectoria de aprendizaje, combinada con la participación en actividades colaborativas. Otro aspecto emergente en la educación en ingeniería es la creciente importancia del aprendizaje integrado de competencias profesionales. Los portafolios desempeñarán un papel fundamental en este proceso, ya que ayudarán a los estudiantes a presentar su aprendizaje a sí mismos, a sus mentores académicos y a futuros empleadores en una entrevista de trabajo.
Respuestas actuales y tendencias en la educación en ingeniería

3. La complejidad y los sistemas en la educación en ingeniería

Los desafíos del futuro requieren que los ingenieros operen en situaciones de complejidad creciente. El marco Cynefin se utiliza para clasificar las situaciones en simples, complicadas, complejas y caóticas, y prescribe diferentes enfoques para cada una:

  • Simple: Comportamiento bien entendido, «mejores prácticas» definidas. Se aplica el método «sentir, categorizar y responder» (ej. fundamentos de ingeniería, problemas de examen tipo fórmula).
  • Complicado: Requiere comportamiento experto, múltiples respuestas correctas. Se aplica «sentir, analizar y responder» (ej. diseño de puentes o teléfonos móviles; proyectos de diseño de estudiantes). La ingeniería de sistemas proporciona un marco estructurado.
  • Complejo: No hay una solución clara o única; surgen soluciones. Se aplica «probar, sentir y responder». Estos son los «problemas complejos» (wicked problems), caracterizados por no tener una formulación definitiva, no tener una mejor solución única, no tener un punto final claro, y donde cada intento de solución impacta el sistema. El diseño de sistemas de transporte para grandes ciudades es un ejemplo.
  • Caótico: Resultado de desastres, requiere acción inmediata para estabilizar antes de aplicar otros enfoques. No suelen ser el foco directo de un grado de ingeniería, excepto en la ética de la ingeniería, aprendiendo de desastres pasados.

Los currículos de ingeniería deben incluir formación para afrontar situaciones simples, complicadas y, crucialmente, complejas. Se necesitan currículos de ingeniería que incluyan la complejidad y lo complicado. Además, para educar a los estudiantes del futuro, deben tener la posibilidad de aprender tanto disciplinas específicas como la transdisciplinariedad, así como conocimientos y habilidades técnicos simples y complicados, y la complejidad que implica la comprensión del contexto, los sistemas, la sostenibilidad y los valores.

4. Modelos curriculares futuros e integrados

La evolución de las respuestas educativas muestra una transición de lo «dirigido por el profesor» a lo «dirigido por el estudiante» y de «módulos únicos» a «modelos de currículo completo».

  • Cambio a nivel de sistema: Existe una tendencia emergente a diseñar currículos a nivel de sistema, coordinando todos los elementos curriculares en lugar de simplemente agregar o modificar cursos individuales. Este enfoque sistémico es crucial para el aprendizaje de la complejidad. Pero, en términos generales, definitivamente ha habido un cambio de un entorno de aprendizaje dirigido por el profesor a otro mucho más dirigido por el estudiante. Además, está surgiendo la tendencia a desarrollar currículos a nivel de sistema, lo que implica coordinar todos los elementos del currículo.
  • Proyectos como núcleo: Los proyectos constituyen un elemento central en los modelos curriculares emergentes, especialmente aquellos iniciados por entidades externas (industria, comunidad). Estos proyectos permiten el desarrollo de habilidades técnicas, sociales y ambientales (comunicación, trabajo en equipo, ética, sostenibilidad) y de diseño y resolución de problemas (pensamiento de diseño, ingeniería de sistemas). También facilitan la consideración de perspectivas multidisciplinares y la comprensión de problemas en contexto, con múltiples puntos de vista y sistemas de valores.
  • Ejemplos de modelos emergentes:
    • University College London (UCL) – Integrated Engineering Program (IEP): Dedica una semana de cada cinco a un proyecto integrado. Esto permite a los estudiantes ver las conexiones entre diferentes módulos y disciplinas.
    • Charles Sturt University (CSU): Programa radicalmente diferente con tres semestres orientados a proyectos, donde los estudiantes aprenden «justo a tiempo» a través de módulos en línea y pasan la mitad de su tiempo en proyectos. Luego realizan cuatro pasantías de un año.
    • Swinburne University: Enfoque similar al de CSU, con proyectos de seis semanas patrocinados por la industria realizados en la universidad, operando como una empresa de ingeniería.
    • Iron Range Engineering: Los estudiantes trabajan en proyectos de empresa y reflexionan continuamente sobre su aprendizaje.

Estos ejemplos muestran cómo las instituciones combinan el aprendizaje basado en proyectos, el aprendizaje digital/en línea y el uso de portafolios para apoyar las trayectorias de aprendizaje personalizadas.

5. Perspectivas y conclusiones

La educación en ingeniería se dirige hacia un futuro en el que la combinación de trayectorias de aprendizaje personales, competencias profesionales y capacidad de abordar la complejidad será la tendencia dominante. Esto implica lo siguiente:

  • Currículos sistémicos: Es necesario un enfoque más sistémico y holístico en el diseño curricular, en lugar de modificaciones aisladas a nivel de curso. Los modelos tradicionales centrados en cursos individuales a menudo dejan la tarea de integrar el conocimiento al estudiante.
  • Aprendizaje para la complejidad: La educación debe preparar a los estudiantes para manejar problemas complejos, que requieren integrar conocimientos disciplinarios e interdisciplinarios, teoría y práctica, comprensión contextual y abstracta, y construcción de conocimiento individual y colaborativa.
  • Habilidades del Siglo XXI: La automatización de cálculos técnicos significa que los ingenieros futuros necesitarán comprender los requisitos sociales, ambientales y económicos de la tecnología y su aplicación.
  • Aprendizaje a lo largo de la vida: Los ingenieros serán cada vez más responsables de sus propias rutas de aprendizaje personales y necesitarán saber cómo construir su crecimiento individual dentro de comunidades de aprendizaje colaborativas. El acceso al conocimiento en línea (MOOCs) aumentará, pero la clave será cómo los estudiantes desarrollan competencias para el aprendizaje a lo largo de la vida, incluida la reflexión crítica y el pensamiento sistémico, normativo y anticipatorio.

En resumen, la educación en ingeniería debe evolucionar de un enfoque basado en la transmisión de conocimientos técnicos simples a otro que fomente la capacidad de los estudiantes para navegar y resolver problemas complejos, multidisciplinares y contextualizados, preparándolos para ser aprendices activos de por vida en un mundo en constante cambio.

Referencia:

Hadgraft, R.G.; Kolmos, A. (2020). «Emerging learning environments in engineering education«, Australasian Journal of Engineering Education, 25:1, 3-16, DOI: 10.1080/22054952.2020.1713522

Glosario de términos clave

  • Aprendizaje centrado en el estudiante: Un enfoque pedagógico en el que el estudiante se convierte en el centro del proceso de aprendizaje, con métodos como el aprendizaje activo, colaborativo, basado en problemas y proyectos, donde los estudiantes tienen una influencia significativa en la dirección de su aprendizaje.
  • Aprendizaje contextual y basado en la práctica: Un enfoque de aprendizaje que integra situaciones del mundo real y experiencias prácticas en el currículo, incluyendo pasantías, proyectos industriales y hubs de innovación, para conectar la teoría con la futura situación laboral.
  • Aula invertida (Flipped Classroom): Una metodología de aprendizaje semipresencial donde la instrucción directa se mueve de la clase a un espacio individual (generalmente en línea), y el tiempo en clase se transforma en un entorno de aprendizaje dinámico e interactivo donde el educador guía a los estudiantes a aplicar conceptos.
  • CDIO (Concebir, Diseñar, Implementar, Operar): Un marco curricular para la educación en ingeniería que enfatiza el desarrollo de habilidades profesionales y un enfoque holístico e integrado del currículo, desde la concepción de una idea hasta su operación.
  • Competencias profesionales: Conjunto de conocimientos, habilidades y aptitudes (tanto técnicas como genéricas, como la comunicación, el trabajo en equipo y la ética) que se espera que los ingenieros adquieran para desempeñarse eficazmente en el lugar de trabajo.
  • Complejidad (en el marco Cynefin): Un dominio de situaciones donde la relación causa-efecto solo puede discernirse en retrospectiva, y las soluciones emergen del sondeo y la experimentación. Se caracteriza por problemas «perversos» sin soluciones únicas o definitivas.
  • Complicado (en el marco Cynefin): Un dominio de situaciones que requieren experiencia y análisis para encontrar múltiples respuestas correctas, pero donde la relación causa-efecto es clara, aunque puede no ser obvia para todos. La resolución de problemas implica «sentir, analizar y responder».
  • Cuarta Revolución Industrial (Industria 4.0): Un término que describe la tendencia actual de automatización e intercambio de datos en las tecnologías de fabricación, incluyendo sistemas ciberfísicos, el Internet de las Cosas (IoT), la computación en la nube y la inteligencia artificial (IA).
  • Currículo sistémico/integral: Un enfoque de diseño curricular que coordina todos los elementos de un programa educativo a nivel de sistema, en lugar de centrarse solo en módulos o asignaturas individuales, buscando una progresión y coherencia holísticas en los resultados del aprendizaje.
  • Cynefin Framework: Un modelo conceptual creado por Dave Snowden que ayuda a la toma de decisiones al categorizar los problemas en diferentes dominios (simple, complicado, complejo, caótico y desorden) basados en la naturaleza de su relación causa-efecto.
  • Diseño centrado en el usuario (User Experience – UX): Se refiere a la experiencia general que tiene un usuario al interactuar con un producto o sistema. En ingeniería, implica diseñar soluciones que realmente satisfagan los requisitos del cliente, el usuario y la comunidad.
  • Diseño de sistemas (Systems Design): Un enfoque estructurado para el diseño de sistemas complejos que considera las interacciones entre los componentes y el entorno, y busca satisfacer un conjunto de requisitos funcionales y no funcionales.
  • Pensamiento de diseño (Design Thinking): Una metodología de resolución de problemas centrada en el ser humano que implica fases como empatizar, definir, idear, prototipar y probar, común en muchas disciplinas de diseño, incluida la ingeniería.
  • Emergencia: En el contexto de los entornos de aprendizaje, se refiere a cómo las estructuras, patrones y comportamientos de aprendizaje se vuelven visibles a través de las interacciones entre elementos más pequeños, como estudiantes y recursos, indicando posibles direcciones futuras en la educación.
  • Habilidades blandas/genéricas: Habilidades no técnicas pero igualmente importantes, como la comunicación, el trabajo en equipo, la ética, el pensamiento crítico y la resolución de problemas, que son aplicables en una amplia gama de contextos profesionales.
  • Internet de las Cosas (IoT): Una red de objetos físicos equipados con sensores, software y otras tecnologías que les permiten conectarse e intercambiar datos con otros dispositivos y sistemas a través de Internet.
  • PBL (Aprendizaje Basado en Problemas y Proyectos): Un enfoque pedagógico centrado en el estudiante donde los alumnos aprenden sobre un tema trabajando en un problema abierto o un proyecto complejo, desarrollando habilidades de resolución de problemas, trabajo en equipo e investigación.
  • Portafolio: Una colección de trabajos de los estudiantes que demuestra su aprendizaje, habilidades y crecimiento a lo largo del tiempo. En ingeniería, se utiliza para articular las trayectorias de aprendizaje individuales y las competencias profesionales a mentores y futuros empleadores.
  • Simple (en el marco Cynefin): Un dominio de situaciones donde la relación causa-efecto es obvia para todos, y las «mejores prácticas» pueden aplicarse. La resolución de problemas implica «sentir, categorizar y responder», como la aplicación de fórmulas fundamentales de ingeniería.
  • Sostenibilidad (ODS): La capacidad de satisfacer las necesidades del presente sin comprometer la capacidad de las futuras generaciones para satisfacer sus propias necesidades. Los ODS (Objetivos de Desarrollo Sostenible) son una colección de 17 objetivos globales interconectados establecidos por las Naciones Unidas.
  • Sistemas (Pensamiento sistémico): La capacidad de comprender cómo los componentes de un sistema interactúan entre sí y con el entorno para producir un comportamiento determinado, en lugar de analizar los componentes de forma aislada.
  • Trayectorias de aprendizaje personalizadas: Rutas de aprendizaje adaptadas a las necesidades, intereses y aspiraciones profesionales individuales de los estudiantes, permitiéndoles configurar y documentar su propio desarrollo de competencias como parte de una estrategia de aprendizaje a lo largo de toda la vida.

La ingeniería humanitaria potencia la visión integral y empática en estudiantes

Un estudio reciente, titulado «The Impacts of Humanitarian Engineering on Sociotechnical Thinking», liderado por Jeffrey P. Walters y su equipo, explora cómo el contexto de la ingeniería humanitaria (HE) afecta al desarrollo del pensamiento social y técnico en estudiantes de ingeniería.

La investigación se centra en comparar las diferencias en la forma en que los estudiantes afrontan un desafío de diseño, en concreto, el de un muro de contención, en dos contextos distintos: Misisipi (Estados Unidos), un entorno no humanitario, y Bangladés, que representa una situación de ingeniería humanitaria.

 

El contexto del estudio

El estudio parte de la premisa de que la ingeniería no puede entenderse únicamente desde una perspectiva técnica, ya que toda solución de ingeniería implica un impacto social. Este concepto, conocido como «pensamiento sociotécnico», se ha convertido en un aspecto importante en la formación en ingeniería, especialmente debido a las crecientes demandas de la industria de profesionales que no solo dominen la técnica, sino que también comprendan y gestionen las implicaciones sociales y éticas de sus proyectos.

La investigación se basa en un experimento realizado con estudiantes de primer y tercer año de diferentes disciplinas de ingeniería en una universidad de EE. UU. Se les planteó un reto de diseño: construir un muro de contención para prevenir inundaciones, en uno de los dos contextos asignados aleatoriamente. Los estudiantes del grupo de Misisipi (contexto no humanitario) recibieron información centrada en las pérdidas económicas que las inundaciones causaron en la industria y la economía nacional. Por otro lado, los estudiantes asignados al contexto de Bangladés (contexto humanitario) se enfrentaron a un escenario en el que las inundaciones habían desplazado a más de 300 000 personas, la mayoría viviendo por debajo del umbral de pobreza mundial.

Resultados clave y análisis

El estudio reveló diferencias significativas entre ambos grupos en cuanto a la forma en que percibían el problema y las soluciones propuestas. Los estudiantes que trabajaron en el contexto de Bangladés mencionaron un mayor número de factores sociotécnicos que sus compañeros asignados al contexto de Misisipi. Estos factores incluyen consideraciones sobre la capacidad de la comunidad local para construir y mantener la infraestructura, el impacto en la vida cotidiana de las personas afectadas y la importancia de adaptar el proyecto a los recursos limitados disponibles. Además, estos estudiantes mostraron un enfoque más empático, poniendo énfasis en la seguridad y el bienestar de las comunidades.

Por el contrario, los estudiantes que trabajaron en el contexto de Misisipi se centraron principalmente en los aspectos técnicos del diseño, como el coste, los materiales y la estructura física de la pared. Si bien también mencionaron algunos factores sociales y técnicos, su enfoque estuvo más limitado a la funcionalidad técnica y la eficiencia del proyecto.

Implicaciones educativas

Este estudio ofrece una valiosa evidencia de cómo la integración de contextos humanitarios en la enseñanza de la ingeniería puede influir profundamente en la forma en que los estudiantes abordan los problemas de diseño. Los resultados sugieren que el enfoque de ingeniería humanitaria fomenta un pensamiento más holístico y complejo, en el que los futuros ingenieros no solo consideran los aspectos técnicos, sino también las consecuencias sociales de sus decisiones.

Además, el estudio destaca la necesidad de abordar la enseñanza del pensamiento social y técnico con cautela. Si bien los estudiantes que trabajaron en el contexto de Bangladés mostraron mayor empatía, algunos de ellos también presentaron sesgos implícitos al asumir que la comunidad local carecía de las habilidades necesarias para construir o mantener la infraestructura, lo que podría perpetuar estereotipos negativos y enfoques paternalistas en el desarrollo global. El equipo de investigación subraya la necesidad de abordar estos sesgos en la enseñanza para garantizar que los estudiantes no solo aprendan a integrar factores sociales y técnicos, sino que también lo hagan desde una perspectiva ética y culturalmente sensible.

Conclusiones y futuro

Este trabajo subraya la importancia de que los futuros ingenieros desarrollen habilidades sociotécnicas que les permitan pensar más allá de las soluciones técnicas y considerar las complejas interacciones entre la tecnología y la sociedad. En un mundo cada vez más interconectado, con problemas de sostenibilidad y justicia social en aumento, estas competencias serán fundamentales para garantizar que los ingenieros puedan proyectar soluciones que no solo sean eficientes, sino también equitativas y sostenibles.

Los investigadores concluyen que integrar de manera consistente este tipo de desafíos en los programas educativos de ingeniería podría ser una estrategia eficaz para fomentar una mayor conciencia y capacidad de respuesta ante los problemas sociales y éticos en los futuros profesionales. Asimismo, se sugiere que futuras investigaciones profundicen en cómo la exposición a estos contextos, en actividades más prolongadas o en escenarios reales, afecta al desarrollo del pensamiento sociotécnico y la empatía en los estudiantes a lo largo de su formación académica.

Referencia:

Walters, J. P., Frisch, K., Yasuhara, K., & Kaminsky, J. (2025). The Impacts of Humanitarian Engineering Context on Students’ Sociotechnical ThinkingJournal of Civil Engineering Education151(1), 04024006.

​Se pueden consultar los siguientes artículos del blog relacionados con la ingeniería humanitaria:

La ingeniería humanitaria y la teoría del cisne negro: Totalán, DANA, Zaldibar y el coronavirus nos dan las claves

Ingeniería civil humanitaria. Cómo afrontar una emergencia: Lecciones aprendidas de Totalán

 

La curva del olvido en la construcción

Figura 1. El olvido en la construcción

En un artículo anterior explicamos cómo afecta la curva de aprendizaje en el sector de la construcción. Ahora vamos a ver justo lo contrario, cómo se puede olvidar lo aprendido y cómo afecta esto a la productividad.

Cuando se produce una interrupción en la ejecución de una operación, inmediatamente se pierde parte del aprendizaje obtenido por las personas que realizaban dicha tarea.

Para modelizar el olvido se puede definir una curva que relaciona la cantidad aprendida con la duración de la interrupción (Figura 2). Es la llamada curva del olvido.

Figura 2. La curva del olvido

En la construcción, las interrupciones cortas se originan cuando hay división de los trabajos o cuando se atiende lo urgente, dejando de lado lo que se está haciendo. Las paralizaciones a largo plazo requieren adquirir de nuevo el conocimiento, la destreza, el ritmo, las condiciones de trabajo y los servicios de apoyo que se hayan interrumpido. Las paradas mucho más largas pueden suponer cambios de personal y transferencia de equipos o instalaciones de una obra a otra, siendo este problema mucho mayor.

En la Figura 3 se representa la curva de aprendizaje inicial que ha sufrido una interrupción al producir un número de unidades. Tras una fase de olvido, se reinicia la curva con un esfuerzo mayor. La nueva curva puede tener una tasa de aprendizaje diferente. Cuanto más tiempo de parada exista, más esfuerzo habrá que dedicar a volver a aprender.

Figura 3. Situación de aprendizaje, olvido y aprendizaje

Sea cual sea la forma de la curva de aprendizaje, existe una proporción de olvido que se inicia cuando el trabajador abandona el trabajo ya aprendido. El modelo del olvido es similar al de aprendizaje, siendo su tasa mayor, igual o menor a la del aprendizaje, dependiendo del tipo de tarea, aunque normalmente es menor. Para recordar lo aprendido, es más efectivo volver a aprender haciéndolo que si el aprendizaje es mediante información auditiva o visual que se le ofrece al trabajador.

La curva de aprendizaje resulta afectada por el olvido de las siguientes formas:

  • Que se olvide algo a un trabajador puede presentar un coste, pero no representa el olvido total.
  • El olvido provoca errores que menoscaban el rendimiento y requiere un reaprendizaje que puede ser costoso.
  • Cuantas más unidades se produzcan antes de una interrupción hace reducir la tasa de olvido.

En el sector de la construcción, el aprendizaje y el olvido son aspectos clave que inciden en la siniestralidad de las obras. A la vista de lo expuesto, no basta una formación inicial del trabajador en materia preventiva, sino que debería realizarse un proceso de recuerdo permanente para evitar el olvido de lo realmente importante.

Para evitar que el esfuerzo necesario para recordar lo olvidado sea excesivo, conviene utilizar las revisiones para recordar la totalidad de lo aprendido. Si observamos en la Figura 4, incluso con una tasa de olvido que se mantenga independientemente de los repasos, el esfuerzo por recordar lo aprendido es cada vez menor. Por tanto, la repetición sistemática en el tiempo es un buen aliado para mantener lo aprendido.

Figura 4. Efecto del repaso en el aprendizaje y en el olvido

Os dejo a continuación algunos vídeos que explican la curva del olvido. Espero que os sean de interés.

Referencias:

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

SERPELL, A. (2002). Administración de operaciones de construcción. Alfaomega, Ediciones Universidad Católica de Chile, Colombia.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Cómo redactar y evaluar los resultados de aprendizaje para ser coherentes con las competencias que deben adquirir los estudiantes

Tengo el placer de anunciar la realización de un taller en la Universidad de Alicante con motivo de una invitación recibida por su Instituto de Ciencias de la Educación. Dicho taller tiene como título «Cómo redactar y evaluar los resultados de aprendizaje para ser coherentes con las competencias que deben adquirir los estudiantes» y se celebrará en dicha universidad el 15 de julio de 2022, de 10:00 a 12:00 h.

El taller se enmarca dentro del evento REDES-INNOVAESTIC 2022 – EL PROFESORADO, EJE FUNDAMENTAL DE LA TRANSFORMACIÓN DE LA DOCENCIA UNIVERSITARIA, pudiendo acceder a él a través del siguiente enlace: https://web.ua.es/es/redes-innovaestic/.

Os paso la descripción del taller que me han encomendado:

Descripción del taller:

Se trata de un taller práctico orientado a redactar y evaluar los resultados de aprendizaje. Tras una breve introducción teórica sobre el concepto de resultado de aprendizaje y las confusiones que este término tiene frente a otros similares. A continuación se ofrecerán reglas prácticas para definir de forma sencilla, directa y clara un resultado de aprendizaje. No obstante, la mayor parte de los problemas provienen de la evaluación y en la coherencia entre los resultados de aprendizaje y las competencias de una asignatura o materia. Para ello resulta necesario entender que la evaluación basada en competencias y resultados de aprendizaje supera el enfoque tradicional de evaluación de contenidos. Aquí se trata de establecer criterios para definir exámenes, ejercicios o pruebas correlacionadas con los resultados de aprendizaje. Por último, y no menos importante, se ofrecerán reglas prácticas para recoger y custodiar las evidencias necesarias de la evaluación de los resultados de aprendizaje. No se trata de almacenar únicamente exámenes, ejercicios o trabajos, sino además, recoger los criterios y la justificación de las calificaciones obtenidas para cada resultado de aprendizaje. El enfoque del taller supone una participación activa del profesorado en los planteamientos y en la discusión de cada una de las propuestas.

El taller será presencial. Os espero para compartir vuestras experiencias docentes y aprender conjuntamente sobre las competencias y los resultados de aprendizaje.

El fenómeno del aprendizaje en el sector de la construcción

Figura 1. Curva de aprendizaje, que indica la cantidad aprendida en relación con el tiempo

Todos conocemos el fenómeno por el cual, a medida que se aprende a realizar una tarea determinada, disminuye el número de errores y, por tanto, aumenta la productividad. Este fenómeno se ha cuantificado mediante evidencias empíricas en una gran variedad de industrias y productos, y evidentemente también se puede aplicar al sector de la construcción.

En economía, la curva de aprendizaje curva de aprendizaje (Figura 1) se define como la que describe el grado de éxito obtenido durante el proceso de aprendizaje con el tiempo. En efecto, a medida que aumenta el número de ciclos o repeticiones, el tiempo o el coste necesario para producir un bien o servicio disminuye, por lo que la productividad aumenta con el tiempo. En la Figura 1, el ritmo de crecimiento del aprendizaje es alto al principio, pero luego se tarda más tiempo en aprender cosas nuevas. Sin embargo, puede haber tareas en las que sea difícil aprender al principio, lo que puede suponer una barrera de entrada, y luego todo se vuelva más sencillo.

El aprendizaje puede producirse a distintas escalas dentro de una organización (Serpell, 2002). Así, puede haber aprendizaje organizacional, aprendizaje personal y aprendizaje grupal. La organización puede aprender mejorando su coordinación, sus métodos de trabajo, sus medios de producción o aumentando la formación de sus empleados. En las personas se da una etapa de aprendizaje de la operación, en la que la productividad crece rápidamente, y una etapa de adquisición de experiencia, en la que la mejora es más gradual. Por otra parte, un grupo puede aprender, en parte, porque aprenden las personas y, también, porque aprende la organización.

En el caso de la construcción, el aprendizaje se ve afectado por una serie de factores característicos de este sector. Por una parte, cada obra es singular y tiene un bajo número de repeticiones, salvo en el caso de la prefabricación u obras muy específicas con un gran número de ciclos repetitivos. La improvisación, especialmente en la gestión de la obra (organización, dirección, planificación y control), afecta negativamente al proceso de aprendizaje. También influyen negativamente en la curva de aprendizaje la falta de coordinación y continuidad de los trabajos y la alta rotación del personal dentro de una obra. Otros factores, como la falta de formación previa de muchos operarios o la falta de motivación, también entorpecen el proceso de aprendizaje.

A continuación, analizamos un modelo analítico de la curva de aprendizaje, que suele ser de tipo logarítmico, aunque hay otras fórmulas de cálculo.

donde

YN = esfuerzo necesario para producir la enésima unidad

K = esfuerzo necesario para producir la primera unidad

N = contador del número de unidades producidas, comenzando por la primera unidad

S = constante que es una medida de la tasa de aprendizaje

La constante S es negativa, pues el esfuerzo por unidad disminuye con la producción. Se suele medir el esfuerzo por unidad en función del tiempo, del coste u otra medida equivalente. En la Figura 2 se muestra una curva de aprendizaje típica.

Figura 2. La curva de aprendizaje

Este modelo asume que la reducción porcentual del esfuerzo necesario por unidad es constante cada vez que se duplica la producción o número de unidades, es decir, para cualquier valor de S, se tiene que:

Se llama R = 2S al factor de aprendizaje, que es la proporción entre el esfuerzo necesario para 2N y el requerido para N. De esta forma, S=logR/log2. Por ejemplo, para un factor de aprendizaje del 95%, S=-0,0740. Según estudios realizados por Naciones Unidas (Serpell, 2002), el factor de aprendizaje para la construcción se encuentra entre un 80% y un 95%.

Si integramos la curva de aprendizaje, se puede obtener el esfuerzo total para N unidades:

Y el esfuerzo medio acumulado sería el siguiente:

Para comprobar si habéis entendido bien este modelo, os lanzo el siguiente reto: estimar el número de horas-hombre necesarias para construir 100 casas iguales por parte de la misma cuadrilla de albañiles, sabiendo que han tardado 200 horas-hombre en construir la primera casa y que el factor de aprendizaje es del 90 %. La solución es 117,12 horas-hombre. Si tuviéramos dos cuadrillas, cada una de las cuales hiciera 50 casas, ¿cuántas horas-hombre serían necesarias ahora? La solución es 130,13 horas-hombre.

Os dejo a continuación un vídeo explicativo que espero os sea de utilidad.

Referencias:

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

SERPELL, A. (2002). Administración de operaciones de construcción. Alfaomega, Ediciones Universidad Católica de Chile, Colombia.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376.

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Autoevaluación de la capacidad de pensamiento crítico de los estudiantes de ingeniería civil mediante un software basado en AHP

La autoevaluación de los estudiantes desempeña un papel central en su formación. Sin embargo, se ha prestado poca atención a su medición para que sea válida y precisa. Esta capacidad, relacionada con el pensamiento crítico, puede estimarse comparando la evaluación de los alumnos con su rendimiento en los exámenes. Se propone el índice de consistencia como una métrica para medir el pensamiento crítico que permite observar el bajo rendimiento en la capacidad de juicio de una muestra de 23 estudiantes de ingeniería civil. Esto subraya la necesidad de mejorar este aspecto de la formación, que se requiere no solo como competencia transversal, sino también para la consecución de una capacidad de autoevaluación efectiva. Aquí presentamos un software educativo basado en el Proceso Analítico Jerárquico (AHP) que facilita a los estudiantes la autoevaluación para emitir juicios coherentes, así como para entrenar su pensamiento crítico. De este modo, se pretende que los estudiantes sean conscientes de las posibles carencias en su habilidad para la evaluación válida y consistente, así como darles la oportunidad de mejorar este aspecto a través de la autoevaluación. El software incorpora un proceso de tres pasos, en el que la autoevaluación ocurre en la última etapa: en primer lugar, se pide al estudiante una evaluación convencional del profesor basada en criterios ponderados por él mismo mediante AHP sin control de consistencia. En segundo lugar, se le solicita que active el control del índice de consistencia del software, que revelará eventuales incoherencias, y que, en consecuencia, revise sus juicios hasta que sean aceptables. Por último, se le invita a autoevaluar su capacidad para emitir un juicio coherente analizando las diferencias entre su evaluación con (paso 2) y sin (paso 1) la ayuda del control de coherencia. Ello le permite reflexionar sobre las diferencias entre la evaluación coherente y la incoherente, y a pensar en sus posibles causas. Los estudiantes pueden realizar de forma autónoma todo el proceso en el software presentado. Además, sirve como plataforma para la auto-retroalimentación efectiva y el entrenamiento de su precisión de evaluación y capacidad de pensamiento crítico.

Referencia:

SALAS, J.; SIERRA, L.; YEPES, V. (2021). AHP-based educational sofware for strudents’ self-assessment of critical thinking capacity. 15th annual International Technology, Education and Development Conference (INTED 2021), 8th-9th March, 2021, pp. 2744-2753, Valencia, Spain. ISBN: 978-84-09-27666-0

Pincha aquí para descargar

Docencia remota en ingeniería de la construcción durante el COVID-19

Este trabajo describe el impacto del cambio de clases presenciales a no presenciales de un curso de postgrado de la Universitat Politècnica de València. Se analizan las asignaturas de instalación, organización y aseguramiento de la calidad en la construcción, así como la de Procedimientos de Construcción, de los grados en Ingeniería de Obras Públicas e Ingeniería Civil. En ellas se desarrollan las competencias del estudiante para integrarse en una empresa constructora, como Jefe de Obra o Director de Producción, a partir de un recorrido por las diferentes fases del proceso de proyecto-construcción. Como parte de este tema, se discuten los métodos de programación de actividades en la obra. En el método tradicional, se resuelven los problemas en presencia del estudiante. Para ello deben haber aprendido previamente técnicas de programación: redes de flechas, redes de precedencias, y cómo aplicar el método PERT para obtener estadísticamente la probabilidad de finalización de una obra o la realización de actividades relacionadas. Debido a la situación actual de la pandemia causada por el COVID-19, la enseñanza presencial ha cambiado a clases virtuales en muy poco tiempo. Esto ha exigido un giro radical hacia la educación a distancia. Este trabajo explica cómo se ha realizado este cambio, qué nuevos métodos se han utilizado para impartir los contenidos correspondientes a la programación de las tareas, y cuál ha sido la percepción de los estudiantes. Se analiza la calidad de la enseñanza y las dificultades encontradas para adquirir los resultados de aprendizaje requeridos en estas asignaturas.

Referencia:

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2021). Remote teaching in construction engineering management during COVID-19. 15th annual International Technology, Education and Development Conference (INTED 2021), 8th-9th March, 2021, pp. 879-887, Valencia, Spain. ISBN: 978-84-09-27666-0

Pincha aquí para descargar