Félix Candela: Maestro de las estructuras laminares

Félix Candela Outeriño (1910-1997).  https://www.biografiasyvidas.com/biografia/c/candela.htm

Félix Candela Outeriño nació el 27 de enero de 1910 en la calle Mayor de Madrid, cerca del Ayuntamiento, en el corazón del Madrid de los Austrias. Aunque su apellido es de origen siciliano, la familia Candela procedía de la costa levantina. Su madre, Julia Outeriño Echeverría, era gallega, hija de un sargento de alabarderos, y su padre, Félix Candela Magro, era un comerciante valenciano que heredó la representación en Madrid del negocio familiar de derivados del cáñamo, especializado en alfombras y alpargatas. Félix era el mayor de tres hermanos, seguido de Antonio y Julia. Tras la muerte de su padre en 1929 a causa de la tuberculosis, la familia vendió la zapatería y vivió de las rentas mientras Candela estudiaba arquitectura.

Desde pequeño, Candela compaginó sus estudios con una intensa actividad deportiva, en la que destacó en esquí, rugby y atletismo. En 1927, ingresó en la Escuela Técnica Superior de Arquitectura de Madrid de la Universidad Politécnica de Madrid y terminó la carrera en 1935. Durante sus estudios, sobresalió en asignaturas técnicas como Geometría Descriptiva y Cálculo de Estructuras. Paralelamente, estudió en la Real Academia de Bellas Artes de San Fernando, donde coincidió con Eduardo Robles Piquer y Fernando Ramírez de Dampierre, y conoció a Eduardo Torroja y sus técnicas de cubiertas de hormigón. En 1936, recibió la beca Conde de Cartagena para ampliar estudios en Alemania con una tesis doctoral, y contó con cartas de presentación para los ingenieros Franz Dischinger y Ulrich Finsterwalder. Sin embargo, la guerra civil española truncó sus planes. Se alistó en el Ejército Popular de la República como capitán de ingenieros.

Tras la retirada de Cataluña, Candela pasó por los campos de concentración de Saint-Cyprien y Le Barcarés, cerca de Perpiñán (Francia), hasta febrero de 1939, cuando embarcó rumbo a México en el buque Sinaia, llegando a Veracruz el 13 de junio del mismo año. Durante sus primeras semanas en México, sobrevivió con la ayuda del Servicio de Evacuación de los Republicanos Españoles (SERE). Su primer trabajo fue en la colonia Santa Clara, ubicada a unos 100 km al norte de Chihuahua, donde participó en la construcción de un pequeño poblado denominado Ojos Azules. En 1940, logró traer desde España a su novia, Eladia Martín, con quien se casó en Ciudad de México. Vivieron brevemente en Ojos Azules antes de regresar a la capital. Posteriormente, se asoció con el contratista español González Bringas en obras de Acapulco y, el 20 de octubre de 1941, obtuvo la ciudadanía mexicana.

Trabajó dos años en Acapulco, lo que le permitió adquirir experiencia local y estabilidad económica. Durante ese tiempo, trajo a México a su madre, a su hermana Julia y, por último, a su hermano Antonio, que llegó en 1946. Candela y su familia realizaron algunos encargos profesionales, entre ellos un edificio de apartamentos en la calle de Gorostiza y el Hotel Catedral, en Donceles (Ciudad de México). Con el premio que su hermano Antonio ganó en la Lotería Nacional en 1948, viajaron por Europa y visitaron Londres, Ámsterdam, Róterdam, París y La Haya.

En 1949, Candela se interesó por las láminas cilíndricas de hormigón armado que construía su amigo Raúl Fernández y, en 1950, fundó junto con los hermanos Fernández Rangel la empresa Cubiertas Ala, S. A., especializada en arquitectura industrial y estructuras laminares de hormigón armado, conocidas mundialmente como «cascarones» o «paraboloides hiperbólicos». Esta empresa marcó el inicio de su etapa de madurez profesional y creatividad, sustentada en estudios autodidactas y literatura técnica especializada. Entre sus primeros proyectos se encuentran experimentos con bóvedas catenarias y escuelas rurales, y en 1951 Candela construyó su primer paraboloide hiperbólico (hypar) de 15 mm de hormigón armado para el Pabellón de Rayos Cósmicos de la UNAM.

Pabellón de Rayos Cósmicos, en colaboración con Jorge González ReynaUNAM– Por Mario Yaír TS – Trabajo propio, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=151093076

Durante la década de los cincuenta, desarrolló numerosas obras de este tipo: almacenes para las Aduanas de México (1953), un paraguas modular de planta cuadrada para cubiertas industriales y la iglesia de la Virgen de la Medalla Milagrosa (1953-1955) en la colonia Narvarte de Ciudad de México. En 1955, colaboró con Fernando López Carmona y Enrique de la Mora en la construcción de la cubierta de la Bolsa de Valores de México, para la que utilizó paraboloides hiperbólicos con borde curvo y sin refuerzos perimetrales. A partir de entonces, inició una serie de obras religiosas y civiles muy fructífera: la capilla de Nuestra Señora de la Soledad (1955), las iglesias de San Vicente de Paúl y San José Obrero (ambas de 1959), la iglesia de San Antonio de las Huertas (1956), la cubierta del cabaret La Jacaranda (1957), la capilla de Lomas de Cuernavaca (1958-1959) y el icónico restaurante Los Manantiales (1957-1958). Entre las obras más importantes destacan la planta embotelladora de Bacardí (1960), la iglesia de Santa Mónica (1960) y la iglesia de Nuestra Señora de Guadalupe en Madrid (1963), en la que Candela participó como calculista. Durante esta década, Cubiertas Ala construyó 395 obras, la mayoría de ellas industriales.

El propio Candela resumía su filosofía arquitectónica y estructural con estas palabras:

«Toda obra de arte es una interpretación del mundo, de lo que estás contemplando; una determinación de la percepción que crea e intenta un mundo distinto. Al fin y al cabo, una obra de arte no es sino una ofrenda al arte.»

L’Oceanogràfic (El Oceanográfico), Ciudad de las Artes y las CienciasValenciaEspaña. Por Felipe Gabaldón, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=12532971

Candela es considerado uno de los arquitectos estructuristas más importantes del siglo XX, y destacó por su capacidad para replantear el papel del arquitecto frente a los problemas estructurales de la arquitectura basándose en la economía, la sencillez de cálculo y la flexibilidad, y siempre mostrando una sensibilidad única a la hora de proyectar espacios. Desde sus inicios, difundió sus ideas enviando artículos al American Concrete Institute (ACI) y participando en congresos internacionales, alcanzando la fama mundial a partir de los años cincuenta.

Candela también alcanzó reconocimiento internacional: presidió las Charles Eliot Norton Lectures en Harvard (1961-1962), recibió el Premio Auguste Perret (1961), la medalla de oro de The Institution of Structural Engineers y homenajes de la colonia de refugiados españoles. En 1964, tras el fallecimiento de su primera esposa, Eladia, y después de 25 años de actividad en México, recibió oficialmente la cédula de arquitecto mexicano. En 1967 se casó con Dorothy Davies. En 1968, proyectó junto a Antonio Peyrí y Enrique Castañeda el Palacio de los Deportes para los Juegos Olímpicos, que destacó por su gran cúpula de cobre conocida como el «palacio de los cien soles».

En 1969 regresó a España para participar en el Congreso de la IASS y fue nombrado profesor honorario de la Escuela Técnica Superior de Arquitectura de Madrid. En 1971 se trasladó a Estados Unidos y residió en Nueva York y, posteriormente, en Chicago, donde obtuvo la ciudadanía estadounidense y ocupó una cátedra en la Universidad de Illinois hasta 1978. Posteriormente, trabajó asociado al IDEA Center en Toronto, Grecia, Arabia Saudita y París, hasta la disolución de la oficina en 1979. Durante este período, Candela participó en proyectos internacionales como la Ciudad Deportiva de Kuwait, el Estadio Santiago Bernabéu, el Idea Center de Riad y Yanbú, el Centro Cultural Islámico de Madrid, una torre de oficinas en Riad, un aeropuerto en Murcia, la Feria de Muestras de Marbella, la Legislatura de Veracruz, el Máster Plan de la Universidad Islámica y la Procuraduría de Xalapa.

En sus últimos años residió entre Nueva York y Madrid, donde colaboró con Fernando Higueras y Typsa. Recibió numerosos reconocimientos: entre ellos, la medalla de oro del Consejo Superior de Colegios de Arquitectos de España (1981), el I Premio Antonio Camuñas (1985), la publicación de En defensa del formalismo y otros escritos (1985) y el doctorado honoris causa por la Universidad Politécnica de Madrid (1994). En 1995, los colegios de arquitectos e ingenieros de caminos de Madrid le rindieron un homenaje conjunto.

Candela falleció el 7 de diciembre de 1997 en el Hospital Duke de Durham (Carolina del Norte) a causa de complicaciones derivadas de una dolencia cardíaca que padecía desde hacía años. Su obra, caracterizada por el uso del paraboloide hiperbólico, ha influido en generaciones posteriores de arquitectos, entre los que se encuentra Javier Senosiain. Entre sus publicaciones destacan: Simple Concrete Shell Structures (1951), Hacia una nueva filosofía de las estructuras (1952), Una pequeña demostración práctica de la validez de la teoría de la membrana en superficies alabeadas (1952), Estéreo-estructuras (1953), The shell as space closer (1955), Fórmulas generales para el cálculo de esfuerzos en cascarones parabólico-hiperbólicos (1960) y En defensa del formalismo y otros escritos (1985).

Os dejo algunos vídeos sobre Candela.

Dejo también un artículo de Antonio Tomás y Tomás Martí con motivo del centenario de su nacimiento.

Pincha aquí para descargar

John Loudon McAdam: vida y legado del ingeniero que revolucionó las carreteras

John Loudon McAdam (1756 – 1836). https://ca.wikipedia.org/wiki/

John Loudon McAdam (1756-1836) fue un ingeniero escocés que transformó para siempre la construcción de carreteras. Su método, conocido como macadamización, o simplemente «macadán», supuso un hito en la ingeniería civil, permitió el auge del transporte moderno en el siglo XIX y sentó las bases de la pavimentación contemporánea. Nació el 21 de septiembre de 1756 en Ayr, capital del condado histórico de Ayrshire (Escocia), en la casa de lady Cathcart. Pertenecía a la baja nobleza local y era el menor de los diez hijos de James McAdam y Susanna Cochrane, sobrina del séptimo conde de Dundonald.

En 1760, la familia se mudó al castillo de Lagwyne, en Carsphairn, y más tarde al castillo de Whitefoord. Su padre, James, llevaba un estilo de vida elevado y gestionó de manera deficiente el negocio familiar, el Banco de Ayr, lo que provocó grandes pérdidas económicas. Finalmente, se vio obligado a vender la finca ancestral de la familia, Waterhead, y quedó prácticamente arruinado.

John estudió en la escuela del señor Doick, en Maybole, hasta 1770. Ese mismo año, con tan solo 14 años, murió su padre tras la bancarrota del banco familiar. Con la familia en la ruina, John fue enviado a Nueva York para vivir con su tío William McAdam, un próspero comerciante, y con su tía Ann Dey, hija de Dirck Dey, otro neoyorquino. William McAdam era propietario de la empresa McAdam & Co. y poseía más de 30 000 acres en Middlesex, conocidos como Kilby Grant. En este entorno, John se formó como mercader y contable, y estableció relaciones comerciales con personas como Robert Gilmore, de Northfork.

Durante la guerra de la Independencia de las Trece Colonias (1775-1783), John apoyó la causa británica desde el principio. Se convirtió en un mercader de éxito y contratista del Gobierno, y amasó una considerable fortuna. Fue socio propietario del barco privado General Mathew y actuó como agente de premios de guerra: revendía las mercancías y materiales capturados a los rebeldes, lo que le reportó importantes beneficios personales. Se casó con Gloriana Nicoll, hija de William Nicoll de Suffolk, descendiente del coronel Nicoll, en Nueva York. El matrimonio heredó un tercio de las propiedades de West Neck, en Shelter Island, así como terrenos en Blue Point (Islip).

Sin embargo, en 1783, tras la derrota británica, él y su familia sufrieron las consecuencias de haber sido realistas. El nuevo gobierno estadounidense confiscó sus propiedades y activos en América, y él, su esposa y sus dos hijos fueron obligados a regresar a Escocia. Una vez en Escocia, McAdam aún conservaba suficiente capital como para comprar una finca en Sauchrie, cerca de Maybole. Gracias a sus lazos familiares, se asoció con el almirante lord Cochrane y con el conde de Dundonald en negocios de hierro y alquitrán. Estos productos, derivados del carbón, eran fundamentales para sellar los barcos de vela. Sin embargo, la introducción del cobre en los cascos redujo la demanda de alquitrán, lo que debilitó la industria en la que John había invertido.

Con el tiempo, McAdam se volcó en una nueva actividad que marcaría su vida: la construcción de carreteras. Empezó haciendo pruebas con piedras en caminos cercanos a su finca y acabó construyendo una carretera que conectaba Alloway con Maybole, que seguía en uso en 1936. En 1787 fue nombrado administrador de carreteras y, durante los siguientes quince años, ejerció como vicealmirante de Ayrshire, consolidando su experiencia en este campo. En 1798, gracias a un nombramiento oficial, se trasladó a Falmouth (Inglaterra) y, en 1801, con 45 años, fue designado inspector de carreteras de Bristol. Allí perfeccionó sus ideas y puso en práctica un sistema radicalmente distinto al habitual.

El método de MacAdam consistía en lo siguiente:

  • Carreteras de unos seis metros de ancho, con la parte central elevada ocho centímetros sobre los bordes para facilitar el drenaje del agua.
  • Cunetas laterales para evacuar el agua de lluvia y evitar encharcamientos.
  • Tres capas: la más profunda, de tierra compactada; una intermedia, de piedras grandes y regulares; y una superior, de piedra triturada, que quedaba perfectamente compactada con el paso de los carruajes.

El resultado era una superficie lisa, dura, resistente y barata, mucho más duradera y menos proclive a embarrarse que los caminos de tierra o los adoquinados.

Construcción de la primera carretera de macadán en Estados Unidos de América (1823).  https://es.wikipedia.org/wiki/Macad%C3%A1n

McAdam recogió sus ideas en dos tratados fundamentales, en los que defendía la importancia de elevar las carreteras respecto al suelo circundante, asegurar un buen drenaje y emplear materiales seleccionados en capas sistemáticas:

  • Remarks on the Present System of Road-Making (1816)
  • Practical Essay on the Scientific Repair and Preservation of Roads (1819)

El prestigio de McAdam creció rápidamente. En 1815 fue nombrado inspector del Bristol Turnpike Trust y, en la década de 1820, alrededor de 70 patronatos de carreteras lo contrataron como consultor. En 1819, un comité parlamentario elogió públicamente su trabajo. En 1823, el Parlamento británico encargó un estudio sobre el deficiente estado de las carreteras del país, que estaban obsoletas para una nación en plena industrialización. Como resultado, McAdam fue nombrado inspector general de carreteras metropolitanas de Gran Bretaña. Desde este cargo, su método se estandarizó y extendió rápidamente no solo en el Reino Unido, sino también en Europa y Norteamérica. El impacto fue inmediato: gracias a la suavidad y durabilidad de las carreteras macadamizadas, el transporte en diligencia experimentó un auge sin precedentes. Poco tiempo después de su fallecimiento, en Inglaterra ya existían 35 000 kilómetros de carreteras construidas con su método.

Aunque McAdam recibió subvenciones del Parlamento (2000 libras para gastos en 1820 y 5000 libras por su trabajo en Bristol), nunca fue plenamente recompensado. Se le ofreció un título de caballero, pero lo rechazó por su avanzada edad. El macadán supuso el mayor avance en la construcción de carreteras desde el Imperio romano. Con el tiempo, su sistema dio origen a mejoras posteriores. La más significativa se produjo en 1901, cuando Edgar Purnell Hooley patentó el uso del alquitrán para ligar los áridos, creando el tarmac o tarmacadam, antecesor del asfalto moderno. Es curioso que McAdam, a pesar de haber sido propietario de una fábrica de alquitrán de hulla, nunca aplicara este material a su método. Desde la perspectiva actual, puede resultar llamativo, pero en su época su innovación ya era revolucionaria. Hoy en día, aunque las carreteras modernas emplean asfaltos derivados del petróleo sobre bases de hormigón armado, el uso de capas de piedra triturada sigue siendo heredero directo de la innovación de McAdam.

En sus últimos años, McAdam permaneció activo en el ámbito de la ingeniería viaria junto a sus hijos, quienes abandonaron sus ocupaciones en Escocia para ayudarle en Inglaterra. Finalmente, John Loudon McAdam murió el 20 de noviembre de 1836 en Moffat, un balneario del consejo de Dumfries y Galloway, a los 80 años. Fue enterrado en el cementerio local. Su apellido quedó inmortalizado en el lenguaje técnico y en la historia de la ingeniería civil.

Os dejo algunos vídeos de este ingeniero.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Método de Galerkin y placas elásticas: la contribución de Borís Galiorkin a la ingeniería estructural

Borís Grigórievich Galiorkin (1871–1945). https://generals.dk/general/Galerkin/

Borís Grigórievich Galiorkin (1871–1945) fue un ingeniero y matemático soviético cuya obra transformó la teoría de estructuras y la física matemática. Nacido en una familia humilde en Polotsk, tuvo que compaginar desde joven sus estudios con distintos trabajos para poder subsistir. Su vida estuvo marcada tanto por la represión política —incluidos periodos en prisión— como por una intensa labor científica y docente. Galiorkin es recordado principalmente por el desarrollo del célebre Método de Galerkin, una técnica de aproximación para resolver ecuaciones diferenciales que hoy es pilar en disciplinas como la mecánica, la termodinámica o el electromagnetismo. Su legado sigue siendo fundamental en la ingeniería moderna.

Borís Grigórievich Galérkin (en ruso, Бори́с Григо́рьевич Галёркин, apellido a veces transliterado como Galerkin o Galyorkin) nació el 20 de febrero de 1871. Pólatsk, Gobernación de Vítebsk, Imperio ruso; actual Bielorrusia —falleció el 12 de julio de 1945 en Leningrado, URSS— fue un ingeniero civil y matemático soviético, célebre por formular el método de Galerkin, una técnica numérica fundamental para la resolución aproximada de ecuaciones diferenciales parciales.

Nació en el seno de una familia judía pobre. Sus padres, Girsh-Shleym (Hirsh-Shleym) Galerkin y Perla Basia Galerkina, poseían una casa en Polotsk, pero sus oficios artesanales apenas generaban ingresos. Desde los doce años trabajó como calígrafo en los tribunales para ayudar a la economía familiar.

Cursó sus estudios en Polotsk y, tras superar los exámenes de acceso en Minsk en 1893, obtuvo la oportunidad de continuar su formación superior. Ese mismo año ingresó en el Instituto Tecnológico Estatal de San Petersburgo, donde estudió matemáticas e ingeniería. Para mantenerse, dio clases particulares y, desde 1896, trabajó como diseñador técnico. Durante su etapa universitaria, se vinculó a los socialdemócratas rusos, lo que marcó el rumbo de su vida. En 1899, poco antes de graduarse, fue expulsado del instituto por sus actividades políticas, pero logró graduarse como estudiante externo ese mismo año.

Comenzó su carrera profesional en la fábrica de locomotoras de Járkov en 1899 y, en 1903, se trasladó a San Petersburgo para asumir el cargo de ingeniero jefe en la Northern Mechanical and Boiler Plant. Al mismo tiempo, continuó su activismo en el partido socialdemócrata y fundó un sindicato obrero. Fue encarcelado brevemente en 1905 y, en 1907, condenado a dieciocho meses de prisión. En la cárcel escribió su primer tratado científico: un manual sobre análisis estructural. En 1908, tras salir de prisión, decidió apartarse de la militancia y dedicarse a la ingeniería civil y a la ciencia.

En 1909, comenzó a enseñar mecánica estructural en el Instituto Tecnológico de San Petersburgo, bajo la influencia de V. L. Kirpichov, y en contacto con científicos como Iván Bubnov, A. N. Krylov, I. V. Meshcherskiy y S. P. Timoshenko. Ese mismo año, publicó su primer trabajo sobre pandeo longitudinal, inspirado en Euler y aplicable al diseño de puentes y estructuras de edificios.

Entre 1909 y 1914 viajó por Alemania, Austria, Suiza, Bélgica y Suecia para estudiar obras y sistemas constructivos modernos. En 1911, enseñó también en el Instituto Politécnico Femenino y, en 1913, diseñó la estructura metálica de una central termoeléctrica en San Petersburgo, considerada la primera gran edificación rusa con armazón metálico sometido a cargas pesadas, lo que supuso un hito en Europa.

En 1915 presentó el trabajo que le daría fama mundial: el método de aproximación para ecuaciones diferenciales, que aplicó inicialmente a entramados y placas. Aunque I. G. Bubnov había propuesto un enfoque similar en 1911, la formulación de Galerkin fue más general, ya que desvinculó el procedimiento de la resolución variacional directa e interpretó el método como una técnica universal aplicable a problemas de mecánica y física matemática.

En la actualidad, el método de Galerkin (también conocido como método de Bubnov-Galerkin) constituye la base de numerosos algoritmos en mecánica, termodinámica, electromagnetismo, hidrodinámica y otras disciplinas, y se considera uno de los antecedentes directos del método de elementos finitos.

En 1919 obtuvo una plaza de profesor en el Instituto Politécnico Femenino y, en 1920, ganó por concurso la cátedra de Mecánica Estructural en el Instituto Tecnológico de San Petersburgo. Al año siguiente, también impartía docencia en la Universidad de Leningrado y en el Instituto de Ingenieros de Comunicaciones de dicha ciudad. Ese mismo año, la Sociedad Matemática de San Petersburgo reabrió sus puertas tras la revolución con el nombre de Sociedad Físico-Matemática de Petrogrado. Galiorkin desempeñó un papel central en ella junto a científicos como V. A. Steklov, Serguéi Bernstein y Alexandr Friedmann.

En 1923, fue elegido decano de la Facultad de Ingeniería Civil del Politécnico, donde defendió la independencia académica frente a las presiones políticas y creó los primeros laboratorios de la facultad. En 1924 realizó su último viaje internacional, al Congreso de Mecánica Aplicada en los Países Bajos. En 1928 fue elegido miembro correspondiente de la Academia de Ciencias de la URSS, y en 1935, miembro de pleno derecho. Durante las décadas de 1920 y 1930, fue consultor en las principales obras industriales e hidráulicas de la URSS. Entre sus aportaciones, destacan sus estudios sobre la presa y la central hidroeléctrica del Dniéper (1929), en los que analizó las tensiones en los muros de la presa de perfil trapezoidal. En 1933 publicó Uprugie tonkie plity (Placas delgadas elásticas) y, en 1937, su monografía sobre membranas. Además, entre 1934 y 1945 investigó la teoría de recubrimientos o carcazas, que tenía aplicaciones industriales novedosas. Recibió dos doctorados en técnicas y matemáticas (1934) y el título de Trabajador Eminente en Ciencia e Ingeniería. Ese mismo año fue nombrado director del Instituto de Mecánica de la Academia de Ciencias, cargo que mantuvo hasta su fallecimiento.

En 1939, con la reorganización de la Universidad de Ingeniería Militar (VITU), fue nombrado director del Departamento de Mecánica Estructural y ascendido a teniente general de ingeniería, a pesar de no haber servido en el ejército. Durante la Segunda Guerra Mundial, dirigió la Comisión de Construcciones Defensivas de Leningrado y, tras ser evacuado a Moscú, trabajó en la Comisión de Ingeniería Militar de la Academia de Ciencias. En 1942 recibió el Premio Stalin por sus contribuciones.

Murió en Moscú el 12 de julio de 1945, poco después de la victoria soviética, y fue enterrado en el cementerio Volkovo de San Petersburgo.

El nombre de Galiorkin está ligado al método de Galerkin, uno de los pilares del análisis numérico moderno y del cálculo estructural. Sus investigaciones sobre entramados, placas, membranas y recubrimientos tuvieron un enorme impacto teórico y práctico, especialmente en presas hidroeléctricas, estructuras metálicas y en la consolidación de la ingeniería soviética.

Entre sus obras destacan:

  • Sterzhni i plastinki (Barras y placas, 1915)

  • Uprugie tonkie plity (Placas delgadas elásticas, 1933)

  • Sobranie sochinenii (Obras completas, 1952–1953)

En 1998, el asteroide (22611) Galerkin fue nombrado en su honor, consagrando el legado de uno de los ingenieros y matemáticos más influyentes del siglo XX.

La trayectoria de Borís Grigórievich Galerkin demuestra que la perseverancia y la pasión científica pueden superar las adversidades económicas y políticas. A lo largo de su vida, compaginó la enseñanza, la investigación y la práctica ingenieril, dejando una profunda huella en la ciencia y la técnica del siglo XX. El método de Galerkin y sus estudios sobre estructuras, placas y cáscaras elásticas no solo resolvieron problemas de su tiempo, sino que también sentaron las bases de los métodos numéricos que hoy en día utilizan ingenieros y científicos de todo el mundo. Su legado sigue vivo en cada cálculo estructural, simulación computacional y diseño que recurre a estas herramientas fundamentales.

En este audio podemos conocer más de su biografía.

Os paso un vídeo del método de Garlerkin.

 

Joseph Bazalgette: El ingeniero que salvó Londres del colapso sanitario

Joseph William Bazalgette (1819 – 1891). https://en.wikipedia.org/wiki/Joseph_Bazalgette

Sir Joseph William Bazalgette (Enfield, Middlesex, actualmente Londres, 28 de marzo de 1819 – Wimbledon, Surrey, actualmente Merton, Londres, 15 de marzo de 1891) fue uno de los ingenieros civiles más importantes del Reino Unido. Es conocido principalmente por haber diseñado el sistema moderno de alcantarillado de Londres, que sigue en funcionamiento más de 150 años después, y por haber transformado el paisaje urbano de la ciudad tanto por encima como por debajo de la superficie.

Al igual que los Brunel, familia con la que compartió época y amistad, los Bazalgette eran inmigrantes franceses establecidos en Inglaterra a finales del siglo XVIII. Su abuelo, Jean Louis Bazalgette, provenía del sur de Francia y llegó a Londres en 1784. Allí se estableció como sastre y financiero, y llegó a ser sastre principal del príncipe de Gales, futuro Jorge IV. Su hijo, Joseph William Bazalgette, oficial retirado de la Marina Real británica, se casó con Theresa Philo Pilton y tuvieron un hijo varón, Joseph William. En 1827, la familia se mudó a Hamilton Terrace, en St John’s Wood (Londres), donde Joseph creció y desarrolló su temprano interés por la ingeniería.

Bazalgette comenzó su carrera como aprendiz del reconocido ingeniero Sir John Macneill, con quien trabajó en proyectos ferroviarios y de drenaje de tierras, algunos de ellos en Irlanda del Norte. En 1842, se estableció como ingeniero consultor en Westminster y participó en obras como el canal del valle del Tame, en Birmingham, y estudios ferroviarios. Durante la década de 1840, también participó en la mejora del sistema de alcantarillado de Londres, aunque estas soluciones resultaron insuficientes para hacer frente a los crecientes problemas sanitarios.

En 1847, debido al exceso de trabajo, sufrió una crisis de salud que lo obligó a retirarse temporalmente al campo. Tras recuperarse, regresó a Londres y, en agosto de 1849, fue nombrado asistente del inspector de la Segunda Comisión Metropolitana de Alcantarillado, con un salario de 250 libras anuales. En 1852, ascendió a ingeniero jefe.

El 25 de enero de 1855 fue nombrado ingeniero jefe de la recién creada Metropolitan Board of Works (MBW), con un salario de 1000 libras al año. Ocupó este cargo durante más de 30 años, hasta 1889. Fue recomendado para este puesto nada menos que por Isambard Kingdom Brunel, quien lo conocía bien y lo respaldó firmemente. Ese mismo año, Bazalgette se casó con Maria Keogh, de Wexford (Irlanda), con quien tendría diez hijos.

En la década de 1850, la ciudad de Londres sufría un grave problema: las aguas residuales se vertían directamente al río Támesis, lo que provocaba brotes de cólera y unas condiciones insalubres. La situación llegó a un punto crítico en 1858, durante el episodio conocido como el «Gran Hedor», cuando el intenso calor veraniego hizo insoportable el olor del río. El Parlamento estuvo a punto de trasladarse a Oxford o Henley y, presionado por la emergencia, aprobó una ley que otorgaba a Bazalgette el control total para desarrollar una solución adecuada.

Así comenzó su obra maestra: el sistema moderno de alcantarillado de Londres. Bazalgette y su equipo lo construyeron por etapas hasta principios de la década de 1870. Al diseñar las tuberías, estimó generosamente la cantidad diaria de residuos por persona y la multiplicó por la población; luego, la duplicó, anticipándose al crecimiento urbano. Gracias a su previsión, los conductos no colapsaron en la década de 1960, como habría ocurrido con cálculos más conservadores.

El sistema incluía 83 millas (134 km) de alcantarillas interceptoras y unas 1100 millas (1770 km) de red secundaria. Para transportar las aguas residuales río abajo fue necesario construir un enorme conducto paralelo al Támesis. Así surgieron los diques de contención (embankments): el Albert Embankment (1864-1870), el Victoria Embankment (1864-1870) y el Chelsea Embankment (1871-1874), con los que se recuperaron 52 acres de terreno. Estas obras también permitieron el trazado de la línea District del metro y la creación de los Embankment Gardens. El sistema fue inaugurado en 1865 por el príncipe de Gales y finalizado en 1875.

Para mover las enormes cantidades de aguas residuales, Bazalgette supervisó la construcción de cuatro estaciones de bombeo de vapor: Deptford (1865), Crossness (1865), Abbey Mills (1868) y Western, en Chelsea (1875). Aunque ya no están en uso, estas estaciones aún existen y destacan por su poco común arquitectura. También participó en la estación de Pimlico.

El sistema redujo drásticamente el cólera y mejoró enormemente la salud pública. Bazalgette se consideraba ante todo un ingeniero sanitario y su contribución fue crucial para la transformación higiénica de Londres.

Mientras desarrollaba esta gigantesca red, no descuidó sus funciones diarias en el MBW, que incluían la supervisión de múltiples informes y proyectos. También lideró la creación de nuevas vías urbanas como Southwark Street (1864), Queen Victoria Street (1871), Northumberland Avenue (1876), Shaftesbury Avenue (1886) y Charing Cross Road, lo que mejoró el tráfico en una ciudad cuyas calles ya eran inadecuadas para finales del siglo XIX.

Monumento a Sir Joseph Bazalgette. https://londonhistorians.wordpress.com/

En 1877, todos los puentes de Londres pasaron a ser de propiedad pública y se eliminaron los peajes. Bazalgette los inspeccionó y, al encontrar tres de ellos en mal estado, los reconstruyó según sus propios diseños: el puente de Battersea (1886-1890), el puente colgante de Hammersmith (1887) y el puente de Putney (1882-1886). Todos siguen en uso, aunque el de Hammersmith ha sufrido restricciones recientemente. Putney es, sorprendentemente, el puente con más tráfico de Londres. También estuvo detrás de la creación del Woolwich Free Ferry (1889), un servicio gratuito de transbordadores propulsados por vapor.

Su prestigio fue tal que lo solicitaron como consultor en otras ciudades británicas y extranjeras, como Pest (Hungría) y Odesa (Rusia). En reconocimiento a su labor, fue nombrado comendador de la Orden del Baño en 1871 y caballero en 1874. En 1889, tras la disolución del MBW y su reemplazo por el London County Council, recibió una pensión de 1333 libras, 6 chelines y 8 peniques.

Fue miembro de la Institution of Civil Engineers (ICE) desde 1846, vicepresidente en 1879 y presidente en 1884. También perteneció a la Smeatonian Society, de la que fue presidente en 1876. Su trabajo sobre alcantarillado le valió la Medalla Telford en 1865. En sus discursos institucionales, defendió la ingeniería como herramienta de salud pública para ciudades de todo el mundo.

Tras jubilarse, vivió en Wimbledon, donde montaba a caballo y cuidaba un terreno con vacas. Falleció en su casa de Arthur Road el 15 de marzo de 1891, a los 72 años. Fue enterrado en la iglesia de St Mary, en Wimbledon.

Su legado perdura de múltiples formas: una placa azul del Greater London Council en su antigua casa, un monumento en el Victoria Embankment y, en 2020, el anuncio del Bazalgette Embankment como nuevo espacio público a orillas del Támesis. El Dulwich College otorga una beca en su nombre para estudiantes destacados en ciencia, matemáticas o tecnología.

En 2018, el ICE lo incluyó en su campaña «Superhéroes invisibles» con el apodo de Captain Sanitation, en reconocimiento a su impacto en la salud y la sostenibilidad. Entre sus descendientes se encuentran el piloto Will Bazalgette, el director de televisión Edward Bazalgette y el productor Sir Peter Bazalgette, creador del programa Big Brother.

Bazalgette fue, sin duda, el gran ingeniero de Londres.

Os dejo algunos vídeos que espero que os resulten interesantes.

Entre acero y poesía: La vida de Joseph Strauss, la cara visible del Golden Gate

Joseph Baermann Strauss (1870-1938). https://magazine.uc.edu/

Joseph Baermann Strauss nació el 9 de enero de 1870 en Cincinnati, Ohio, apenas una década después del fin de la guerra de Secesión estadounidense. Creció en el seno de una familia de artistas de origen judío alemán: su madre era pianista, aunque un accidente frustró su carrera, y su padre, Raphael Strauss, fue pintor y escritor. En ese entorno, Joseph desarrolló desde joven una profunda sensibilidad artística y una pasión por la poesía, con el anhelo inicial de seguir una trayectoria en las artes. Sin embargo, su vida tomaría otro rumbo en el que la ciencia, la ingeniería y la expresión poética acabarían entrelazándose.

Ingresó en la Universidad de Cincinnati para estudiar ingeniería civil, donde destacó tanto por sus cualidades intelectuales como por su liderazgo. Fue elegido delegado de su clase y también poeta oficial. Durante su etapa universitaria, formó parte de la fraternidad Sigma Alpha Epsilon y escribió un extenso poema titulado Reveries, que leyó como discurso de graduación en 1892. En él presentó una tesis ambiciosa: un proyecto utópico para construir un ferrocarril que conectara Alaska con Rusia a través del estrecho de Bering. Aunque su propuesta sorprendió a la audiencia, su sinceridad, visión y entusiasmo le valieron el respeto del público.

Una experiencia marcó profundamente su orientación profesional. Durante una enfermedad, fue hospitalizado en la enfermería universitaria y, desde la cama, podía contemplar el puente colgante John A. Roebling, que cruzaba el río Ohio entre Cincinnati y Covington. Este puente, el más largo del mundo entre 1866 y 1883, le causó una impresión duradera y despertó en él una profunda fascinación por la ingeniería de puentes que definiría el resto de su vida.

Tras graduarse, Strauss comenzó su carrera profesional como delineante en la empresa New Jersey Steel and Iron Company y, posteriormente, en la compañía Lassig Bridge and Iron Works, en Chicago. En 1899, fue contratado como asistente principal del reconocido ingeniero Ralph Modjeski. Durante su etapa en la empresa, Strauss comenzó a especializarse en puentes basculantes, también conocidos como drawbridges. Se dio cuenta de que los contrapesos de hierro que se utilizaban en estas estructuras resultaban caros y pesados, por lo que propuso reemplazarlos por contrapesos de hormigón, que eran más económicos y eficientes. Su sugerencia fue rechazada, por lo que abandonó la empresa y, en 1904, fundó su propia compañía: la Strauss Bascule Bridge Company of Chicago, que posteriormente abrió también oficinas en San Francisco.

Durante las décadas siguientes, Strauss se convirtió en un innovador y referente nacional en el diseño de puentes móviles. Entre sus obras más representativas se encuentra el puente basculante del ferrocarril HB&T sobre el Buffalo Bayou de Houston, diseñado en 1912 y que aún se encuentra parcialmente operativo. También diseñó el puente basculante Cherry Street Strauss Trunnion en Toronto, el puente Skansen en Noruega, el puente Burnside en Portland (Oregón) y el puente Lewis y Clark sobre el río Columbia, que conecta Longview (Washington) con Rainier (Oregón). A lo largo de su carrera, participó en la construcción de más de cuatrocientos puentes basculantes en América del Norte y Europa, consolidándose como el máximo exponente de este tipo de estructuras.

El mayor desafío de su vida llegó en 1916, cuando el ingeniero municipal de San Francisco publicó un artículo en el que afirmaba que no sería posible construir un puente sobre el Golden Gate —el estrecho que conecta la bahía de San Francisco con el océano Pacífico— por menos de 100 millones de dólares. Strauss respondió que él podía hacerlo por 17 millones. Así comenzó una larga cruzada para hacer realidad lo que entonces parecía imposible. Durante más de diez años, Strauss trabajó sin descanso para convencer a ciudadanos, políticos, al ejército, a la marina y a los inversores de que el puente era viable. Se enfrentó a una fuerte oposición por parte de compañías de ferris, ecologistas, administraciones locales e incluso otros ingenieros.

En noviembre de 1930, ya en plena Gran Depresión, los votantes aprobaron una emisión de bonos que dio luz verde al proyecto. La obra comenzó en enero de 1933, con un presupuesto final de 35 millones de dólares, 13 millones menos de lo estimado inicialmente, y se finalizó antes de lo previsto. Aunque Strauss había propuesto inicialmente un diseño híbrido de suspensión y voladizo, finalmente optó por un diseño colgante clásico, con un tramo principal de 1280 metros, lo que lo convirtió en el puente colgante más largo del mundo hasta la década de 1960.

Strauss supervisó personalmente gran parte de la construcción. En homenaje a su alma mater, colocó un ladrillo del edificio McMicken de la Universidad de Cincinnati en el anclaje sur del puente. También introdujo un elemento innovador en materia de seguridad: una red de protección bajo el tablero que salvó la vida de 19 trabajadores, una cifra significativa para la época, lo que supuso una medida pionera en obras civiles de gran escala.

Monumento a Strauss en San Francisco (marzo de 2010). https://es.wikipedia.org/wiki/Joseph_Strauss_(ingeniero)

Sin embargo, el proceso no estuvo exento de conflictos. Aunque Strauss fue la cara visible del proyecto, el diseño estructural detallado fue obra de los ingenieros Charles Alton Ellis y Leon Moissieff. Strauss, empeñado en recibir todo el reconocimiento, minimizó las contribuciones de Ellis, que fue excluido de los créditos en la ceremonia inaugural de 1937. Esta omisión se corrigió finalmente en 2012, cuando se colocó una placa conmemorativa en su honor junto al puente.

Durante los años de construcción, Strauss empezó a mostrar signos de deterioro físico y emocional. Estuvo ausente durante más de seis meses, lo que generó rumores sobre una crisis nerviosa. En ese periodo se divorció de su mujer y se casó con una joven cantante muchos años menor que él. Tras finalizar el puente, agotado, se retiró a Arizona para recuperarse.

El puente Golden Gate se inauguró oficialmente el 27 de mayo de 1937. Strauss celebró el acontecimiento escribiendo y leyendo su poema The Mighty Task is Done, un homenaje lírico a la culminación de su obra más ambiciosa. Este poema supuso su despedida de la ingeniería y también el cierre simbólico de su vida profesional. Menos de un año después, el 16 de mayo de 1938, Strauss falleció en Los Ángeles a causa de un derrame cerebral. Tenía 68 años.

En 1941, su viuda financió la construcción de una estatua en su honor ubicada en el extremo sur del puente, en el lado de San Francisco. La inscripción reza: «Joseph B. Strauss, 1870-1938. El hombre que construyó el puente». Aunque su figura ha sido objeto de controversia, su contribución a la ingeniería es indiscutible. Además de su legado técnico, dejó una notable obra poética, que incluye el poema «Las secuoyas», inspirado en los árboles monumentales de California, y que aún hoy se vende como recuerdo en los parques naturales.

Joseph B. Strauss fue un ingeniero y poeta, un soñador meticuloso que cruzó el puente entre el arte y la técnica. Su vida demuestra que la grandeza de la ingeniería no solo se mide en acero y cemento, sino también en visión, valor y sensibilidad humana. El Golden Gate, con su silueta roja suspendida sobre el océano, sigue siendo el mejor poema que pudo haber escrito.

Pero aquí os dejo la pequeña entrevista que me hicieron sobre el Golden Gate.

Os dejo algunos vídeos sobre el Golden Gate. Pero podéis ver más vídeos sobre la construcción de este puente aquí: https://victoryepes.blogs.upv.es/2013/06/24/golden-gate/

Othmar Ammann: el ingeniero que redefinió los puentes del siglo XX

Othmar Hermann Ammann (1879–1965). https://commons.wikimedia.org/wiki/

Othmar Hermann Ammann (1879-1965) fue un ingeniero civil suizo-estadounidense cuya obra transformó la ciudad de Nueva York y revolucionó el diseño de puentes en el siglo XX. Su enfoque técnico y estético permitió construir estructuras tan emblemáticas como el puente George Washington o el puente Verrazano-Narrows. A lo largo de su carrera, combinó innovación, eficiencia y belleza con una precisión matemática, sin perder de vista el contexto urbano y económico de cada época.

Nació el 26 de marzo de 1879 en Feuerthalen, al norte de Suiza. Provenía de una familia trabajadora: su padre era fabricante y su madre, sombrerera. Comenzó su formación en la Escuela Industrial de Zúrich y la continuó en el Eidgenössische Polytechnikum (ETH Zurich), donde se graduó en 1902 bajo la tutela del destacado profesor Wilhelm Ritter. A diferencia de otras instituciones técnicas de la época, esta escuela otorgaba gran valor a la estética en el diseño estructural, principio que Ammann adoptó como eje rector de su carrera: «Cuando diseñas un puente, el impacto estético es tan importante como los detalles técnicos. ¡Construir un puente feo es un crimen!».

En 1904 emigró a Estados Unidos con la intención inicial de realizar unas prácticas profesionales de corta duración. Llegó a Nueva York el 5 de mayo de ese año y pronto comenzó a trabajar en el diseño de puentes ferroviarios. Al año siguiente, trabajó en la Pennsylvania Steel Company, donde colaboró en la construcción del puente Queensboro. Ese mismo año, viajó temporalmente a Suiza para casarse con Lilly Selma Wehrli, con quien tendría tres hijos: Werner, George y Margot.

Su reputación creció en 1907, cuando redactó un informe técnico sobre el colapso del puente de Quebec, lo que le otorgó prestigio en el ámbito profesional. Entre 1912 y 1923 fue asistente del influyente ingeniero Gustav Lindenthal. Junto a él, participó en la construcción del puente Hell Gate de Nueva York y del puente sobre el río Ohio en Sciotoville. En 1917, propuso una alternativa más realista al ambicioso puente multifuncional que Lindenthal quería construir sobre el río Hudson: su idea de un puente exclusivamente destinado al tráfico rodado marcó un punto de inflexión en su carrera.

Durante los años veinte, Estados Unidos experimentó un gran auge de la motorización y la urbanización. Aunque Ammann era una persona modesta y reservada, supo detectar oportunidades clave. Según el historiador David Witz, «tenía dos caras: la tímida y suiza, pero también la de “ve a por ello”». En 1923, fundó su propia empresa de ingeniería en Nueva York. Al año siguiente se nacionalizó estadounidense y la Autoridad Portuaria de Nueva York aprobó financiar su propuesta para construir un puente entre Nueva Jersey y Manhattan. Su proyecto fue elegido por encima del de su antiguo mentor, Lindenthal.

En 1930, fue invitado a Suiza para recibir un doctorado honoris causa de la ETH de Zúrich, junto con Albert Einstein. Ese mismo año fue nombrado ingeniero jefe de la Autoridad Portuaria de Nueva York, donde dirigió la construcción del puente de Bayonne, el Outerbridge Crossing, el puente de Goethals y el túnel de Lincoln. Entre 1937 y 1939, ya como director de ingeniería, lideró la construcción del puente Bronx-Whitestone y del puente Triborough (hoy puente Robert F. Kennedy). También formó parte de la junta que supervisó la construcción del puente Golden Gate de San Francisco, inaugurado en 1937.

By John O’Connell – originally posted to Flickr as George Washington Bridge from New Jersey, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=10903748

Inaugurado el 24 de octubre de 1931, el puente George Washington supuso un hito en la historia de la ingeniería. Con una luz de 1.067 metros, duplicó el récord mundial de la época. Su tablero aerodinámico redujo costes y resistía fuertes vientos. Se terminó seis meses antes de lo previsto y por debajo del presupuesto. Actualmente, sigue siendo el puente colgante con más carriles del mundo (14) y el más transitado, con más de 100 millones de vehículos al año.

En 1932 se completó el puente Bayonne, que ostentó el récord del arco de acero más largo del mundo durante 45 años. En 1933, tras el fallecimiento de Lilly, su primera esposa, Ammann fue nombrado director de la Triborough Bridge and Tunnel Authority y comenzó a colaborar con el urbanista Robert Moses. En 1935, se casó con Kläry Nötzli, viuda del ingeniero suizo Fred A. Nötzli.

Ammann aplicó la teoría de la deflexión para aligerar estructuras sin comprometer la estabilidad, lo que resultó clave durante la Gran Depresión. Su talento llamó la atención de Robert Moses, con quien trabajó estrechamente en múltiples proyectos. En 1940, participó en la investigación del colapso del puente de Tacoma Narrows junto a Theodore von Kármán y Glenn B. Woodruff. Su informe de 1941 resultó decisivo para la evolución del diseño de puentes colgantes.

En 1946, fundó junto a Charles S. Whitney la empresa Ammann & Whitney. Con esta empresa diseñó los dos últimos puentes de su carrera: el puente Throgs Neck (1961) y el puente Verrazzano-Narrows (1964). Durante los años cuarenta y cincuenta, continuó viajando regularmente a Suiza, especialmente a Pontresina y Zermatt. Cuando estalló la Segunda Guerra Mundial, se alistó como teniente en el ejército suizo en Andermatt. Al no ser atacada Suiza, regresó a Estados Unidos.

By H.L.I.T. – originally posted to Flickr as Verrazano, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=12715051

En 1959, con 80 años, comenzó la construcción del puente Verrazano-Narrows, que se inauguró el 21 de noviembre de 1964. Con una luz de 1298 metros, fue el puente colgante más largo y pesado del mundo, y aún hoy es el más extenso del hemisferio occidental. Ammann lo consideraba su obra maestra. «Sabía que esta sería su obra maestra en belleza y en la excelencia de su modelo de desarrollo de la forma a partir de la construcción. Supuso el punto álgido de su desarrollo profesional como ingeniero pionero. Murió un año después de su apertura», indica David Witz. El historiador también afirma que su puente favorito es este: «Es una estructura muy hermosa y enorme, profundamente elegante».

En 1963, las autoridades suizas rechazaron su propuesta para construir un puente atirantado sobre el lago de Ginebra. Ese mismo año, recibió la Medalla Nacional de la Ciencia de manos del presidente Lyndon B. Johnson, convirtiéndose así en el primer ingeniero civil en recibir esta distinción.

Othmar Ammann falleció el 22 de septiembre de 1965 en Rye, Nueva York. A lo largo de su vida recibió numerosos reconocimientos, como el Thomas Fitch Rowland Prize (1919), el Ernest E. Howard Award (1960) y el título de Ingeniero Civil del Año (1958) por la Sección Metropolitana. En 1962 se erigió un busto suyo en la estación de autobuses del puente George Washington. En 1968, la Universidad de Stony Brook nombró en su honor la residencia Ammann College, y en 1979, con motivo del centenario de su nacimiento, se colocó una placa conmemorativa junto al puente Verrazzano-Narrows.

Considerado por muchos como el ingeniero civil más grande del siglo XX, Ammann sigue siendo una figura poco conocida en su país natal. Su legado, sin embargo, permanece vivo en los puentes que conectan ciudades y culturas, símbolo de una visión que supo unir técnica, estética y sentido de la oportunidad.

Os dejo un vídeo de la inauguración del puente Verrazano.

Eduardo Saavedra, ingeniero humanista del siglo XIX

Eduardo Saavedra y Moragas (1829-1912). https://es.wikipedia.org/wiki/Eduardo_Saavedra

Eduardo Saavedra y Moragas nació en Tarragona el 27 de febrero de 1829. Era hijo de Ignacio Saavedra Dumont, militar retirado natural de La Coruña y veterano de la guerra de la Independencia, y de Francisca Moragas Jenkins, oriunda de Riudoms. Tras cursar el bachillerato en Tarragona, Sevilla y Lérida, su familia se estableció en Madrid, donde inició estudios de Derecho en la universidad. Sin embargo, su vocación científica le llevó a cambiar de rumbo en 1846 e ingresar en la Escuela de Ingenieros de Caminos de Madrid, donde se licenció en 1851 como número uno de su promoción, destacando en Mecánica Aplicada, Mecánica Racional y Construcción.

Su primer destino profesional (1851-1853) fue Soria, donde proyectó la desecación de la laguna de Añavieja —con el fin de optimizar el riego, recuperar tierras y erradicar las fiebres endémicas—, y dirigió la construcción de la carretera de Soria a El Burgo de Osma. Durante el trazado de esta última, descubrió restos de la calzada romana que unía Uxama con Augustóbriga. El estudio de esta vía le llevó en 1860 al descubrimiento de las ruinas de Numancia, lo que le valió su ingreso en la Real Academia de la Historia en 1862. Como comisionado de dicha academia, dirigió las excavaciones de Numancia hasta 1867 y mantuvo una constante relación epistolar con corresponsales de toda España y el extranjero. Además, apoyó a Buenaventura Hernández Sanahuja en la fundación del Museo Arqueológico de Tarragona.

En 1854, reclamado como profesor en la Escuela de Caminos de Madrid, impartió Mecánica Aplicada (materia básica), Mecánica Racional y Construcción hasta 1862, y regresó brevemente entre 1867 y 1870. Durante este periodo compaginó docencia y labor editorial: en 1856 publicó Teoría de los puentes colgados; en 1859, Lecciones sobre la resistencia de los materiales y Nota sobre el coeficiente de estabilidad; y en 1860, Nota sobre el problema del equilibrio de las bóvedas, iniciando el análisis elástico de arcos. Traducjo al castellano obras de William Fairbairn (1857 y 1859) y de Michon (1860), añadiendo un comentario exhaustivo a esta última, y se encargó de difundir las últimas novedades técnicas europeas en la Revista de Obras Públicas y en los Anales de la Construcción y de la Industria.

Durante los veranos de 1857 y 1858, dirigió los proyectos de los faros de Chipiona —el más alto de España—, Salmedina y Trafalgar. Ese mismo verano, trazó la carretera de Cudillero a Cornellana (Asturias) y acometió los tramos III y IV de la carretera de Garray a Villar (Soria). Su prestigio creció en el círculo humanista que compartía con amigos y colegas como José Echegaray, Gabriel Rodríguez y Pedro Pérez de la Sala. Entre sus discípulos se encontraban Bruno Moreno, Miguel Martínez-Campos y Antonio Borregón Peñalver.

Tras concluir su etapa soriana y ocho años de enseñanza, se incorporó como ingeniero jefe a la Compañía del Ferrocarril de Palencia a Ponferrada. Dirigió la construcción del tramo Palencia-León, inaugurado en noviembre de 1863, y proyectó el tramo León-Astorga, con todas sus estaciones. También diseñó el puente sobre el río Bernesga que unía la estación con la ciudad. En 1863 también redactó el anteproyecto de la línea Torralba-Soria, cuya ejecución se pospuso hasta 1892 y en el que destaca el viaducto del Golmayo.

La revolución de 1868 le situó al frente del Negociado de Ferrocarriles del Ministerio de Fomento y, posteriormente, como director de Obras Públicas, cargo del que dimitió en enero de 1871 junto al resto del Gobierno ante la llegada del rey Amadeo de Saboya. En 1869, representó a España en el Congreso Comercial e Internacional de El Cairo y presidió la delegación en la inauguración del canal de Suez; años después, formó parte de la Comisión Internacional para su ampliación.

Al mismo tiempo que trabajaba en Caminos, en torno a 1868 inició estudios de Arquitectura, motivado por su afición al dibujo y al estudio de construcciones antiguas, afición que se pone de manifiesto en las láminas que realizó para sus artículos sobre las iglesias de San Juan de Duero y San Nicolás de Soria. Completó la carrera en solo tres cursos y obtuvo el título de arquitecto en 1870. Su primer encargo fue habilitar el caserón del Nuevo Rezado, obra de Villanueva, como sede de la Real Academia de la Historia. Este laborioso trabajo se inauguró en 1874 y es el único edificio suyo que se conserva. Otros proyectos para la Facultad de Ciencias y el Instituto Geográfico y Estadístico quedaron sin ejecutar.

En el ámbito académico e institucional ingresó en 1861 en la Real Academia de la Historia —de la que fue director entre 1908 y 1912 y cuyo sillón ocupó como senador desde 1895—; en 1868 en la Real Academia de Ciencias Exactas, Físicas y Naturales, donde llegó a ser vicepresidente y presidente de la Sección de Ciencias Exactas y, en 1910, recibió la Medalla Echegaray; y en 1874 en la Real Academia Española, tomando posesión el 29 de diciembre de 1878 con el discurso La literatura aljamiada, al que Antonio Cánovas del Castillo dio la bienvenida destacando “el dulce sabor arcáico… de los escritores moros”. En la RAE fue tesorero desde 1901 hasta 1912 y, en la contestación al discurso de Daniel de Cortázar, defendió la adopción de criterios clásicos para la formación de nuevas nomenclaturas técnicas. Asimismo, cofundó y presidió la Real Sociedad Geográfica de Madrid y fue socio de la Academia de Ciencias de Lisboa.

En el ámbito personal, en 1855 se casó con María Dolores Forner y Ramírez de Verger, nieta del escritor Juan Pablo Forner, con quien tuvo dos hijos, de los cuales solo sobrevivió una hija, María, que se casó con el doctor José Grinda Forner, médico de la Casa Real. Entre sus amistades más destacadas se encontraban el padre Fidel Fita Colomé, Antonio Cánovas del Castillo, José Echegaray y Aureliano Fernández-Guerra. A lo largo de sus últimos años padeció una ceguera progresiva que culminó con la pérdida total de la vista.

Saavedra escribió y publicó trabajos muy diversos: estudios sobre las iglesias sorianas de San Juan de Duero y San Nicolás; La vía romana de Uxama a Augustóbriga (1869); Astrolabias árabes… (1875); La geografía de España de Edrisí (1881); Estudio sobre la invasión de los árabes en España (1892); El Nilo. Estudios técnicos e históricos (1912), entre otros. En 1983, el Colegio de Ingenieros de Caminos, Canales y Puertos dedicó a su memoria el monográfico Eduardo Saavedra, ingeniero y humanista.

Eduardo Saavedra y Moragas falleció en Madrid, en su domicilio de la calle Fuencarral, el 12 de marzo de 1912, rodeado de familia y amigos. Con su muerte desapareció el ingeniero humanista más polifacético del siglo XIX español, cuya labor técnica, académica, arqueológica y cultural dejó una huella imborrable en la historia de la ingeniería y las humanidades.

Os dejo algunos vídeos sobre este personaje. Espero que os interesen.

Necrológica: Javier Rui-Wamba: la ingeniería como humanismo

Javier Rui-Wamba Martija (1942-2025). Foto cortesía de Esteyco

Acaba de dejarnos Javier Rui-Wamba Martija, fundador de Esteyco y de la fundación que lleva su nombre. Falleció en Barcelona el pasado 10 de julio. Su vida y su obra demostraron que la ingeniería no solo es técnica, sino también cultura, rigor y belleza.

Nació en Guernica en 1942 y, a los siete años, se mudó a Bilbao, donde cursó los diez años de bachillerato en el colegio de los jesuitas. En aquellos años, además de estudiar, cultivó su afición por el deporte: practicó fútbol y baloncesto con éxito y recorría en bicicleta la ría, contemplando la industria pesada de la margen izquierda y los barcos que esperaban faena los lunes.

Se formó como ingeniero de Caminos, Canales y Puertos y, durante años, fue docente en la Escuela Superior de Ingenieros de Caminos de Madrid, en la cátedra de Puentes y Estructuras Metálicas. También participó activamente en numerosos comités nacionales e internacionales, contribuyendo a elaborar normativas de referencia como el influyente Código Modelo 1990 del Comité Europeo del Hormigón.

Su carrera profesional fue igual de intensa: lideró un equipo multidisciplinar en más de 800 proyectos en más de 30 países, para los que empleó con frecuencia técnicas innovadoras y materiales diversos. Entre sus obras más notables destacan la torre eólica telescópica sin sujeción más alta del mundo, proyectada en China, y la plaza de las Glorias de Barcelona, un proyecto que diseñó y rediseñó para abrir la ciudad al mar.

En 1970, fundó la empresa Esteyco y, más tarde, la Fundación Esteyco, con la que demostró que la ingeniería también puede ser un humanismo, creando un espacio de encuentro entre arquitectura e ingeniería en el que ambas disciplinas se someten al rigor científico, la excelencia literaria y la belleza visual. La fundación ha editado más de cien libros desde 1991, que se suman a la impresionante biblioteca personal de Rui-Wamba: cuatro mil volúmenes técnicos en su oficina y otros cuatro mil —sobre todo novelas— en su casa. «Con los libros pierdes el miedo a lo que no conoces», solía decir.

Además de su labor profesional, Rui-Wamba dejó un legado intelectual: tras 12 años de trabajo y unas 10.000 horas invertidas, publicó su obra más ambiciosa, El legado estructural de Javier Rui-Wamba: extractos de la teoría unificada de estructuras y cimientos (TUEC), un tratado de 3.000 páginas cuidadosamente manuscritas.

A lo largo de su carrera recibió numerosos galardones, entre ellos el Premio Nacional de Ingeniería Civil, concedido por unanimidad en 2016, la Medalla Ildefons Cerdá, la Medalla de Honor del Colegio de Ingenieros de Caminos y el Premio Nacional de Ingeniería del Ministerio de Fomento. El propio ministro destacó entonces su «talento y compromiso con la sociedad» y su capacidad para combinar las distintas facetas de la profesión.

Hasta poco antes de la pandemia, acudía cada mañana a su oficina con buen humor y una sonrisa, con un aire que recordaba al actor Harrison Ford. Hablaba catalán, firmaba con su Pilot V5 azul y recordaba con cariño que su madre le llamaba buru handi (cabeza grande) en euskera.

Hoy, arquitectos e ingenieros, reconocemos la deuda de gratitud con quien supo tender puentes entre la técnica y la cultura, la ciencia y la belleza. Descanse en paz, Javier Rui-Wamba Martija.

Aquí le podemos ver en varios vídeos:

Os dejo un artículo que permite adentrarnos algo más en la personalidad de este gran ingeniero.

Pincha aquí para descargar

También el discurso de toma de posesión en la Academia de Ingeniería.

Pincha aquí para descargar

Ingeniero, matemático y visionario: la historia de Saint-Venant

Adhémar Jean Claude Barré de Saint-Venant (1797 – 1886). https://en.wikipedia.org/wiki/

Adhémar Jean Claude Barré de Saint-Venant (Villiers-en-Bière, Seine-et-Marne, Francia, 23 de agosto de 1797 – Saint-Ouen, Loir-et-Cher, Francia, enero de 1886) fue un ingeniero, matemático y científico de la mecánica de medios continuos francés que contribuyó de manera decisiva al nacimiento de esta disciplina, tanto en la mecánica de sólidos deformables como en la mecánica de fluidos. Aunque su apellido completo era Barré de Saint-Venant, en la bibliografía no francesa suele aparecer simplemente como Saint-Venant.

Fue un pionero en el estudio de los esfuerzos en estructuras. Su nombre está vinculado al principio de Saint-Venant para sistemas de cargas equivalentes, al teorema de Saint-Venant, que establece que el círculo es la sección maciza más efectiva contra la torsión, y a la condición de compatibilidad de Saint-Venant, que garantiza la integrabilidad de los tensores de deformación. En mecánica de fluidos, desarrolló las ecuaciones que describen el flujo unidimensional no estacionario de un fluido en lámina libre para aguas poco profundas, conocidas como ecuaciones de Saint-Venant. También fue el primero en «identificar adecuadamente el coeficiente de viscosidad y su papel como factor multiplicador de los gradientes de velocidad en un flujo».

Además, desarrolló un cálculo vectorial similar al de Grassmann (hoy considerado una forma de cálculo exterior), que publicó en 1845. Esto dio lugar a una disputa sobre la prioridad con Grassmann, quien había publicado sus resultados un año antes, en 1844, aunque Saint-Venant afirmó haber ideado el cálculo en 1832.

Vida

Nació el 23 de agosto de 1797 en el Château de Fortoiseau, en Villiers-en-Bière (Seine-et-Marne). Su padre, Jean Barré de Saint-Venant (1737-1810), fue oficial colonial en la isla de Santo Domingo y su madre, Marie-Thérèse Josèphe Laborie, nació en Haití en 1769.

En 1813, con tan solo dieciséis años, ingresó en la École Polytechnique, donde estudió bajo la dirección de Gay-Lussac. Ese mismo año, París se preparaba para resistir la invasión tras la derrota de Napoleón en Leipzig. Todos los estudiantes fueron movilizados, pero Saint-Venant se negó a combatir diciendo: «Mi conciencia me prohíbe luchar por un usurpador». Por esta negativa, tuvo que abandonar la escuela. No obstante, en 1816 logró graduarse como ingeniero tras completar los estudios interrumpidos.

A partir de ese momento, trabajó como ingeniero durante 27 años. Inicialmente, su afición por la química le llevó a ser élève-commissaire del Service des Poudres et Salpêtres (Servicio de Pólvoras y Nitratos), donde trabajó durante los primeros siete años. Posteriormente, durante los veinte años siguientes, ejerció como ingeniero civil en el Corps des Ponts et Chaussées (Cuerpo de Puentes y Caminos). Al mismo tiempo, asistió a cursos en el Collège de France y todavía se conservan sus detalladas notas de las clases de Liouville de 1839-1840.

En 1823 obtuvo permiso para reincorporarse formalmente a la École des Ponts et Chaussées, donde se graduó en 1825 y llegó a ser ingeniero jefe de segunda clase. En 1837 se casó con Rohaut Fleury, de París. Tras un desacuerdo con la administración municipal, se retiró del servicio público el 1 de abril de 1848.

En 1850 ganó por concurso la cátedra de ingeniería agronómica en el Instituto Agronómico de Versalles, que ocupó durante dos años. En ese contexto, en 1851 publicó Principes de Mécanique fondés sur la Cinématique, donde defendía una concepción atomista de la materia y presentaba las fuerzas como entidades cinemáticas, desligadas de las nociones metafísicas o fisiológicas que, en su opinión, oscurecían el concepto físico de fuerza. Su uso del cálculo vectorial, introducido en estas lecciones, fue adoptado por el sistema escolar francés. Posteriormente, sucedió a Coriolis como profesor de matemáticas en la École des Ponts et Chaussées.

En 1868, con 71 años, fue elegido para ocupar la plaza de la sección de Mecánica de la Academia de Ciencias de Francia, en sustitución de Poncelet. En 1869, el papa Pío IX le concedió el título de conde. En 1883, a los 86 años, tradujo (junto con A. Flamant) al francés la Théorie de l’élasticité des corps solides de Clebsch, añadiendo él mismo notas originales al texto. Flamant también redactó su necrológica oficial con otros colegas.

Saint-Venant murió en enero de 1886 en Saint-Ouen (Loir-et-Cher). Las fuentes discrepan sobre la fecha exacta: algunas señalan el 6 de enero y otras el 22.

Obra científica

Saint-Venant trabajó principalmente en mecánica, elasticidad, hidrostática e hidrodinámica. Fue uno de los primeros en aplicar rigurosamente el concepto de esfuerzos internos en sólidos y en describir las condiciones para la integrabilidad de los campos de deformación. En la década de 1850, desarrolló soluciones para la torsión de cilindros no circulares y amplió el trabajo de Navier sobre la flexión de vigas, publicando en 1864 un tratado exhaustivo sobre el tema.

Su contribución más destacada fue probablemente su trabajo de 1843, en el que redescubrió correctamente las ecuaciones de Navier-Stokes para flujos viscosos. En palabras de Anderson:

Siete años después de la muerte de Navier, Saint-Venant rederivó sus ecuaciones para un flujo viscoso, considerando las tensiones internas viscosas y descartando por completo el enfoque molecular de Navier. Su artículo de 1843 fue el primero en identificar adecuadamente el coeficiente de viscosidad y su papel como factor que multiplica los gradientes de velocidad en el flujo, interpretando estos productos como tensiones viscosas debidas a la fricción interna. Saint-Venant lo hizo bien y lo documentó. Que su nombre no quedara asociado a estas ecuaciones es un misterio, sin duda una injusticia técnica.

Stokes también las derivó correctamente, pero su publicación se produjo dos años más tarde, en 1845.

En el ámbito de la hidrodinámica, desarrolló las ecuaciones para el flujo no estacionario en lámina libre, que hoy llevan su nombre (ecuaciones de Saint-Venant). En 1871, derivó las ecuaciones para el flujo no estacionario en canales abiertos.

En 1845, publicó una versión del cálculo vectorial similar a la de Grassmann, quien había publicado en 1844. Saint-Venant defendió que ya había desarrollado estas ideas en 1832 y utilizó este cálculo vectorial en sus clases en el Instituto Agronómico y en su obra de 1851. Aunque sus concepciones atomistas no prosperaron, su enfoque vectorial se adoptó en la enseñanza francesa.

Saint-Venant es recordado como un ingeniero, matemático y científico mecánico excepcional, pionero de la mecánica de medios continuos, del estudio del esfuerzo y la deformación en estructuras, de la hidrodinámica y del cálculo vectorial. Sus contribuciones fundamentales a la elasticidad, los flujos viscosos, la torsión de estructuras y el cálculo cinemático lo sitúan como uno de los grandes fundadores de la ingeniería y la mecánica moderna.

 

Orígenes del estudio de la vibración: de la música a la ciencia

Representación medieval de Pitágoras evaluando las consonancias perfectas regidas por relaciones matemáticas simples. https://bustena.wordpress.com/2013/09/16/la-sombra-de-pitagoras-armonia-composicion-ciencia-y-religion-en-la-musica-medieval/

Desde tiempos remotos, la humanidad ha observado y utilizado los fenómenos naturales para crear herramientas, expresar emociones y generar conocimiento. Uno de estos fenómenos, la vibración, ha estado presente en aspectos tan diversos como la música, la detección de terremotos, la ingeniería y la arquitectura.

En términos sencillos, una vibración consiste en el movimiento repetido de un objeto alrededor de una posición de equilibrio. Esa posición de equilibrio es el lugar al que tiende a volver el objeto cuando no actúa sobre él ninguna fuerza. Cuando todo el objeto se mueve al mismo tiempo y en la misma dirección, se habla de vibración de cuerpo entero. En este caso, todas sus partes oscilan juntas sin moverse de forma independiente.

Este artículo repasa de forma cronológica y accesible cómo distintas civilizaciones abordaron el estudio de la vibración, desde la intuición musical hasta los primeros intentos científicos de comprender el sonido y el movimiento. Este viaje histórico nos muestra cómo una misma pregunta puede tener múltiples respuestas a lo largo del tiempo y de las culturas.

El interés del ser humano por la vibración es tan antiguo como la propia civilización. De hecho, el primer contacto del ser humano con este fenómeno probablemente se produjo a través del sonido, cuando nuestros antepasados comenzaron a crear instrumentos musicales rudimentarios, como silbatos y tambores. Desde entonces, músicos, artesanos y pensadores han tratado de entender las reglas que hay detrás de la producción del sonido, han perfeccionado los instrumentos y han transmitido su conocimiento de generación en generación.

La vibración en las culturas antiguas

Hacia el año 4000 a. C., la música ocupaba un lugar destacado en civilizaciones como la china, la hindú, la japonesa y la egipcia. Estos pueblos seguían ciertas reglas musicales empíricas, aunque su conocimiento todavía no podía considerarse científico.

En el antiguo Egipto, por ejemplo, el arco del cazador, un arma común en sus ejércitos, pudo inspirar la creación de instrumentos de cuerda. Entre estos instrumentos, destaca la nanga, un arpa primitiva de tres o cuatro cuerdas, cada una de las cuales producía una sola nota. Un ejemplar de este tipo, fechado en torno al año 1500 a. C., se conserva en el Museo Británico. También se han encontrado en tumbas egipcias de alrededor del 3000 a. C. representaciones de arpas de hasta 11 cuerdas, lo que demuestra un nivel notable de sofisticación.

Una de las piezas más impresionantes es un arpa decorada en oro con una caja de resonancia en forma de cabeza de toro hallada en una tumba real de Ur (Mesopotamia) que data aproximadamente del año 2600 a. C.

La Grecia clásica: primeros pasos hacia la ciencia del sonido

Nuestro sistema musical actual tiene sus raíces en la antigua Grecia. Allí se inició el estudio sistemático del sonido, en particular del sonido musical. El filósofo y matemático Pitágoras (582-507 a. C.) fue probablemente el primero en abordar este fenómeno desde una perspectiva científica.

Mediante un instrumento denominado monocordio, Pitágoras llevó a cabo experimentos que pusieron de manifiesto la existencia de relaciones entre la longitud de una cuerda y el tono que produce. Por ejemplo, descubrió que, si dos cuerdas están sometidas a la misma tensión, la más corta emite un sonido más agudo. Además, descubrió que si una cuerda tiene la mitad de la longitud de otra, produce un sonido una octava más agudo. Aunque Pitágoras no dejó escritos sobre sus experimentos, sus ideas han sido transmitidas por otros autores.

Monocordio básico —diapasón—. https://es.wikipedia.org/wiki/Monocordio

Hacia el 350 a. C., Aristóteles escribió tratados sobre la música y el sonido, incluyendo observaciones cualitativas como «La voz es más dulce que el sonido de los instrumentos». Poco después, Aristógenes, uno de sus alumnos, redactó Elementos de armonía, una obra en tres volúmenes que es quizá el tratado musical más antiguo que se conserva y que fue escrito por un músico-investigador. Por su parte, Euclides abordó brevemente el tema musical en Introducción a la armonía, aunque sin hacer referencia a la física del sonido.

A pesar del prometedor inicio, los griegos no avanzaron más allá en la comprensión científica de las vibraciones.

Los romanos y el largo silencio

Los romanos heredaron la mayor parte de sus conocimientos musicales de los griegos. La notable excepción fue el arquitecto del siglo I a. C. Vitruvio, quien escribió sobre la acústica de los teatros en su obra De Architectura Libri Decem (Diez libros sobre arquitectura). Este tratado se perdió durante siglos y no fue redescubierto hasta el Renacimiento. Aparte de él, no se produjeron avances significativos en la teoría del sonido ni de la vibración durante los 16 siglos siguientes.

China y el nacimiento de la detección sísmica

Al mismo tiempo que en el mundo grecorromano, en la antigua China se mostró un interés temprano por los fenómenos vibratorios relacionados con los movimientos sísmicos. De hecho, los primeros detectores de movimiento de los que se tiene constancia provienen de esta civilización.

En el año 132 d. C., el astrónomo e historiador chino Zhang Heng inventó el primer sismógrafo de la historia. Este ingenioso dispositivo, fabricado en bronce fundido, tenía forma de jarra de vino y medía aproximadamente 1,9 metros de diámetro. En su interior albergaba un péndulo central rodeado por un sistema de ocho palancas dispuestas en direcciones cardinales.

Réplica del detector de terremotos de Zhāng Héng. https://es.wikipedia.org/wiki/Zhang_Heng

En el exterior, el aparato tenía ocho figuras de dragones, cada una con una esfera de bronce en la boca. Debajo de cada dragón había una rana de metal con la boca abierta. Cuando se producía un terremoto, incluso uno muy leve, el péndulo interno se desplazaba en la dirección de la onda sísmica, activando una de las palancas. Esta hacía que la boca del dragón correspondiente se abriera y liberara la esfera, que caía en la rana con un sonido metálico. De este modo, el dispositivo no solo detectaba la ocurrencia del seísmo, sino que también indicaba con precisión la dirección de propagación del movimiento. Este invento de Zhang Heng no solo es considerado el primer sismógrafo funcional, sino también uno de los primeros ejemplos del uso ingenieril del fenómeno de la vibración.

Hacia una comprensión científica: Galileo y la frecuencia

Aunque Pitágoras había dado los primeros pasos, la verdadera comprensión de la relación entre tono y frecuencia tuvo que esperar muchos siglos. Galileo Galilei dio el salto decisivo en el siglo XVI al vincular científicamente la vibración con el sonido audible. A partir de entonces, el estudio de las vibraciones se consolidó como un campo fundamental dentro de la física y la ingeniería, con aplicaciones que abarcan desde la música hasta la detección de terremotos y el diseño de estructuras resistentes. Pero eso ya lo trataremos en futuros artículos.

Referencia:

Rao, S. S., García, D. S., Figueroa, R. R., & Muñoz, G. D. V. D. (2012). Vibraciones mecánicas (Vol. 776). Pearson educación.