Galerías de drenaje en el control del nivel freático

Figura 1. Galería de drenaje, con barrenos en abanico (IGME, 1987)

Las galerías de drenaje constituyen un sistema muy utilizado en obras subterráneas y minería para disminuir las presiones intersticiales y controlar las corrientes profundas de agua. En ocasiones se utiliza un procedimiento similar en la captación de aguas para abastecimiento de la población y también se disponen en el interior de las presas para interceptar las pérdidas de agua.

Se trata de un sistema de control del nivel freático efectivo, pero poco frecuente por su elevado coste, útil en taludes de gran altura o situaciones problemáticas donde son inviables otros sistemas de drenaje. Se trata de abrir una galería, generalmente subhorizontal, en el macizo que se desea drenar, normalmente con una dirección paralela al talud, y a distancia del mismo. Es habitual perforar una serie de barrenos en abanico en la bóveda de la galería para cortar los posibles niveles impermeables o acceder a zonas de mayor permeabilidad (Figura 1).

En función del tipo de terreno a atravesar, las paredes de las galerías pueden precisar diferentes tipos de sostenimiento y revestimiento, típico de la construcción de túneles. En rocas competentes se puede ejecutar la galería sin sostenimiento, pero en suelos y rocas muy fracturados puede ser necesario un revestimiento continuo, normalmente de hormigón armado, lo cual obliga a instalar un haz de drenes en distintas direcciones. Si es posible, estas galerías deben ser accesibles, tanto para equipos como personas encargadas de su construcción y posterior mantenimiento. Las excavaciones suelen iniciarse con una boca de entrada (pozo de visita) y tener varios pozos de ventilación a lo largo de la extensión del conducto (galería). La parte superior de la galería se localiza en la zona húmeda, mientras que la parte inferior se ubica en la zona saturada.

Las galerías de drenaje presentan, a pesar de su coste, ventajas de interés. Son de gran capacidad drenante por su amplia sección, pudiendo conectar pozos drenantes y otros sistemas; son apropiadas en actuaciones a largo plazo, con un drenaje por gravedad; no interfiere en trabajos en superficie, al estar construidas en profundidad; son muy eficaces en terrenos con mayor permeabilidad en sentido vertical que horizontal, como es el caso de macizos rocosos diaclasados; además, son muy efectivas si se construyen en superficies inestables y se complementan con taladros hacia la dirección de la superficie de deslizamiento.

Por contra, son menos eficaces en formaciones con mayor permeabilidad horizontal que vertical, precisando en este caso perforaciones verticales que aumenten el drenaje; además, son menos eficaces en formaciones heterogéneas y en macizos rocosos con gran separación entre discontinuidades.

En la Figura 2 se representa, de forma aproximada, la mejor posición de la galería de drenaje, aunque tanto la situación como su tamaño se ajusta a las características del terreno. Si bien es económicamente costoso, a veces se suele rellenar la galería con material granular de distintos tamaños, lo cual disminuye las deformaciones posteriores de la galería. Se recomienda disponer una solera hormigonada con ligera pendiente transversal y un canal de evacuación de las aguas con pendiente longitudinal suficiente.

Figura 2. Disposición de galería de drenaje (IGME, 1987)

Os dejo a continuación un vídeo que os he grabado explicando las galerías de drenaje. Espero que os guste.

REFERENCIAS:

  • CASHMAN, P.M.; PREENE, M. (2012). Groundwater Lowering in Construction: A Practical Guide to Dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA (1987). Manual de ingeniería de taludes. Serie: Guías y Manuales nº 3, Ministerio de Educación y Ciencia, Madrid, 456 pp.
  • POWERS, J.P.; CORWIN, A.B.; SCHMALL, P.C.; KAECK, W.E. (2007). Construction dewatering and groundwater control: New methods and aplications. Third Edition, John Wiley & Sons.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Optimización de emisiones de CO2 y costes de muros de contrafuertes con el algoritmo del agujero negro

Acaban de publicarnos un artículo en la revista Sustainability,  revista indexada en JCR. En este artículo minimizamos las emisiones de CO2 en la construcción de un muro de contrafuertes de hormigón armado usando la metaheurística del agujero negro (Black Hole Algorithm). El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La optimización del costo y de las emisiones de CO2 en los muros de contención de tierras es relevante, pues estas estructuras se utilizan muy frecuentemente en la ingeniería civil. La optimización de los costos es esencial para la competitividad de la empresa constructora, y la optimización de las emisiones es relevante en el impacto ambiental de la construcción. Para abordar la optimización se utilizó la metaheurística de los agujeros negros, junto con un mecanismo de discretización basado en la normalización mínimo-máxima. Se evaluó la estabilidad del algoritmo con respecto a las soluciones obtenidas; se analizaron los valores de acero y hormigón obtenidos en ambas optimizaciones. Además, se compararon las variables geométricas de la estructura. Los resultados muestran un buen rendimiento en la optimización con el algoritmo de agujero negro.

Abstract

The optimization of the cost and CO 2 emissions in earth-retaining walls is of relevance, since these structures are often used in civil engineering. The optimization of costs is essential for the competitiveness of the construction company, and the optimization of emissions is relevant in the environmental impact of construction. To address the optimization, black hole metaheuristics were used, along with a discretization mechanism based on min–max normalization. The stability of the algorithm was evaluated with respect to the solutions obtained; the steel and concrete values obtained in both optimizations were analyzed. Additionally, the geometric variables of the structure were compared. Finally, the results obtained were compared with another algorithm that solved the problem. The results show that there is a trade-off between the use of steel and concrete. The solutions that minimize CO 2 emissions prefer the use of concrete instead of those that optimize the cost. On the other hand, when comparing the geometric variables, it is seen that most remain similar in both optimizations except for the distance between buttresses. When comparing with another algorithm, the results show a good performance in optimization using the black hole algorithm.

Keywords

CO2 emission; earth-retaining walls; optimization; black hole; min–max discretization

Reference:

YEPES, V.; MARTÍ, J.V.; GARCÍA, J. (2020). Black hole algorithm for sustainable design of counterfort retaining walls. Sustainability, 12, 2767. DOI:10.3390/su12072767

Descargar (PDF, 770KB)