Este galardón distingue a un número muy reducido de trabajos que destacan por su excelencia científica, originalidad y relevancia en la revista. Por tanto, se trata de un reconocimiento de alto nivel al impacto y la calidad de la investigación realizada.
¿Qué es Engineering Structures?
Engineering Structures es una de las revistas internacionales de referencia en el ámbito de la ingeniería civil y estructural. Su objetivo principal es publicar investigaciones avanzadas, tanto teóricas como aplicadas, relacionadas con el análisis, el diseño, el comportamiento y la optimización de estructuras, incluidos puentes, edificios y sistemas estructurales innovadores. La revista hace especial hincapié en los enfoques modernos que integran la sostenibilidad, los nuevos materiales, los métodos computacionales y la evaluación del ciclo de vida.
En términos bibliométricos, Engineering Structures se sitúa en el primer decil (D1) del Journal Citation Reports (JCR) en el área de ingeniería civil, lo que significa que se encuentra entre el 10 % de las revistas con mayor impacto científico a nivel mundial en su campo.
El significado del Featured Paper Award
Recibir el Featured Paper Award implica que el artículo ha sido considerado especialmente relevante por el equipo editorial de la revista, no solo por su calidad metodológica, sino también por su contribución al avance del conocimiento y su interés para la comunidad científica internacional. En este caso, el trabajo aborda la optimización del impacto ambiental a lo largo del ciclo de vida de sistemas estructurales compuestos, lo que lo alinea con uno de los grandes retos actuales de la ingeniería: el desarrollo de infraestructuras más sostenibles y eficientes.
Este reconocimiento aumenta la visibilidad del trabajo publicado y destaca la importancia de integrar criterios ambientales y de sostenibilidad en el diseño estructural, un enfoque cada vez más necesario en el contexto de la transición ecológica del sector de la construcción.
Desde nuestro equipo, agradecemos este reconocimiento y esperamos que el artículo contribuya a seguir impulsando la investigación en ingeniería estructural sostenible y en el análisis del ciclo de vida.
Figura 1. a) caso básico en 3D; b) sección transversal con algunas variables geométricas; c) viga de canto variable con 4 puntos de transición
Acabamos de publicar un artículo en la revista indexada JCR The International Journal of Advanced Manufacturing Technology (2025), que presenta una metodología de optimización metaheurística para minimizar el coste de fabricación de las vigas I de placa de acero soldada. El estudio se centra en el desarrollo de tipologías más eficientes, como las vigas híbridas transversales de sección variable (THVS), que optimizan simultáneamente la geometría y la distribución del material en los planos transversal y longitudinal. La función objetivo tiene en cuenta no solo el coste de los materiales, sino también siete actividades clave de producción (soldadura, corte, pintura, etc.) y los diseños cumplen las especificaciones del Eurocódigo 3. Los principales resultados indican que la optimización del material es más importante para las vigas de tramos cortos, mientras que la optimización geométrica lo es más para las vigas de tramos largos. En última instancia, el artículo valida el enfoque propuesto mediante un caso de estudio, que demuestra que los elementos THVS pueden reducir los costes hasta en un 70 % en comparación con los diseños tradicionales.
La investigación se enmarca en el proyecto RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València. A continuación, se presenta un resumen del trabajo y de la información de contexto.
Como futuro profesional, ¿te has preguntado alguna vez si los perfiles de acero que eliges son realmente la mejor opción? En el diseño estructural, es habitual utilizar perfiles estándar (como los «IPE») por su simplicidad y disponibilidad. Aunque son prácticos, estos perfiles de sección constante a menudo resultan ineficientes, ya que utilizan más material del necesario y generan mayores costes.
El sector de la construcción se enfrenta a una encrucijada: la necesidad de crear estructuras eficientes y la obligación de reducir su enorme consumo de recursos. En este dilema, las vigas de acero son un elemento fundamental. Pero ¿son los diseños tradicionales la opción más eficiente o existen alternativas mejores? Un estudio reciente revela hallazgos sorprendentes que desafían las convenciones del diseño estructural. La respuesta se encuentra en cuatro claves contrarias a la lógica que demuestran cómo optimizar de forma inteligente el material y la geometría puede reducir los costes de fabricación hasta en un 70 %.
1. Material frente a la geometría: la regla inesperada que depende de la distancia.
El primer descubrimiento clave del estudio es que la estrategia óptima para reducir costes depende fundamentalmente de la longitud de la viga (vano). Este hallazgo desafía el enfoque de «talla única» y da lugar a dos conclusiones interesantes:
Para vigas cortas (por ejemplo, de 6 metros, una medida habitual en edificios), la optimización del material resulta más eficaz. El uso de aceros de diferentes resistencias para las alas y el alma permite obtener mayores ahorros que con la modificación de la geometría.
En el caso de las vigas largas (por ejemplo, de 14 o 20 metros, comunes en puentes), la optimización geométrica se convierte en el factor dominante. La estrategia más decisiva para el ahorro es crear vigas de sección variable.
El principio de ingeniería subyacente es el momento flector. En las vigas largas, la diferencia de esfuerzos entre el centro (donde el momento es máximo) y los apoyos (donde el momento es nulo) es considerable. Adaptar el canto de la viga a esta variación permite ahorrar material de manera significativa en las zonas donde no es necesario. En las vigas cortas, el momento flector es más uniforme, por lo que el ahorro de material al variar la geometría es mínimo y no compensa el coste adicional de fabricación (cortes y soldaduras complejas).
2. La campeona del ahorro: la viga híbrida de sección variable (THVS).
La solución más rentable identificada en el estudio es la viga «híbrida transversal con sección variable» (THVS). Este diseño combina de forma inteligente las dos estrategias de optimización:
Estructura híbrida: utiliza acero de alta resistencia para las alas, que, al estar más alejadas del eje neutro, soportan la mayor parte de las tensiones de flexión. Para el alma, que se encarga principalmente de los esfuerzos cortantes, se emplea un acero más económico y de menor resistencia.
Geometría variable: su altura no es constante, sino que se adapta a la distribución de esfuerzos. Es más alta cerca del centro, donde el momento flector es máximo, y disminuye hacia los apoyos.
El dato más impactante del estudio es que los elementos THVS pueden reducir los costes de fabricación hasta un 70 % en comparación con los diseños tradicionales de vigas de acero de canto constante.
3. El coste real no es solo el peso: una mirada a la fabricación.
Uno de los puntos fuertes de la investigación es que se centra en el coste total de fabricación, en lugar de limitarse al peso o al coste del material. El estudio incluyó siete actividades clave de producción en su modelo de costes:
Montaje en obra/Izado.
Pintura.
Soldadura.
Granallado.
Corte.
Aserrado.
Transporte.
Este enfoque holístico es crucial, ya que alinea el diseño estructural con la realidad de la producción industrial. Es precisamente este análisis de costes integral el que permite al estudio concluir que, en el caso de las vigas largas, el ahorro de material de una viga THVS compensa con creces la mayor complejidad de fabricación, algo que no revelaría un análisis de peso sencillo.
4. De la teoría a la práctica: una metodología para el diseño.
La investigación no se limita a la teoría, sino que ofrece una metodología de diseño con directrices aplicables para que los ingenieros puedan implementar estas soluciones. El estudio establece parámetros prácticos sobre:
Relaciones óptimas entre el canto y la luz de la viga.
Ángulos de achaflanado ideales.
Posiciones óptimas para las transiciones de sección.
Combinaciones de tipos de acero recomendadas.
Conscientes de que la innovación teórica debe enfrentarse a la realidad industrial, los propios autores moderan el optimismo mediante una evaluación pragmática de los próximos pasos.
«Los elementos THVS pueden reducir los costes hasta en un 70 % en comparación con los diseños tradicionales. No obstante, para aprovechar plenamente el potencial de estos diseños, deben abordarse los desafíos relacionados con la disponibilidad de materiales, la complejidad de la fabricación y los riesgos de pandeo local».
Conclusión: ¿Estamos listos para construir de forma diferente?
La idea central es clara: optimizar simultáneamente la geometría y el material de las vigas de acero, especialmente en los diseños THVS, permite ahorrar recursos y dinero de forma sin precedentes. Esta investigación establece una base teórica y una metodología de diseño que abren la puerta a una nueva era de eficiencia estructural. Con ahorros potenciales de hasta el 70 % demostrados, la pregunta para la industria no es si merece la pena, sino cómo superar los desafíos de fabricación, la disponibilidad de materiales y la actualización de normativas para convertir este potencial en una nueva realidad constructiva.
En este vídeo, se resumen las ideas fundamentales de este artículo, explicadas de forma sencilla.
Acaban de publicar nuestro artículo en la revista Energy and Buildings, de la editorial Elsevier, indexada en D1 del JCR. El estudio presenta una tipología estructural compuesta que combina columnas de hormigón armado con vigas de acero de sección variable híbrida transversal (THVS) para optimizar el coste económico, las emisiones de CO₂ y la energía incorporada en la construcción de edificios.
Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal, junto con el profesor Julián Alcalá, en la Universitat Politècnica de València.
El estudio plantea la siguiente pregunta de investigación: ¿en qué medida la optimización del diseño estructural de edificios en marco mediante el uso de una tipología compuesta con columnas de hormigón armado y vigas de sección variable transversamente híbridas (THVS) contribuye a la reducción del coste económico, de las emisiones de CO₂ y de la energía incorporada en la construcción?
Esta formulación permite abordar de manera precisa la problemática del impacto ambiental y económico del sector de la construcción, orientando la investigación hacia la identificación de configuraciones estructurales que minimicen estos factores mediante metodologías de optimización. La pregunta define claramente el problema central: la búsqueda de una alternativa estructural más eficiente que las tipologías tradicionales de hormigón armado.
Metodología
El estudio adopta un enfoque de optimización estructural basado en la combinación de Biogeography-Based Optimization (BBO) y Constrained Deterministic Local Iterative Search (CDLIS). Este enfoque permite buscar de manera eficiente soluciones en un espacio de diseño altamente complejo. Se analizan tres tipologías estructurales:
Estructura tradicional de hormigón armado: Se optimizan las dimensiones de vigas, columnas y cimentaciones, así como la calidad del hormigón utilizado.
Estructura compuesta con vigas THVS y uniones rígidas: Se sustituyen las vigas de hormigón armado por vigas THVS con conexiones fijas a las columnas.
Estructura compuesta con vigas THVS y uniones articuladas: Similar a la anterior, pero con conexiones articuladas.
Las funciones objetivo optimizadas incluyen:
Coste económico: Calculado con base en los precios unitarios de materiales y procesos constructivos.
Emisiones de CO₂(e): Evaluadas según un enfoque «cradle-to-site», considerando la extracción de materias primas, fabricación y construcción.
Energía incorporada: Calculada en términos de consumo energético total en las fases de producción y construcción.
Se tienen en cuenta restricciones estructurales y de servicio según las normativas de diseño. Además, se implementa la interacción suelo-estructura mediante un modelo de tipo Winkler para evaluar los asentamientos diferenciales y su efecto en el diseño estructural.
Aportaciones relevantes
La tipología compuesta con vigas THVS y conexiones rígidas logra una reducción del 6 % en costes económicos, del 16 % en emisiones de CO₂ y del 11 % en energía incorporada para edificios con luces de 4 m.
Para edificios con luces de 8 m, la configuración con uniones articuladas permite reducir los costos económicos y las emisiones en un 5 % y un 6 %, respectivamente, aunque con un mayor consumo de energía.
Se demuestra que la menor carga axial transmitida por las vigas THVS reduce las solicitaciones en columnas y cimentaciones, lo que optimiza su diseño y reduce su impacto ambiental.
Se comprueba que el uso de acero de mayor calidad en las alas de las vigas THVS en comparación con el alma mejora la eficiencia estructural, con razones de hibridación (Rh) entre 1,2 y 2,0.
Discusión de resultados
El análisis de los resultados revela diferencias significativas entre las configuraciones estructurales. En los edificios con luces reducidas (4 m), las vigas THVS con uniones rígidas ofrecen el mejor rendimiento en términos de coste y sostenibilidad. En cambio, en edificios con luces mayores (8 m), las conexiones articuladas permiten un mejor aprovechamiento del material, aunque con una menor rigidez global.
Cabe destacar que la consideración de elementos de rigidización adicionales, como muros y losas, mejora notablemente el comportamiento de la tipología articulada, reduciendo su impacto ambiental en un 45 % y disminuyendo en un 60 % la carga axial sobre las columnas.
Líneas futuras de investigación
Perfeccionamiento del proceso de fabricación de vigas THVS, abordando aspectos como soldadura, control de calidad y optimización de ensamblaje.
Desarrollo de conexiones híbridas entre vigas THVS y columnas de hormigón armado, mejorando la eficiencia de transferencia de cargas.
Exploración de configuraciones mixtas de soporte, optimizando la selección de conexiones fijas o articuladas según las características del edificio.
Evaluación del comportamiento ante cargas dinámicas y sísmicas, considerando efectos de fatiga y estabilidad estructural.
Implementación de metamodelos para optimización computacional, reduciendo el tiempo de cálculo en simulaciones de alta fidelidad.
Conclusión
La optimización del diseño estructural de edificios en marco mediante el uso de vigas THVS permite reducir costes y mejorar la sostenibilidad ambiental. Las configuraciones con conexiones rígidas son particularmente eficientes en luces cortas, mientras que las conexiones articuladas son una alternativa viable en luces mayores cuando se combinan con elementos de rigidización adicionales. Estos hallazgos abren nuevas líneas de investigación en la aplicación y mejora de sistemas estructurales compuestos en ingeniería civil.