Ensayo de placa de carga

Ensayo de placa de carga. Vía: Enrique Montalar

El ensayo de placa de carga es uno de los ensayos “in situ” llevados a cabo para realizar un reconocimiento geotécnico. La ejecución de la prueba resulta imprescindible para la comprobación de la capacidad portante de un suelo, en función de su estado natural o como consecuencia de una determinada compactación.

Consiste en aplicar una carga sobre una placa (generalmente rígida), colocada sobre la superficie del terreno, y medir los asientos producidos. Se utilizan con gran profusión para comprobar el módulo de deformación de capas de terraplenes y de firmes.

El método habitualmente utilizado es el estático, con carga aplicada sobre una placa circular mediante un gato hidráulico, utilizando un camión cargado o una máquina pesada como reacción para el gato. La norma NLT-357/98 describe la realización de este ensayo. El Pliego de Prescripciones Técnicas Generales para Obras de Carreteras, especifica valores mínimos del módulo E2 para diferentes materiales y situaciones (link).

Os dejo varios vídeos sobre cómo se realiza el ensayo. Espero que os gusten:

Placa de carga de una losa:

Compactación dinámica y su control con ensayos de penetración dinámica

Compatación dinámica (fotografía de Menard)

La compactación dinámica es una técnica que mejora la capacidad portante de los suelos, especialmente de aquellos con escasas características geotécnicas, mediante la aplicación de esfuerzos dinámicos en superficie. Se trata de aplicar un elevado esfuerzo dinámico al dejar caer una masa elevada desde cierta altura. Actualmente, es habitual el uso de pesos de maza que oscilan normalmente entre 1 y 100 toneladas, con alturas de caída de hasta 40 m. Este tipo de tratamiento es altamente dependiente de las características del suelo y de la energía empleada. En principio, se puede utilizar en suelos granulares, saturados o no, y ofrece buenos resultados en rellenos artificiales heterogéneos, que difícilmente se pueden mejorar con otros procedimientos. Además, la mejora es significativa incluso a profundidades altas, siendo una solución económica cuando se compara con otras soluciones alternativas como la excavación y sustitución del suelo, la precarga, las inyecciones y otras técnicas de mejora de suelos.

El principio de dejar caer grandes pesos sobre la superficie del suelo para mejorarlo en profundidad se ha empleado desde tiempos muy antiguos. Menard y Broise (1976) hacen referencia a dibujos muy antiguos que sugieren que la técnica se podría haber empleado en China desde hace centurias. Los romanos también la emplearon en sus construcciones. En los Estados Unidos se empleó un antiguo cañón para compactar ya en el año 1871 (Lundwall, 1968). También en la antigua Unión Soviética se empleó este método para compactar loess con buenos resultados, si bien con pesos y alturas de caída mucho menores a las actuales (Faraco, 1980). En los años 40 se empleó este procedimiento constructivo en la construcción de un aeropuerto en China y un área portuaria en Dublín. Sin embargo la técnica actual se puede fechar en 1970, cuando Louis Menard patentó este método en Francia, favorecido sin duda por la aparición de las gigantescas grúas montadas sobre orugas. En Gran Bretaña y en Estados Unidos se empezó a utilizar en los años 1973 y 1975, respectivamente.

La disponibilidad de suelos con suficiente capacidad portante para la construcción ha ido disminuyendo conforme se iban desarrollando las áreas urbanas. De esta forma, fueron quedando parcelas con suelos de pésimas características geotécnicas que había que recuperar de alguna forma para seguir construyendo. Esto favoreció, sin duda, el desarrollo de la compactación dinámica.

La compactación dinámica se desarrolló y se empleó de forma satisfactoria para densificar suelos flojos, saturados y sin cohesión, siendo especialmente eficaces porque queda reducida la potencial licuefacción del suelo. En este sentido, se puede decir que el proceso de densificación es similar al de la vibro-compactación. También se podría emplear la técnica para suelos finos cohesivos, sin embargo el éxito en este caso es más dudoso, requiriendo una especial atención la generación y disipación de las presiones intersticiales. En ocasiones, esta técnica de mejora se emplea de forma conjunta con las columnas de grava para facilitar la disipación de las presiones intersticiales (Bayuk y Walker, 1994).

Información útil sobre las técnicas y maquinaria empleadas, así como la respuesta del terreno a la compactación dinámica se puede encontrar en Mayne et al. (1984), Varaksin (1981), Liausu (1984) y Findlay y Sherwood (1986). Es habitual un espaciamiento entre puntos de impacto entre los 2 y 3 m en las mazas pequeñas y más de 10 m en el caso de mazas pesadas. El tratamiento se da en varias pasadas y la profundidad alcanzada por la densificación se puede relacionar con la energía del golpe mediante la siguiente fórmula empírica: D=k(M·H)^0.5,  donde:

M = masa de la maza (toneladas)

H = altura de caída (metros)

D = profundidad efectiva de la compactación (metros)

k = factor que depende del tipo de suelo y de las características del tratamiento, aunque un valor usual puede ser 0.5 (m/t)1/2.

El procedimiento de cómo se realiza la compactación dinámica está ampliamente descrito en el trabajo de Liausu (1984).

Para comprobar la efectividad de un tratamiento de mejora de suelos, tal y como pudiera ser la compactación dinámica, es necesario comprobar que la mejora conseguida es suficientemente buena como para alcanzar los objetivos marcados por el proyecto correspondiente. Una forma económica y sencilla de ensayar el terreno en profundidad consiste en hincar un varillaje con una punta metálica, de forma que, contabilizando el número de golpes necesarios para hacer avanzar dicha punta una longitud determinada, se pudiese correlacionar dicho valor con las características geotécnicas del terreno. A este tipo de pruebas se les conoce con el nombre de ensayos de penetración dinámica.

El ensayo de penetración estándar o SPT (Standard Penetration Test) es quizás uno de los ensayos más frecuentes que se utiliza cuando se realizan sondeos de reconocimiento. De hecho, representan una importante fuente de datos acerca de la resistencia del terreno. Se trata de medir el número de golpes necesario para que se introduzca una cuchara cilíndrica y hueca muy robusta que, además, permite extraer una muestra alterada de su interior. Tanto la cuchara como la masa y la altura a la que caen están normalizadas. La ventaja del SPT es que se permite visualizar el terreno donde se ha realizado la prueba y permite su identificación, e incluso, si el terreno es cohesivo, obtener su humedad. Se trata de ensayos de bajo coste y de alta representatividad, especialmente para suelos granulares y mixtos. La descripción del ensayo se encuentra recogida en la norma UNE 103-800-92. El valor que se obtiene se denomina resistencia a la penetración estándar N30spt.

Este ensayo nace en 1927 cuando un sondista de la Raymond Concrete Pile propuso a Terzaghi contar el número de golpes necesarios para hincar 1 pie el tomamuestras que se utilizaba para obtener muestras en terrenos no cohesivos. Tras realizar un gran número de ensayos, Terzaghi y Peck (1948) publican sus resultados en su libro “Mecánica de suelos en la ingeniería práctica”. Esta prueba se ha difundido internacionalmente y existen numerosos estudios que permiten relacionar de forma empírica el valor N30SPT con las propiedades geotécnicas del terreno in situ. Sin embargo, gran parte de las correlaciones corresponden a terrenos arenosos, pues la presencia de gravas oscurece la interpretación de los resultados e incluso puede impedir la realización del ensayo. Por tanto, es un ensayo especialmente indicado para terrenos con una amplia fracción arenosa y lo es menos cuando existe una mayor proporción de finos o de gravas.

Uto y Fijuki (1981) recomiendan corregir el valor de la resistencia a penetración estándar cuando se ensaya a más de 20 metros de profundidad. Skempton (1986) propone factores de corrección a dicho valor en función de la profundidad del ensayo y del diámetro del sondeo, aunque estas correcciones se realizan para suelos granulares, puesto que para los cohesivos dicha influencia es despreciable. Otras correcciones independientes del sistema de ensayo se refieren al nivel freático (Terzaghi y Peck, 1948), a la presión de confinamiento (Gibbs y Holz, 1957), siendo objeto de distintos estudios que están resumidos en Liao y Whitman (1985).

En cuanto a las correlaciones de Nspt con los parámetros geotécnicos del terreno, Terzaghi y Peck (1948) publicaron las primeras correlaciones con la densidad relativa de arenas cuarzíticas, siendo modificadas posteriormente por Skempton (1986). Gibbs y Holtz (1957) comprobaron que se debía introducir la presión de confinamiento en dichas relaciones, y luego Meyerhof (1956) ajustó dichas relaciones. Otras correlaciones referidas al ángulo de rozamiento interno, deformabilidad o potencial de licuefacción pueden verse en Devicenzi y Frank (1995). Sin embargo, tal y como se comentó anteriormente, las correlaciones sobre terrenos cohesivos se han considerado meramente orientativas, debido a la dispersión de resultados. Sin embargo, hoy en día este criterio se está cuestionando y se están aceptando estas pruebas en todo tipo de terrenos.

Cuando lo que se quiere es disponer de un registro continuo para caracterizar un suelo en profundidad, se puede emplear la prueba de penetración dinámica superpesada o DPSH (Dynamic Probing Super Heavy). Las características del ensayo son distintas a las del SPT. Aquí se utiliza una punta cónica perpendicular al eje de penetración midiéndose el golpeo necesario para profundizar 20 centímetros. Sin embargo, se ha tratado de establecer una correlación entre ambos ensayos que, en el caso de las arenas, el factor de conversión entre ambos ensayos es próximo a la unidad, siempre que estemos entre los 5 y 30 golpes, y siempre que estemos a un máximo de 10 – 15 m, pues a partir de aquí la dispersión aumenta debido al efecto de rozamiento de las varillas, que empieza a ser importante. En el caso de la correlación entre el ensayo Borros o DSPH y el SPT en arcillas, se puede consultar el trabajo de Dapena et al (2000).

Son muchas las correlaciones que se han encontrado entre los ensayos a penetración dinámica. Las equivalencias entre los ensayos parten de una relación de semejanza entre la energía de hinca. Un resumen de los parámetros geomecánicos obtenidos a partir de estos ensayos aplicado a suelos mixtos cohesivos-granulares puede verse en Parra y Ramos (2006).

Todo ello nos lleva a la siguiente conclusión: no es muy fiable establecer correlaciones entre los distintos ensayos de penetración dinámica, especialmente cuando el suelo empieza a ser cohesivo. El tema se complica mucho más cuando el terreno no es natural, sino que se trata de un relleno antrópico heterogéneo. Ello obliga a realizar un estudio en profundidad para establecer dichas correlaciones, siendo aconsejable efectuar un penetrómetro de contraste al lado de un sondeo con SPT.

Referencias

  • Armijo, G.; Blanco, M.A. (2017). Diseño y verificación del tratamiento de mejora del terreno mediante compactación dinámica. Aplicación a un caso real. Interempresas.net.
  • Bayuk, A.A.; Walker, A.D. (1994). “Dynamic Compaction. Two Case Histories Utilizing Innovative Techniques.” In-Situ Deep Soil Improvement, ASCE, Geotechnical Special Publication No.45.
  • Devincenzi, M.; Frank, N. (1995). “Ensayos Geotécnicos in situ”, Igeotest, Figueres, Girona.
  • Faraco, C. (1980). “Mejora del terreno de cimentación”, en Jiménez Salas (coord.) Geotecnia y Cimientos III, primera parte, pp. 489-531.
  • Findlay, J.D.; Sherwood, D.E. (1986).”Improvement of a hydraulic fill site in Bahrain using modified heavy tamping methods” Building on Marginal & Derelict Land., May 7-9.
  • Gibbs, H.J.; Holtz, W.G. (1957). “Research on Determining the Density of Sands by Spoon Penetration Testing”. Proc. 4th Conf. On SMFE, London.
  • Liao, S.; Whitman, R.V. (1986). “Overburden Correction Factors for SPT in Sand”, Journal of Geotechnical Engineering, ASCE, Vol 112, Nº 3.
  • Liausu, P. (1984) Renforcement de Couches de Sol Compressibles par Substitution Dynamique, In-Situ Soil and Rock Reinforcement Conference, Paris.
  • Lundwall, N.B. (1968). The Saint George Temple, in “Temples of the Most High, Bookcraft, Salt Lake City, Chapter 3, p. 78.
  • Mayne, P.W.; Jones, J.S.; Dumas, J.C. (1984). Ground response to dynamic compaction. Journal of Geotechnical Engineering, ASCE, Vol. 110(6), pp. 757-774.
  • Menard, L.; Broise Y. (1976). “Theoretical and practical aspects of dynamic consolidation”, Ground Treatment by deep compaction, Institution of Civil Engineers, LONDON, pp. 3-18.
  • Meyerhof, G.G. (1956). “Penetration Test and Bearing Capacity of Cohesionless Soils”. Journal of Geotechnical Engineering, ASCE, Vol. 91.
  • Parra, F.; Ramos, L.L. (2006). “Obtención de parámetros geomecánicos a partir de ensayos a penetración dinámica continua en suelos mixtos cohesivos-granulares”. Ingeopres: Actualidad técnica de ingeniería civil, minería, geología y medio ambiente, 145: pp. 20-24.
  • Skempton, A.W. (1986). “Standard Penetration Test Procedure and Effects in Sandsof Overburden Pressure, Relative Density, Particle Size, Ageing and Overconsolidation”. Geotechnique, 36, pp. 425-437.
  • Terzaghi, K.; Peck, R.B. (1948). “Soil Mechanics in Engineering Practice”. Ed. John Wiley and Sons, New York.
  • Uto, K.; Fuyuki, M. (1981). “Present and Future Trend on Penetration Testing in Japan”, Japanese Soc. SMFE.
  • Varaksin, S. (1981). “Recent development in soil improvement techniques and their practical applications”. Sol. Soils, Nº 38/39.
  • Dapena, E.; Lacasa, J. García, A. (2000). “Relación entre los resultados de los ensayos de penetración dinámica Borros DPSH y el SPT en un suelo arcilloso”. Actas del Simp. sobre geotecnia de las infraestructuras lineales. Soc. Española de Mec. del Suelo e Ing. Geotécnica.
  • Yepes, V. (2014).  Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Qué es la curva de compactación de un suelo?

Seguimos con este post la divulgación de conceptos básicos relacionados con una de las unidades de obra que más patologías conlleva a largo plazo: la compactación. En otros posts anteriores ya hablamos de los tramos de prueba y de la compactación dinámica. La compactación constituye una unidad de obra donde la interacción entre la naturaleza del suelo, sus condiciones, la maquinaria y el buen hacer de las personas que intervienen en ella son cruciales. Desgraciadamente, en numerosas ocasiones se trata a la compactación como una unidad de obra complementaria o auxiliar. Vamos, por tanto, en 8 minutos, a dar dos pinceladas sobre el concepto de curva de compactación. Espero que os guste.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. ISBN: 84-7721-551-0.

YEPES, V. (2014). Equipos de compactación superficial. Apuntes de la Universitat Politècnica de València, Ref. 187. Valencia, 113 pp.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5. Ref. 402.

Mototraíllas

Las traíllas (scrapers, en inglés) son máquinas utilizadas para la excavación, carga, transporte, descarga y nivelación de materiales de consistencia media tales como tierras, arena, arcilla, rocas disgregadas, zahorras, etc. Consisten en una caja abierta con dispositivo de descenso, corte, ascenso y descarga de tierras. Dicha cuchilla va cortando el terreno, llenándose la caja al avanzar la máquina. Transportan competitivamente a distancias muy superiores a las de los bulldozers y palas cargadoras de neumáticos. Son intermedias entre éstas y los medios habituales de transporte. Por debajo de 30 m es competitivo el bulldozer, y por encima de los 2.000 m las excavadoras y camiones.

Este tipo de máquinas presentan ciertas ventajas frente a otros equipos: Constituyen el mejor compromiso entre la carga y el transporte; depositan el material en capas uniformes, que facilitan las operaciones de extendido; ayudan al mantenimiento de las pistas de acarreo, pues en el retorno pueden bajar la cuchilla, nivelando y eliminando los desniveles altos; presentan una elevada producción en condiciones favorables y en las labores de descarga realizan cierta labor de compactación previa de la traza con el propio peso de la máquina.

Por contra los inconvenientes son la limitación en la profundidad de corte; su sensibilidad a las condiciones meteorológicas; poca altura sobre el suelo, lo cual exige pistas bien cuidadas y niveladas; necesidad de conductores experimentados; son máquinas de alto coste de adquisición y operario; mayor consumo de combustible que otros medios de transporte y distancias de acarreo limitadas en cuanto a sus valores de uso económico.

Sus aplicaciones más habituales se presentan en obras de carreteras, aeropuertos, obras hidráulicas, minas y canteras. Preparan el suelo trasladando a acopio la tierra vegetal, se utilizan en movimientos de tierras y nivelación, mantenimiento de pistas de circulación en las obras, etc.

Os dejo este vídeo de apenas 2 minutos y medio donde podréis ver trabajando a una mototraílla de doble motor, específicamente el modelo es el 657G de Caterpillar. Espero que os guste.

 En este otro vídeo, se puede ver cómo un bulldozer CAT D10N está empujando a una mototraílla de Caterpillar 660B. El vídeo es de unos 7 minutos.

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.