Materiales para pavimentos de hormigón

Figura 1. Construcción de pavimento de hormigón. https://obrasurbanas.es/como-controlar-el-alabeo-en-losas-de-pavimentos-de-hormigon/

En este artículo se ofrece una visión detallada de los materiales que se emplean en los pavimentos de hormigón, así como los requisitos técnicos que estos deben cumplir para asegurar una construcción de calidad en carreteras, autopistas y aeropuertos, vías peatonales, carriles ciclistas, zonas de almacenamiento y, en general, todos los firmes sometidos al tráfico. Se centra en los pavimentos de hormigón ejecutados in situ, dejando aparte los ejecutados con hormigón compactado con rodillo. Basado en la norma UNE-EN 13877-1:2013, se ha estructurado el contenido en tres grandes apartados: especificaciones de los materiales del hormigón, requisitos básicos del hormigón y requisitos básicos para otros materiales en pavimentos de hormigón. Este texto se ha redactado de forma accesible para facilitar el aprendizaje de los estudiantes de ingeniería civil, quienes podrán aplicarlo en proyectos de diseño y construcción de infraestructuras.

1. Especificaciones para los materiales del hormigón

Para garantizar la resistencia y durabilidad del hormigón en pavimentos, los materiales que lo componen deben cumplir los requisitos de calidad que aseguran un rendimiento adecuado frente a las exigencias de tráfico y condiciones ambientales. A continuación, se describen los componentes principales y sus especificaciones según la UNE-EN 13877-1:2013.

  • Cemento:
    • La elección del tipo de cemento es fundamental, ya que este actúa como el aglutinante que da cohesión al resto de materiales en la mezcla. De acuerdo con la norma EN 206-1, el cemento utilizado debe ser adecuado para la clase de resistencia requerida. La especificación concreta del tipo de cemento puede variar según las normativas nacionales o regionales del lugar de aplicación.
    • El cemento debe poseer propiedades que permitan una resistencia adecuada al tráfico y a la exposición ambiental del pavimento, evitando problemas como la desintegración o la pérdida de capacidad estructural con el paso del tiempo.
  • Áridos:
    • Los áridos, tanto gruesos como finos, son la base sólida del hormigón y deben cumplir con la norma EN 12620 para asegurar su idoneidad en términos de tamaño, forma y dureza. La selección y el tipo de áridos influyen directamente en la resistencia, la durabilidad y la trabajabilidad de la mezcla.
    • Es importante que el tamaño máximo de los áridos no sea mayor de un tercio (1/3) del espesor de la capa de hormigón, ya que así se evita que el agregado interfiera en la uniformidad del pavimento. En pavimentos armados con juntas o armados continuos, el tamaño del árido no debe superar un tercio de la distancia entre las armaduras longitudinales, previniendo obstrucciones y asegurando una correcta distribución de la mezcla.
  • Agua de amasado:
    • La calidad del agua de amasado es crucial, ya que interviene en las reacciones químicas de hidratación del cemento y en la cohesión de la mezcla. La norma UNE-EN 1008 establece los parámetros que debe cumplir el agua, incluyendo aspectos como la presencia de cloruros o sulfatos, que pueden afectar a la durabilidad.
    • Además de evitar posibles contaminantes, el agua debe mezclarse en proporciones controladas para asegurar que el hormigón adquiera la resistencia y consistencia deseadas. Es importante mantener una relación agua/cemento equilibrada, ya que una cantidad excesiva de agua puede generar porosidad y debilitar el material.
  • Otros materiales:
    • En algunos proyectos, pueden añadirse otros materiales, como adiciones y aditivos, para mejorar ciertas propiedades del hormigón. Estos deben cumplir con la norma EN 206-1, que establece los requisitos de conformidad para dichos materiales.
    • Los aditivos pueden ser superfluidificantes, retardadores o aceleradores de fraguado, entre otros, y ayudan a optimizar el manejo, la durabilidad y la resistencia de la mezcla en condiciones específicas de uso. Las adiciones, como las cenizas volantes o el humo de sílice, pueden mejorar la densidad del hormigón y su resistencia a agentes externos como el cloruro y la humedad.

2. Requisitos básicos del hormigón

Las propiedades del hormigón fresco y endurecido son fundamentales para asegurar la calidad y el rendimiento del pavimento. A continuación, se detallan los requisitos básicos que debe cumplir el hormigón, según la norma.

  • Hormigón fresco:
    • Consistencia: La consistencia determina la fluidez de la mezcla y su capacidad de ser manipulada durante el proceso de colocación. Para garantizar que el hormigón sea adecuado para el equipo de colocación, la norma permite especificar una clase de consistencia o un valor objetivo. La consistencia es importante no solo para la colocación, sino también para evitar problemas de compactación y reducir la formación de poros.
    • Densidad: La densidad del hormigón fresco debe determinarse mediante el cálculo de la masa de todos los componentes en un volumen específico. La densidad se especifica con una tolerancia del 1,5 % sobre el valor deseado, lo que permite adaptarse a ligeras variaciones de la mezcla. Esta propiedad influye en la resistencia y la durabilidad de la estructura final.
    • Contenido de aire: El volumen de aire atrapado en el hormigón es importante para prevenir problemas derivados de las congelaciones y descongelaciones. El contenido de aire debe medirse en el lugar de la obra según la norma EN 12350-7, y puede establecerse un porcentaje mínimo de aire en función de la normativa de cada país.
    • Contenido de cemento y partículas finas: La cantidad de cemento debe ser suficiente para dar resistencia al hormigón, mientras que el contenido de partículas de menos de 0,25 mm debe controlarse para evitar una textura excesivamente fina. Esto garantiza un equilibrio adecuado entre manejabilidad y resistencia final.
    • Contenido de cloruros: Si el hormigón incorpora elementos de acero sin protección, como barras de unión o pasadores, el contenido de cloruros no debe superar el 0,40 % de la masa del cemento. Esto previene la corrosión de los elementos metálicos y prolonga la vida útil de la estructura.
  • Hormigón endurecido:
    • Resistencia a ciclos de hielo y deshielo: En áreas donde el hormigón está expuesto a variaciones térmicas importantes, es necesario que el material resista los ciclos de congelación y descongelación sin sufrir deterioro. La norma especifica la resistencia que debe cumplir el hormigón en estas condiciones, de acuerdo con la EN 206-1.
    • Resistencia mecánica: La resistencia a la compresión, la tracción indirecta y la flexotracción del hormigón endurecido se miden a los 28 días. Estos parámetros se evalúan mediante ensayos específicos, como los ensayos de compresión (EN 12390-3), tracción indirecta (EN 12390-6) y flexotracción (EN 12390-5), que permiten clasificar el hormigón en distintas clases de resistencia y asegurar su adecuación para el tráfico y el uso proyectado.
Figura 2. Pavimento postesado. VSL Sistemas Especiales de Construcción Argentina S.A.

3. Requisitos básicos para otros materiales en pavimentos de hormigón

Además del hormigón, existen otros materiales que cumplen funciones específicas en los pavimentos y deben cumplir normativas particulares para garantizar su rendimiento.

  • Materiales de curado:
    • Los productos de curado son esenciales para evitar la pérdida de humedad en el hormigón fresco, lo que previene la formación de fisuras y asegura una ganancia de resistencia adecuada. Estos productos deben cumplir con la especificación técnica CEN/TS 14754-1, que evalúa su eficacia en la retención de agua.
    • Además, es recomendable que estos materiales de curado protejan el hormigón de variaciones bruscas de temperatura, especialmente en climas extremos, para evitar tensiones internas que puedan causar fisuras prematuras.
  • Retardadores de superficie:
    • En acabados de pavimentos con textura de árido expuesto, se utilizan retardadores de superficie que permiten revelar el árido grueso al retirar el mortero superficial. Estos retardadores deben estar diseñados específicamente para esta función y deben protegerse contra la evaporación hasta completar el proceso de fraguado.
  • Productos de sellado de juntas:
    • Las juntas en el pavimento son esenciales para permitir la expansión y contracción del hormigón, y los selladores de juntas deben prevenir la infiltración de agua. Los materiales de sellado deben cumplir con la norma EN 14188-1, EN 14188-2 o EN 14188-3, en función de si el sellado es en caliente, en frío o preformado. Esto evita la entrada de agua que puede congelarse y causar daños a largo plazo.
  • Barras de unión y pasadores:
    • Estos elementos de acero aseguran la transmisión de carga en las juntas y ayudan a prevenir el deslizamiento entre las losas adyacentes. Deben cumplir con la norma EN 10080, y especificar un nivel de resistencia B250 para barras lisas y B500 para barras corrugadas. Las dimensiones de estas barras deben seleccionarse en función de las tablas de la norma, teniendo en cuenta factores como el espesor del pavimento.
  • Armaduras:
    • La armadura de acero, que controla las fisuras y proporciona resistencia a las tensiones de tracción, debe cumplir con la norma EN 10080. En pavimentos armados continuos, la continuidad de la armadura puede lograrse mediante soldaduras, solapes o conectores, lo que garantiza una estructura sólida y sin fisuras que resista el paso constante de vehículos.

Este artículo aborda los detalles técnicos necesarios para comprender y aplicar las especificaciones de materiales en pavimentos de hormigón. Su selección y cumplimiento son esenciales para construir estructuras duraderas, seguras y adecuadas para las demandas de tráfico actuales y futuras.

Referencias:

CALAVERA, J.et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

CALO, D.; SOUZA, E.; MARCOLINI, E. (2015). Manual de diseño y construcción de pavimentos de hormigón. Instituto del Cemento Portland Argentino (ICPA).

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

IECA (2012). Firmes de hormigón en carreteras. Guías técnicas. Firmes y explanadas.

KRAEMER, C. (1965) Pavimentos de hormigón normal y pretensado. Experiencia española en el tramo de ensayo. Publicación n.º 18 del Laboratorio de Transporte y Mecánica del Suelo. Centro de Estudios y Experimentación de Obras Públicas (CEDEX). Madrid.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Universidad Politécnica de Madrid, Madrid.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

RECUENCO, E. (2014). Firmes y pavimentos de carreteras y otras infraestructuras. Garceta grupo editorial, Colección Escuelas, Madrid.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Terminación, texturado y curado del pavimento de hormigón

Figura 1. Fratás automático http://www.imcyc.com/revistacyt/jul10/pavimentos.htm

La terminación o acabado final del hormigón es una tarea crítica en la construcción de un pavimento, pues tiene la importante misión de corregir las irregularidades o defectos producidos durante la colocación y compactación del material. Para lograr una superficie adecuada en el hormigón fresco, se pueden llevar a cabo diferentes trabajos, que van desde un ligero fratasado manual hasta intervenciones más significativas como reparaciones de bordes.

El fratasado es una técnica que se utiliza para nivelar la superficie del hormigón, eliminar la capa superficial de lechada, sumergir las partículas de árido más gruesas, remover y corregir pequeñas imperfecciones, y presentar mortero en la superficie para el texturizado. Esta técnica puede realizarse de forma manual o mecánica, y puede ser longitudinal o transversal.

En las carreteras de alta velocidad de España se logra una textura superficial longitudinal mediante el estriado del hormigón con cepillos metálicos o de plástico y una arpillera húmeda y lastrada para conseguir una microtextura áspera en toda la superficie. La arpillera también se emplea para eliminar las marcas de la bailarina. En los bordes de las carreteras se suele crear una textura transversal. En otros países, la macrotextura se logra mediante técnicas como la denudación química o la incrustación de gravilla en el hormigón fresco.

Una vez que la pavimentadora ha terminado su trabajo, el carro de texturizado y curado (Figura 2) se acerca para aplicar la textura deseada con un cepillo de cerdas o flejes, mientras que se rocía líquido de curado como última operación. Si se desea una textura de árido visto, el carro extiende el retardador de fraguado y, en algunos casos, el compuesto de curado. Algunos productos pueden realizar ambas funciones simultáneamente. En regiones lluviosas, el retardador de superficie se protege con una lámina de plástico desplegada desde un rollo montado en el carro. Una vez retirado el mortero sin fraguar, se aplica el producto de curado sobre el pavimento.

Figura 2. Equipo de texturizado y curado (Calo et al., 2015)

El curado del pavimento es esencial para evitar la pérdida de agua necesaria para el fraguado y endurecimiento del hormigón, así como la aparición de fisuras por retracción que pueden debilitar su resistencia. Aunque es posible usar agua para el curado en carreteras con poco tráfico, se recomienda utilizar productos de calidad que creen una capa impermeable sobre el pavimento para evitar la evaporación del agua. Estos productos suelen tener un pigmento blanco que, además de reducir la ganancia de calor por incidencia de la radiación solar, ayuda en la inspección visual de la uniformidad de la aplicación. Después, al sellar las juntas, es necesario volver a aplicar el producto en la ranura correspondiente.

Figura 3. Tren de curado (Calo et al., 2015)

Las membranas químicas de curado están formuladas a base de resinas y solventes de rápida evaporación que no son solubles en agua. Estas membranas pueden aplicarse inmediatamente después de las tareas de texturizado y terminación del hormigón, incluso si hay agua en la superficie. Al aplicarse por aspersión sobre la superficie del pavimento, se forma una película protectora en pocos minutos que impide la evaporación del agua de exudación y mejora su acción preventiva al adherirse a la superficie del hormigón. Debido a estas características, resultan especialmente útiles en la pavimentación con encofrados deslizantes.

Referencias:

CALO, D.; SOUZA, E.; MARCOLINI, E. (2015). Manual de diseño y construcción de pavimentos de hormigón. Instituto del Cemento Portland Argentino (ICPA).

IECA (2012). Firmes de hormigón en carreteras. Guías técnicas. Firmes y explanadas.

KRAEMER, C. (1965) Pavimentos de hormigón normal y pretensado. Experiencia española en el tramo de ensayo. Publicación n.º 18 del Laboratorio de Transporte y Mecánica del Suelo. Centro de Estudios y Experimentación de Obras Públicas (CEDEX). Madrid.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Universidad Politécnica de Madrid, Madrid.

RECUENCO, E. (2014). Firmes y pavimentos de carreteras y otras infraestructuras. Garceta grupo editorial, Colección Escuelas, Madrid.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Componentes principales de un pavimento de hormigón

Figura 1. Estructura típica de un pavimento rígido (Calo et al., 2015)

Una sección común de un pavimento rígido se compone de una capa superior, conocida como calzada de hormigón, que es responsable de proporcionar la mayor parte de la capacidad estructural del pavimento. Esta capa se apoya sobre una base de material seleccionado, que puede o no estar tratada con un ligante, y a su vez descansa sobre el suelo natural o la explanada (ver Figura 1).

Calzada de hormigón

La capa superior del pavimento está conformada por la calzada de hormigón, la cual tiene la responsabilidad de proporcionar tanto las características funcionales como gran parte de la capacidad estructural requerida. En cuanto a las características funcionales, es la encargada de brindar las condiciones superficiales necesarias, como el drenaje superficial, la fricción y la regularidad, de acuerdo con el tipo de vía y las condiciones de servicio, a fin de garantizar una conducción segura y cómoda. En lo que respecta a su capacidad estructural, debe ser lo suficientemente resistente para soportar las cargas durante el periodo de servicio y actuar como una barrera impermeable para las capas inferiores del pavimento, minimizando la entrada de agua desde la superficie hacia el interior de la estructura.

El espesor de la calzada dependerá en gran medida del nivel de tránsito pesado previsto, oscilando entre 15 cm y 20 cm para vías urbanas o de bajo tránsito pesado y de 20 cm a 30 cm en rutas de mayor volumen de vehículos pesados.

Base

La capa fundamental en el comportamiento del firme de un pavimento rígido es su base, pues proporciona un apoyo continuo, uniforme y estable a lo largo del tiempo. Si no se cumple esta condición, las losas del pavimento se ven sometidas a tensiones y deformaciones significativas debido a las cargas del tráfico. Esta capa se encuentra ubicada justo debajo de la calzada de hormigón y su función principal es prevenir la erosión en la interfaz entre la losa y el apoyo, lo que la convierte en un elemento obligatorio en las vías con tránsito pesado.

Además de esta función principal, la incorporación de la base en la estructura del pavimento ofrece varios beneficios, tales como mejorar la distribución de cargas, reducir las tensiones en las capas inferiores de la estructura, contribuir al drenaje subsuperficial del agua de infiltración, proteger los suelos de la explanada de la acción de las heladas, garantizar un soporte uniforme para la calzada de hormigón y proporcionar una plataforma de trabajo adecuada que no sea susceptible a las condiciones climáticas y sea apta para la circulación de vehículos de obra.

Una de las causas que puede provocar la falta de uniformidad en la base es lo que se conoce como bombeo de finos (pumping, en inglés): si hay agua debajo de la losa, la base contiene una proporción significativa de finos y la intensidad del tráfico pesado es relativamente alta, la circulación de estos vehículos y el paso de una losa a otra contigua puede provocar el bombeo de la mezcla de agua y finos en la zona de juntas o bordes del pavimento, lo que conduce a la erosión de la base y al descalce de las losas.

En el caso de tráficos medios y ligeros, se suelen utilizar las bases granulares tradicionales, como el macadam o la zahorra artificial (que consisten en gravas y arenas trituradas). No obstante, cuando se trata de tráficos pesados, es necesario emplear materiales granulares tratados con un ligante o conglomerante, como las bases de gravacemento.

Subbase

La subbase es una capa de firme que se ubica debajo de la base en la explanada, también conocida como subrasante. En algunos casos, esta capa puede no ser necesaria si la explanada ya cuenta con una elevada capacidad de soporte granular. Su principal función es proporcionar una base uniforme para la colocación y compactación de la capa de base, además de constituir una plataforma adecuada para su construcción. Es importante que esta capa tenga una función drenante, para lo cual es necesario que los materiales empleados no contengan finos. En cualquier caso, esta capa es generalmente necesaria como capa de transición. Las subbases granulares se componen de gravas y arenas naturales o trituradas, suelos estabilizados con cemento, gravaescoria, entre otros materiales.

Explanada

La subrasante o explanada es la superficie sobre la que se asienta la superestructura del pavimento. Es crucial que esta superficie tenga la resistencia y la regularidad geométrica adecuadas, pues es el soporte directo del pavimento. Además, la explanada puede estar compuesta por la capa superior del terraplén o el fondo de las excavaciones en terreno natural, y es responsable de soportar la estructura del pavimento. Para asegurar la estabilidad y el óptimo estado de la explanada, se seleccionan suelos con características aceptables y se compactan en capas para crear un cuerpo estable capaz de resistir la carga de diseño del tránsito.

Subdrenaje

En ciertas situaciones, es posible mejorar el sistema de drenaje de una estructura, incluyendo estructuras de subdrenaje. Esto permite eliminar rápidamente el agua que se filtra inevitablemente por las juntas y fisuras, evitando los efectos perjudiciales que podría causar su acumulación en la estructura del pavimento. Los subdrenes se componen de una red colectora de tuberías perforadas o ranuradas que se alojan en zanjas para recolectar el agua subterránea. El objetivo es controlar y retirar el agua, minimizando su efecto negativo en las capas estructurales del pavimento.

Juntas

Las juntas son cruciales para determinar las dimensiones de las losas del pavimento y controlar la formación de fisuras tanto en la etapa temprana como en servicio. Existen dos tipos de juntas: las de contracción, que implican debilitar la sección de hormigón, y las de construcción, que se moldean. La opción más común es utilizar el aserrado para crear las juntas, aunque también pueden formarse en fresco con la creación de surcos en el hormigón. En este último caso, puede haber manipulaciones posteriores que afecten la regularidad superficial, lo que limita su uso en juntas transversales en carreteras con tráfico intenso. El serrado de las juntas debe realizarse antes de que se formen las fisuras, pero no demasiado pronto, pues los bordes podrían dañarse. El momento adecuado depende del tipo de cemento y las condiciones de humedad y temperatura. Según el PG-3, se debe hacer el serrado de las juntas transversales dentro de las primeras 24 horas después de la puesta en obra del hormigón, mientras que para las longitudinales, el serrado debe hacerse entre 24 y 72 horas después. La profundidad mínima del corte debe ser de un tercio o un cuarto del espesor de la losa para las juntas longitudinales y transversales, respectivamente. Es recomendable sellar las juntas, especialmente en áreas con mucha lluvia, y para ello se utilizan productos de sellado, preferiblemente perfiles preformados de materiales elastoméricos que se introducen a presión.

Transferencia de carga

La transferencia de carga se refiere a la capacidad de una junta para transmitir una parte de la carga aplicada en una losa a la losa adyacente. Esta transferencia se puede lograr mediante la trabazón de áridos, que se produce entre las caras de la fisura que se desarrolla por debajo de la junta, o mediante el uso de pasadores. En algunos casos, se pueden emplear ambas técnicas en conjunto para lograr una transferencia de carga óptima.

Pasadores

Se trata de barras de acero lisas que se disponen en las juntas transversales para transferir cargas sin restringir el movimiento horizontal de las losas. Su función es reducir las tensiones y deflexiones en el hormigón, además de disminuir el riesgo de escalonamiento, bombeo y rotura en las esquinas de las losas.

Figura 2. Canastilla de pasadores (Calo et al., 2015)

Barras de unión

Se instalan en las juntas longitudinales para mantenerlas ancladas, garantizando así una transferencia de carga eficiente durante su periodo en servicio. La cantidad de acero necesaria se determina en función del espesor de la losa, la distancia al borde libre más cercano y la fricción en el plano de contacto con la base.

Figura 3. Barras de unión (Calo et al., 2015)

Arcenes

Aunque no forma parte de la estructura, la condición de soporte en los bordes de la calzada es fundamental en los pavimentos de hormigón. Si el arcén está pavimentado con una estructura de hormigón, la calzada puede transferir una parte de las cargas aplicadas a su estructura, lo que reduce las tensiones y deflexiones debidas a las cargas. Además, minimiza la infiltración de agua desde la superficie del pavimento. Además de los arcenes, existen otras alternativas estructurales, como la incorporación de bordillos (en pavimentos urbanos) o la ejecución de sobreanchos de calzada, que también contribuyen significativamente a mejorar la condición de soporte en los bordes.

Referencias:

CALO, D.; SOUZA, E.; MARCOLINI, E. (2015). Manual de diseño y construcción de pavimentos de hormigón. Instituto del Cemento Portland Argentino (ICPA).

IECA (2012). Firmes de hormigón en carreteras. Guías técnicas. Firmes y explanadas.

KRAEMER, C. (1965) Pavimentos de hormigón normal y pretensado. Experiencia española en el tramo de ensayo. Publicación n.º 18 del Laboratorio de Transporte y Mecánica del Suelo. Centro de Estudios y Experimentación de Obras Públicas (CEDEX). Madrid.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Universidad Politécnica de Madrid, Madrid.

RECUENCO, E. (2014). Firmes y pavimentos de carreteras y otras infraestructuras. Garceta grupo editorial, Colección Escuelas, Madrid.

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pavimento de hormigón armado con fibras para carreteras

Figura 1. https://blog.laminasyaceros.com/blog/hormigon-armado

El hormigón reforzado con fibras es aquel en el que se han incluido fibras en una proporción adecuada para mejorar alguna de sus propiedades respecto al hormigón convencional. Aunque el costo de este tipo de hormigón es alto, esto se compensa por sus características, como el aumento de la resistencia a la tracción y a la fatiga, un mejor comportamiento a flexotracción, la ductilidad, la resistencia al impacto y la durabilidad, así como la disminución y el control de la fisuración. La transmisión de esfuerzos fibra-matriz se produce por adherencia, superponiendo acciones que involucran fenómenos de adhesión, fricción y entrecruzamiento mecánico. Para asegurar una correcta utilización de fibras en el hormigón, es necesario seleccionar materiales con módulos de elasticidad comparables o superiores a los del hormigón.

El uso de hormigón con fibras en pavimentos no es algo nuevo. Durante la década de 1980, se popularizó su uso al reducir el espesor del pavimento, aumentar la distancia entre las juntas y aumentar su vida útil de cinco a ocho veces en comparación con los pavimentos tradicionales. Por desgracia, esta tendencia no se mantuvo y el hormigón con fibras desapareció silenciosamente del ámbito de la construcción de pavimentos. A pesar de esto, la investigación en la construcción de soleras industriales continuó, especialmente con el empleo de fibras de acero. En España, se han construido miles de metros cuadrados de pavimentos en naves industriales, talleres de mantenimiento de helicópteros, parques de contenedores, suelos de talleres de fábricas de automóviles, entre otros.

En los pavimentos de autopistas y carreteras, el consumo de hormigones reforzados con fibras se ha incrementado debido a su mayor resistencia a la flexotracción, al control de la fisuración, a su resistencia a la fatiga dinámica y a la posibilidad de realizar juntas cada 15 m o incluso de no realizarlas. Además, pueden utilizarse en la totalidad del espesor del pavimento o en forma de recrecidos sobre pavimentos rígidos o flexibles deteriorados. Como ventaja adicional, estos pavimentos solo requieren un espesor de 7 a 10 cm y se pueden colocar con cualquier extendedora tradicional o, simplemente, con reglas vibrantes. Sin embargo, su coste es más elevado y solo resulta justificado en aplicaciones como refuerzos adheridos a pavimentos ya existentes, pavimentos de puentes y pavimentos que soportan cargas muy pesadas, como las que se dan en puertos, aeropuertos y zonas industriales.

Para que las fibras cumplan su función correctamente, deben estar uniformemente distribuidas en la masa del hormigón. Por lo tanto, se recomienda aumentar la proporción de finos hasta llegar a proporciones de pasta del orden del 40 %, lo que supone un aumento del 10 % en comparación con las dosificaciones normales. También es importante limitar el tamaño máximo del árido a 20 mm. En el caso de los hormigones de pavimentos con áridos de 20 mm, el tamaño máximo debe ser inferior a 100 y la proporción en volumen de fibras debe ser de aproximadamente el 2% de la pasta o el 1% del volumen total. Es posible alcanzar resistencias a compresión de hasta 15 MPa con densidades de 2 t/m³. Sin embargo, es relevante saber que las fibras reducen la docilidad y la trabajabilidad al aumentar la proporción de fibras. Por lo tanto, es necesario incrementar la relación de cemento hasta 0,5-0,6, con dosificaciones entre 350 y 450 kg/m³, o bien emplear un plastificante.

Las fibras pueden ser de distintos materiales, desde microfibras plásticas de muy pequeño diámetro hasta fibras de acero, que es lo más habitual en pavimentos. Según su naturaleza, se puede controlar el proceso de formación de fisuras o mejorar su comportamiento estructural o su resistencia a la fatiga. La dosificación de microfibras oscila entre 0,6 kg/m³ y 1,0 kg/m³ y la de fibras de acero suele ser superior a los 30 kg/m³. Entre las características más importantes de las fibras metálicas se encuentran la forma de la fibra, que permite un buen anclaje en el hormigón, y la relación entre la longitud y el diámetro equivalente de la fibra. Esta relación es un factor clave que distingue a las fibras metálicas, ya que un valor mayor generalmente proporciona un mejor comportamiento, pero también dificulta la mezcla, el vaciado y el acabado del hormigón. Las fibras de acero mejoran las propiedades de ductilidad, dureza, resistencia al impacto y resistencia al desgaste, en función del tipo de fibra y su dosificación. Estas propiedades dependen de la longitud de las fibras, su diámetro, densidad, resistencia a la flexión y módulo de elasticidad. Por lo general, se utiliza acero de bajo contenido en carbono en forma de agujas o pequeños flejes arqueados en los extremos. Las dimensiones comunes son diámetros de 0,15 a 0,75 mm para agujas y anchuras de 0,25 a 0,90 mm con espesores de 0,15 a 0,40 mm para flejes. Las longitudes oscilan entre 6 y 70 mm, con dosificaciones de entre 20 y 80 kg/m³.

A continuación os dejo algún vídeo explicativo de este tipo de material.

Os dejo un artículo explicativo que, espero, os sea de interés.

Descargar (PDF, 375KB)

Referencias:

IECA (2012). Firmes de hormigón en carreteras. Guías técnicas. Firmes y explanadas.

KRAEMER, C. (1965) Pavimentos de hormigón normal y pretensado. Experiencia española en el tramo de ensayo. Publicación n.º 18 del Laboratorio de Transporte y Mecánica del Suelo. Centro de Estudios y Experimentación de Obras Públicas (CEDEX). Madrid

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Universidad Politécnica de Madrid, Madrid.

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pavimentos de hormigón pretensado en carreteras y aeropuertos

Figura 1. Pavimento postesado. VSL Sistemas Especiales de Construcción Argentina S.A.

Con objeto de evitar fisuras en el pavimento, las losas de hormigón se tesan para contrarrestar la tracción provocada por el tráfico, la retracción y los gradientes térmicos. El principio de diseño de un pavimento de hormigón pretensado consiste en comprimir el pavimento mediante el tesado de cables de acero insertos en la losa de hormigón. El tesado puede ser unidireccional o bidireccional, siendo este último aconsejable para pavimentos industriales, en cuyo caso, se recomienda que el nivel de tensión sea similar en ambas direcciones.

De esta manera, el hormigón comprimido permite espesores de losa menores que los pavimentos de hormigón en masa o armado. Además, es posible diseñar grandes áreas sin juntas o con juntas que pasan desapercibidas debido a la compresión que recibe el hormigón. De esta forma, se pueden distanciar las juntas hasta 150 m y se reduce el espesor de la losa en un 50 %, debido a la disminución de tensiones. Para ello, se han ensayado diversos sistemas de pretensado, tanto internos —con cables o alambres (postesado)— como externos —con gatos planos hidráulicos y juntas neumáticas—. Las juntas utilizadas están especialmente diseñadas para adaptarse a cambios máximos de apertura, pero en algunos sistemas los estribos están dispuestos para resistir el empuje horizontal.

Los pavimentos pretensados evitan las grietas de retracción y flexión, eliminando las juntas de contracción y reduciendo su mantenimiento. Además, minimizan el alabeo de las losas, ofrecen un comportamiento elástico cuando se sobrecargan y reducen espesores, a la vez que mejoran la planeidad con el tiempo. Sin embargo, su construcción requiere más cuidado y personal más especializado, además de una mayor supervisión para garantizar la adecuada colocación y tesado de los cables. En caso de que falle una zona, hay que sustituir toda el área construida unitariamente, por lo que resulta poco rentable en superficies pequeñas. La rentabilidad de los pavimentos pretensados requiere una longitud de pavimento superior a los 100 m o cuando los suelos tienen unas características mediocres. Se pueden conseguir pavimentos de 10 000 m² sin juntas.

Los requisitos de la plataforma de apoyo o superficie de subrasante son similares a los de los pavimentos de hormigón convencionales. Sin embargo, dado que los pavimentos postesados son más finos, el sistema es más flexible y se generan mayores esfuerzos verticales en la base. Por lo tanto, la calidad y resistencia de la base es aún más importante en este tipo de pavimentos que en los convencionales. Por esta razón, normalmente se especifica que el módulo de reacción de la base o la constante de balasto no sea inferior a 54 MPa/m.

Generalmente, los cables se postesan y anclan después de que el hormigón haya alcanzado una resistencia suficiente para soportar la fuerza del anclaje. El postesado puede ser adherido o no adherido. A pesar de lo anterior, el diseño de este tipo de pavimentos plantea algunas dificultades relacionadas con la reparación en caso de daños. Además, el diseño de las juntas entre las áreas donde se realiza el postesado no es un asunto trivial. Normalmente, se recomienda que el espaciamiento entre los cables longitudinales sea de entre 2 y 4 veces el espesor de la losa y de entre 3 y 6 veces el espesor de la losa para los cables transversales.

Figura 2. Sección de un pavimento de hormigón pretensado

Durante los años 60, varios países europeos desarrollaron técnicas de construcción mediante el pretensado en carreteras. Sin embargo, la geometría de las carreteras provoca más dificultades que ventajas, sobre todo por la dificultad de introducir el pretensado. En España se experimentó en 1963 en el tramo de pruebas de la N-II, pero no se continuó con el uso de esta técnica. Después de unos años de intenso tráfico, se dejó descomprimir y se reforzó con mezclas bituminosas.

Figura 3. Hormigonado de un pavimento postesado. VSL Sistemas Especiales de Construcción Argentina S.A.

La tecnología del hormigón pretensado se emplea sobre todo en pistas de aeropuertos y zonas industriales, donde se pueden encontrar grandes superficies continuas y casi horizontales, sin curvas en planta ni en alzado, como en las carreteras. Esto permite un menor espesor de la losa y una organización diferente de la conservación. La primera aplicación en un pavimento aeroportuario tuvo lugar en Francia, en la pista de Orly. Sin embargo, esta pista falló después de seis años en servicio debido a la rotura de los aceros pretensados por oxidación. Por otro lado, en el aeropuerto de Schiphol, en Ámsterdam, se construyeron más de 700 000 m² de pavimento pretensado a lo largo de 15 años con excelentes resultados.

Una alternativa viable es la construcción de pavimentos con losas pretensadas prefabricadas. En algunos países, especialmente en regiones con condiciones ambientales adversas, como el norte de la antigua Unión Soviética, se ha adoptado el método de las losas prefabricadas para evitar la complejidad de la colada «in situ» y los posibles errores asociados. De este modo, se logra industrializar el proceso, asegurar la calidad y reducir los plazos de obra. Además, esta técnica permite trabajar en cualquier época del año, incluso en condiciones de bajas temperaturas, donde no es posible utilizar hormigón o mezcla bituminosa debido a su enfriamiento instantáneo.

Figura 4. Losas prefabricadas pretensadas para pavimentos. https://www.concrete.org/portals/0/files/pdf/webinars/ws_2021_Snyder_Precast.pdf

Existen dos tipos de losas prefabricadas: las que tienen un pretensado longitudinal y transversal y las que solo tienen un pretensado longitudinal. Las dimensiones de las primeras pueden alcanzar los 3,50 m x 6,00 o 7,00 m. Para el pretensado se emplea acero de 3 a 5 mm en dos capas cercanas a cada cara. Los cantos resultantes varían de 14 a 22 cm y se requieren entre 2 y 3 MPa de tensión inicial. El tamaño está limitado por el peso para el posterior traslado y colocación. Por otro lado, las losas pretensadas axialmente son más sencillas y tienen menores dimensiones, de 1,75 o 2,00 m x 6,00 o 7,00 m. En este caso, se opta por un acero de diámetro mayor (14 a 16 mm) y un refuerzo transversal con armadura de barras de 5 a 7 mm. Además, los bordes llevan un armado suplementario.

En las losas se dejan abrazaderas para unirlas mediante soldadura in situ. Las juntas se rellenan dos tercios con un mortero pobre de arena y se sellan con un mástico anticarburante. Cada dos o tres juntas se dejan libres para permitir la dilatación, lo cual depende de la gama de temperaturas ambiente. Las bases en este tipo de pavimento son las tradicionales en los pavimentos rígidos, aunque se recomienda tratarlas con cemento. A veces, se extiende una capa de 3 a 6 cm de arena y cemento para asegurar una mejor superficie de apoyo, en función del tipo de base empleado.

Os dejo un artículo sobre pavimentos prefabricados de hormigón.

Descargar (PDF, 538KB)

Referencias:

CALO, D.; SOUZA, E.; MARCOLINI, E. (2015). Manual de diseño y construcción de pavimentos de hormigón. Instituto del Cemento Portland Argentino (ICPA).

IECA (2012). Firmes de hormigón en carreteras. Guías técnicas. Firmes y explanadas.

KRAEMER, C. (1965) Pavimentos de hormigón normal y pretensado. Experiencia española en el tramo de ensayo. Publicación n.º 18 del Laboratorio de Transporte y Mecánica del Suelo. Centro de Estudios y Experimentación de Obras Públicas (CEDEX). Madrid

KRAEMER, C.; PARDILLO, J.M.; ROCCI, S.; ROMANA, M.G.; SÁNCHEZ, V.; DEL VAL, M.A. (2010). Ingeniería de carreteras II. McGraw-Hill, Madrid.

RECUENCO, E. (2014). Firmes y pavimentos de carreteras y otras infraestructuras. Garceta grupo editorial, Colección Escuelas, Madrid.

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pavimento continuo de hormigón armado para carreteras

Figura 1. Colocación de armadura en un pavimento continuo de hormigón armado.

El Pavimento Continuo de Hormigón Armado (PCHA) no requiere juntas transversales de contracción. Básicamente, se trata de un pavimento de hormigón armado con juntas, pero con una armadura suficiente para que la distancia sea infinita. Cuando se ejecuta adecuadamente, este pavimento requiere un mantenimiento mínimo. Los PCHA buscan proporcionar superficies cómodas y sin interrupciones. Mediante el cálculo de cargas, retracción y cambios de temperatura, se puede anticipar la resistencia del pavimento y controlar su tendencia a agrietarse, como en cualquier otra estructura de hormigón armado. Las ventajas de este tipo de pavimento son su seguridad, su coste y su capacidad para ser compatible con pavimentos existentes de mezcla bituminosa o con superficies de hormigón en mal estado, pues no requieren su eliminación previa.

La eliminación de las juntas transversales implica aumentar la cuantía de la armadura longitudinal de acero de alto límite elástico a valores superiores a 10 kg/m². La eliminación de las juntas transversales permite reducir el espesor de la capa de hormigón y amplía su campo de aplicación, aunque su elevado coste inicial hace que su uso esté más extendido en firmes que soporten altos niveles de tráfico pesado, especialmente en autopistas y carreteras principales.

Inicialmente, estos pavimentos se utilizaban principalmente en firmes de nueva construcción. Sin embargo, en los últimos años también se han empleado como refuerzo de firmes ya existentes, tanto rígidos como flexibles, y en la reconstrucción de carriles para vehículos pesados en autopistas. Los pavimentos de hormigón armado continuo también se utilizan en pistas de aterrizaje y despegue de aeropuertos, como en el aeropuerto de Narita (Tokio) y en la base francesa de Lorient-Lann-Bihoué. Además, se usan en glorietas, túneles, plataformas industriales y en carreteras donde se espera un asentamiento diferencial, ya que la corta distancia entre las grietas del pavimento permite que se divida en pseudolosas de pequeña longitud, lo que facilita su adaptación a los movimientos del terreno de base.

Figura 2. Sección de un Pavimento Continuo de Hormigón Armado (PCHA)

El PCHA se utilizó por primera vez en Estados Unidos en 1938, en autopistas con tráfico pesado, pero pasó más de una década hasta que se empezó a experimentar su uso en Europa. Bélgica fue el primer país en aplicarlo en tramos experimentales y en utilizarlo comúnmente en autopistas y carreteras importantes. En 1963, se realizaron pruebas experimentales en la N-II, cerca de Madrid, y se construyeron 43 km de la autopista Oviedo-Gijón-Avilés en 1975. A partir de 1990, se construyeron algunos tramos en la autopista del Cantábrico. Aunque su uso en España es limitado, se dispone de una técnica madura y fiable para su desarrollo.

Debido a la alta cantidad de armadura principal que poseen en dirección longitudinal (entre el 0,6 % y el 0,7 %), los PCHA tienden a desarrollar fisuras transversales de manera natural en intervalos aleatorios pequeños (generalmente de 0,8 a 2,0 m). La función principal de la armadura es limitar la fisuración por retracción y temperatura, y la secundaria, absorber las tracciones estructurales. La armadura transversal, que representa del 0,05 % al 0,10 %, actúa como soporte para las barras longitudinales y puede ser prescindible. Según el PG-3, los solapes deberían ser inferiores al 20 % del total.

Generalmente, se deja una distancia de aproximadamente 15 cm entre las barras longitudinales para facilitar el vertido del hormigón. Por su parte, las armaduras transversales se colocan como soporte de las barras longitudinales y para mantener su posición relativa. No obstante, en los últimos años se ha popularizado el uso de equipos con guías para colocar las barras longitudinales en su posición final durante el vertido del hormigón, lo que permite prescindir de las armaduras transversales.

La cantidad de armadura longitudinal necesaria en un PCHA depende de varios factores, incluyendo el límite elástico del acero y la resistencia característica a flexo-tracción del hormigón. En el caso de hormigones HP-4,5 (4,5 MPa), esta cantidad suele estar en valores entre el 0,65 % y el 0,7 %. Generalmente, se suelen emplear barras corrugadas de alto límite elástico (510-620 MPa) como armadura en este tipo de pavimentaciones.

La distancia entre las fisuras y su apertura es inversamente proporcional a la cantidad de acero dispuesta. Según datos empíricos, la distancia deseable entre fisuras está entre 1 y 3 m, siendo lo óptimo entre 1,5 y 2 m. El ancho de las fisuras debe ser inferior a 0,5 mm. Además, es importante que la distribución de las fisuras sea homogénea para asegurar la transferencia de cargas a través de ellas sin desniveles ni degradación bajo el tráfico. Las fisuras deben estabilizarse a los 4 o 5 años. Para lograrlo, es necesario seguir las indicaciones previas en cuanto a la cantidad de acero, la separación óptima de las barras, el porcentaje de solapamientos, entre otros factores.

En las primeras etapas del uso del acero en PCHA, se solía colocar la armadura en el tercio superior de la losa para mantener cerradas las fisuras en esa zona y para que la armadura actuara como «armadura de piel» y resistiera los desprendimientos de hormigón debidos al tráfico. Sin embargo, con la evolución de la técnica, se ha descubierto que es preferible colocar la armadura en la mitad del espesor. Esto no solo reduce el riesgo de corrosión, sino que también mejora la regularidad superficial del pavimento al evitar las ligeras ondulaciones causadas por la «reflexión» de la armadura en la superficie.

Figura 3. Esquema de un Pavimento Continuo de Hormigón Armado (PCHA)

Esta técnica es poco competitiva debido al elevado coste del acero, pero es posible reducir su cuantía a casi la mitad sustituyendo las barras por bandas corrugadas de acero de muy alto límite elástico. Estas bandas tienen una sección transversal de 2 x 40 mm² y se suministran en bobinas desenrollables. Aunque los pavimentos de hormigón armado tienen un costo de construcción más elevado que los pavimentos de hormigón simple con juntas, los PCHA presentan la ventaja de requerir poco mantenimiento y de tener una vida útil más larga que otros tipos de pavimentos si se ejecutan correctamente. No obstante, debido a su elevado coste, no suele utilizarse este tipo de pavimento, salvo en casos muy especiales de tráfico muy pesado, especialmente si se trata de refuerzos.

Os dejo una presentación de IECA sobre este tipo de pavimentos.

Descargar (PDF, 2.21MB)

Algunas organizaciones promotoras del empleo del cemento han editado publicaciones explicando las ventajas. Os dejo un vídeo explicativo de IECA donde se explica cómo se construye este pavimento. Espero que os guste.

Otro vídeo sobre el mismo tema es el siguiente:

Referencias:

IECA (2012). Firmes de hormigón en carreteras. Guías técnicas. Firmes y explanadas.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Universidad Politécnica de Madrid, Madrid.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pavimentos de hormigón armado con juntas para carreteras

Figura 1. Pasadores en una junta de construcción de un pavimento rígido

En su momento, los pavimentos de hormigón armado con juntas se popularizaron debido a su capacidad para reducir la cantidad de uniones, lo que permitió separarlos varias decenas de metros, llegando incluso a los 30 m. El diseño buscó resolver el problema de conservación que representaban estas juntas, consideradas como la zona más débil, mediante la reducción de su número y el aumento de la longitud de las losas. Si bien estos pavimentos solían utilizarse para el tráfico pesado, en la actualidad son poco comunes en las carreteras, aunque se emplean en pavimentos industriales y otras aplicaciones. No obstante, han quedado en desuso debido a su elevado coste, pues no se considera que su calidad sea proporcional al precio.

Los pavimentos de hormigón armado con juntas (Figura 2) se dividen en losas, las cuales tienen una longitud mayor y la armadura no se dispone de forma continua. En cambio, la armadura se interrumpe en la zona de las juntas, donde se instalan pasadores para mejorar las condiciones de transferencia de carga.

Figura 2. Esquema de un pavimento de hormigón armado con juntas

Es importante destacar que un mayor espacio entre juntas puede provocar un mayor movimiento en la losa debido a los cambios de temperatura y humedad, lo que puede afectar a la transferencia de carga y aumentar la demanda de los sellos de las juntas. Por lo tanto, en este tipo de pavimentos, se exige la incorporación de pasadores en todas las juntas transversales, como medida obligatoria para garantizar la estabilidad a largo plazo.

Figura 3
Figura 3. Sección de un pavimento de hormigón armado con juntas

Las armaduras se ubican en el tercio superior de la losa, no con una función estructural, sino para evitar las fisuras transversales que puedan formarse entre las juntas. Esto garantiza la transmisión de cargas en las fisuras, impide la penetración de agua y otros materiales finos y evita la formación de grietas en forma de “V” bajo la acción del tráfico. La distancia entre juntas longitudinales se mantiene en torno a los 4-6 m, como en el caso del hormigón en masa, aunque en la actualidad se recomienda no superar los 9 m de separación entre juntas.

Figura 4. Pavimento de hormigón armado con juntas

La cuantía geométrica de armadura suele estar entre el 0,07 % y el 0,10 % del área de la sección transversal, y es frecuente el uso de mallas electrosoldadas, como la de tipo ME 15 x 15 A ø 6-6 B 500 T. En el sentido transversal, se utilizan tanto barras de unión como armadura distribuida, aunque con una cuantía inferior a la utilizada en el sentido longitudinal.

Veamos en esta animación cómo funcionan los pasadores ante el paso del tráfico:

Referencias:

IECA (2012). Firmes de hormigón en carreteras. Guías técnicas. Firmes y explanadas.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Universidad Politécnica de Madrid, Madrid.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El hormigón para pavimentos de hormigón en carreteras

Figura 1. Pavimento de hormigón. https://www.fcc.es/-/el-pavimento-de-hormigon-regresa-a-las-carreteras-espanolas

Para que el hormigón de pavimento sea efectivo, debe resistir tanto el impacto del tráfico como las condiciones climáticas. A diferencia del hormigón estructural, que se somete principalmente a la compresión, el hormigón de pavimentos debe resistir la flexotracción. Las fisuras aparecen siempre donde la resistencia a la tracción es menor que en el resto del material o en una zona donde se presenta una mayor concentración de tensiones.

Los pavimentos presentan una geometría que los hace propensos a las fisuras, pues su gran superficie inferior en contacto con la base restringe la contracción, mientras que su cara superior está expuesta a la evaporación. Para prevenir esta situación, es importante tener en cuenta las siguientes recomendaciones:

  • Evitar el uso de relaciones agua/cemento inferiores a 0,40.
  • Impedir el intercambio de humedad con la base y el ambiente mediante la saturación temprana de la base y el curado.
  • Evitar condiciones de restricción elevadas con la base.
  • Usar áridos limpios, libres de polvo y saturados.
  • Diseñar las mezclas de hormigón para obtener un adecuado nivel de ganancia de resistencia temprana y asegurar una apropiada exudación.

La normativa técnica exige ensayos específicos de flexotracción en probetas prismáticas para controlar su resistencia. La calidad del hormigón para carreteras debe ser superior a la de un hormigón para edificación, debido a las cargas repetidas del tráfico y a los efectos climáticos. Este debe ser homogéneo, compacto y presentar las características mecánicas adecuadas a la categoría de la carretera y a las condiciones climáticas. La resistencia característica a flexotracción se sitúa, por lo general, entre 3,5 y 4,5 MPa tras 28 días.

Para pavimentar carreteras, se requiere el uso de hormigones con una resistencia mínima a la flexotracción de 3,5-4,0 o 4,5 MPa a los 28 días. Estos hormigones se conocen como HF-3,5, HF-4,0 y HF-4,5, según el artículo 550 «Pavimentos de hormigón vibrado» del Pliego de Prescripciones Técnicas Generales para Obras de Carreteras y Puentes (PG-3) del Ministerio de Fomento de España. Estas designaciones corresponden aproximadamente a resistencias a la compresión de 25, 30 y 35 MPa a los 28 días. Sin embargo, la relación entre las resistencias a la compresión y a la flexotracción varía según las materias primas y la dosificación utilizadas.

En general, para los pavimentos de hormigón no es necesario emplear cementos «especiales». Por lo general, se utilizan cementos con una resistencia a la compresión de entre 30 y 40 MPa a los 28 días y una dosificación de entre 300 y 350 kg/m³, según la categoría de la carretera, las condiciones de ejecución y las propiedades requeridas. Se pueden emplear tanto cementos Portland como cementos con adiciones (como escorias, puzolanas, cenizas volantes, etc.). Estos últimos, en general, tienen una velocidad de fraguado más lenta, un menor contenido energético y un menor calor de hidratación que los Portland, lo que los hace más económicos. No obstante, se debe controlar el empleo de elevados volúmenes de adiciones, sobre todo en épocas de tiempo frío, y limitar el contenido de adiciones incluidas en el cemento al 20 %.

La dosificación mínima de cemento en el hormigón fresco será de 300 kg/m³ y la relación ponderal entre agua y cemento no deberá ser mayor a 0,46 para garantizar la resistencia y la durabilidad. En el caso de pavimentos bicapa con eliminación del mortero superficial, el contenido de cemento en la capa superior de hormigón fresco no debe ser inferior a 450 kg/m³. La consistencia más adecuada para estos hormigones es seco-plástica, con una medida de asentamiento en cono de Abrams que oscile entre 2 y 6 cm. Además, el árido grueso debe tener un coeficiente de Los Ángeles inferior a 35.

En función del tipo de textura que se desee conseguir en el pavimento, se requerirá un árido fino o grueso con ciertas características específicas de desgaste y naturaleza. Si se busca una textura de árido visto en la que los vehículos estén en contacto directo con el árido grueso, este deberá tener un coeficiente de pulimento acelerado (CPA) no inferior a 0,50. Si se incrusta gravilla en la superficie del hormigón fresco, el coeficiente Los Ángeles no debe ser superior a 20.

Para texturas obtenidas mediante cepillado o estriado, en las que el mortero del hormigón entra en contacto con el tráfico, se requerirá que el porcentaje de arena silícea sea superior al 35 % (30 % en el caso de categorías de tráfico T2 o inferiores) para garantizar su durabilidad.

Se recomienda utilizar cemento de la clase resistente más baja posible, preferiblemente 32,5, que tenga una resistencia inicial normal (N). Se aconseja el uso de cementos con un alto porcentaje de adiciones activas para pavimentos. Sin embargo, si se requiere una apertura rápida al tráfico, se pueden emplear cementos de mayor categoría resistente (42,5 o 52,5) y alta resistencia inicial (R).

Se aconseja utilizar aditivos plastificantes para facilitar la puesta en obra del hormigón, aunque hay que tener en cuenta que puede retrasar el tiempo de fraguado. En las zonas donde se produzcan nevadas o heladas, es obligatorio incluir un inclusor de aire para crear poros que actúan como «cámaras de expansión». De esta manera, el agua puede aumentar de volumen al congelarse sin causar desconchamientos durante las heladas. Además, los aditivos aireantes tienen un efecto plastificante y mejoran la tixotropía del hormigón fresco, evitando que se desprendan los bordes del pavimento al salir del equipo de encofrados deslizantes. La norma UNE-EN 12350-7 establece que la proporción de aire ocluido en el hormigón fresco vertido en obra no debe ser superior al 6 % en volumen. En este caso, la proporción de aire ocluido en el hormigón fresco no debe ser inferior al 4,5 % en volumen. Es crucial controlar el nivel de incorporación de este tipo de aditivos, pues puede provocar una pérdida de resistencia.

La homogeneidad en las características del hormigón, como su consistencia y resistencia, es fundamental para obtener buenos resultados, especialmente cuando se emplea un proceso de puesta en obra mecanizado. La norma UNE-EN 12350-2 establece que la consistencia del hormigón debe estar entre 1 y 6 cm de asentamiento. El valor y los límites admisibles de los resultados deben ser indicados por el Pliego de Prescripciones Técnicas Particulares o, en su defecto, por el Director de las Obras. Además, pueden especificarse otros procedimientos alternativos para determinarlo.

Por otro lado, la masa unitaria de las partículas cernidas por el tamiz 0,125 mm (según la norma UNE-EN 933-2), incluido el cemento, no debe superar los 450 kg/m³. Sin embargo, en las capas superiores de pavimentos bicapa, este valor puede aumentarse en 50 kg/m³. Es importante destacar que estos pavimentos deben cumplir las limitaciones establecidas en la Tabla 550.4.

TABLA 550.4 Limitación del contenido máximo de finos en pavimentos bicapa (PG-3)

CAPA DEL PAVIMENTO PORCENTAJE DE PARTÍCULAS CERNIDAS POR EL TAMIZ 0,063 mm (NORMA UNE-EN 933-2)
ÁRIDO GRUESO ÁRIDO FINO
CAPA SUPERIOR < 0,5 % < 10 %
CAPA INFERIOR < 1,5 % < 10 %

 

Referencias:

IECA (2012). Firmes de hormigón en carreteras. Guías técnicas. Firmes y explanadas.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Universidad Politécnica de Madrid, Madrid.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pavimentos de hormigón en masa con juntas para carreteras

Figura 1. Estructura tipo de un pavimento rígido

Existen varios tipos de pavimentos de hormigón, que se clasifican en función de la existencia o no de armaduras y de la disposición de las juntas (Figura 1). Los pavimentos de hormigón en masa o de hormigón armado con juntas, y los pavimentos continuos de hormigón armado, son los más comunes en carreteras, mientras que los pavimentos de hormigón pretensado, los de hormigón armado con fibras, los de hormigón compactado con rodillo, los de hormigón poroso, y los de elementos prefabricados (losas o adoquines) son menos frecuentes.

A continuación, se detallan los pavimentos de hormigón en masa con juntas, que se consideran los más económicos y sencillos de construir (Figura 2). Estos pavimentos son habituales en diversas categorías de tráfico y soportan un promedio de hasta 2000 vehículos pesados por carril y día. El control de la fisuración se logra mediante la inclusión de juntas, ya sean estas longitudinales o transversales, que pueden cumplir diferentes funciones, como juntas de construcción, de contracción o de dilatación, dependiendo de su diseño.

Figura 2. Pavimento de hormigón en masa con juntas.

La fisuración se controla dividiendo al pavimento en losas con una separación entre juntas transversales de 3,5 a 6,0 m, que depende, entre otros factores, del tipo de base, el espesor y el coeficiente de expansión térmica (Figura 3). La separación entre juntas en una losa está estrechamente relacionada con su espesor. Si no hay grandes gradientes de temperatura, la distancia entre las juntas no debería exceder 25-30 veces el espesor de la losa. Si hay gradientes importantes de temperatura, la separación entre juntas debe reducirse a 15-20 veces el espesor de la losa. Se recomienda colocar las juntas a distancias inferiores a 5 m, y si no hay pasadores, no deben superar los 4 m. Como regla general, las losas deben ser rectangulares, y la relación entre sus lados no debe ser superior a 1,5. En calzadas con un ancho mayor de 5 m, se deben disponer juntas longitudinales.

Figura 3. Esquema de un pavimento de hormigón en masa con juntas

La transferencia de carga a través de las juntas es un factor relevante que condiciona el rendimiento de los pavimentos. Una mala transferencia de carga puede provocar problemas como el escalonamiento de las juntas, la erosión de las bases debido a la eyección de agua con suelo fino (también conocido como «bombeo») y roturas de las esquinas. En este tipo de juntas, existen dos mecanismos de transferencia de carga: la trabazón entre los áridos y el uso de pasadores.

Con frecuencia, se colocan barras de unión de acero corrugado en las juntas longitudinales para mantener unidas las losas adyacentes. Estas barras permiten la deformación debida al gradiente térmico, pero evitan la separación de las juntas entre carriles de circulación y el escalonamiento causado por el tráfico. A pesar de ello, estos fenómenos suelen ocurrir con poca frecuencia en las juntas longitudinales.

Con tráficos medios (IMD entre 200 y 2000 vehículos pesados), suele ser común el empleo de pasadores en las juntas transversales para mejorar la transmisión de cargas entre las losas. Se trata de barras de acero lisas y no adheridas al hormigón, situadas en la mitad del espesor, paralelas entre sí y al eje de la vía. De esta manera, se garantiza que las losas a ambos lados de la junta tengan una deflexión similar al paso de los vehículos. A pesar de que el empleo de pasadores reduce el espesor de las losas y aumenta la separación entre las juntas, también se han logrado excelentes resultados en pavimentos sin pasadores cuando las juntas se han dispuesto a distancias inferiores a 4 m.

El diseño “californiano” prescinde de los pasadores (Figura 4), aunque solo se utiliza en España para el tráfico medio y ligero. Sin embargo, cuando se espera más de 200 vehículos pesados por carril y sentido, se adoptan medidas para prolongar la vida útil del pavimento. Estas incluyen bases resistentes al desgaste como el hormigón magro o el gravacemento con mayor contenido de conglomerante, sistemas de drenaje para evitar la acumulación de agua en las juntas y los bordes del pavimento (drenes laterales o bases porosas) y la construcción de losas cortas (de aproximadamente 4 m) con juntas inclinadas 1:6 para minimizar las tensiones.

Figura 4. Pavimento de hormigón en masa con juntas transversales inclinadas (Kraemer et al., 1999)

Hay que evitar los finos de los arcenes cercanos para prevenir el escalonamiento del pavimento. Se pueden aplicar soluciones como zanjas porosas o bases drenantes sin finos, o estabilizadas con gravacemento o suelocemento. Sin embargo, la opción más efectiva suele ser un arcén de hormigón en masa con barras de unión al carril adyacente y una junta longitudinal sellada. Se ha comprobado que, con estas medidas, los pavimentos de hormigón en masa con juntas sin pasadores soportan el tráfico pesado, siempre y cuando no llueva mucho. Además, es importante considerar el efecto positivo que tiene un arcén de hormigón en la estructura y en la prevención de la erosión. No obstante, en España, los pasadores son obligatorios para el tráfico pesado y medio-alto.

La técnica californiana se adapta bien a las pavimentadoras de encofrados deslizantes, pues no requiere pasadores. Antes de la década de 1980, los pasadores se introducían mediante vibración con una máquina que rodaba sobre encofrados fijos o bien la pavimentadora debía detenerse en cada junta para colocar los pasadores con horquillas, lo que empeoraba la regularidad superficial. Actualmente, las pavimentadoras cuentan con dispositivos que introducen los pasadores sin interrupciones y sin afectar al hormigón de la junta, lo que simplifica el proceso y aumenta su eficiencia. Además, el sobrecoste de utilizar pasadores es mínimo, lo que hace que esta solución sea competitiva para tráficos pesados y medios-altos.

Os dejo un webminar, desarrollado en 2020, del Instituto del Cemento Portland Argentino, sobre la ejecución de pavimentos de hormigón con tecnología convencional. Espero que os sea útil.

También recomiendo la videoconferencia sobre diseño y ejecución de juntas en pavimentos de hormigón, cuyo ponente es César Bartolomé, director del Área de Innovación de IECA. Espero que os guste.

Referencias:

IECA (2012). Firmes de hormigón en carreteras. Guías técnicas. Firmes y explanadas.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Universidad Politécnica de Madrid, Madrid.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Textura en los pavimentos de hormigón en carreteras

Figura 1. Texturizado de pavimentos de hormigón con peine metálico transversal. https://web1.icpa.org.ar/wp-content/uploads/2019/04/2014-04-Texturas-pavimentos.pdf

En los últimos años, ha aumentado la preocupación por las texturas superficiales de los pavimentos de hormigón debido al incremento progresivo del tráfico y de la velocidad de circulación. Anteriormente, la texturización se vinculaba a la reducción de accidentes por deslizamiento en superficies húmedas, pero en la actualidad también se considera la generación de ruido entre el pavimento y el neumático. La textura superficial garantiza la rugosidad necesaria para conseguir una buena adherencia, un buen drenaje, baja sonoridad y reduce la reflectancia del pavimento. Una textura superficial adecuada se realiza mediante el arrastre o paso de algún elemento sobre el hormigón fresco, y se procede inmediatamente al curado. En resumen, el objetivo del texturizado es conseguir una resistencia mínima al deslizamiento en condiciones húmedas, mantener un buen drenaje y escurrimiento superficial del agua, reducir los niveles de ruido y brindar resistencia al desgaste y la durabilidad.

Existen diversas técnicas para aplicar una textura sobre la superficie del hormigón, que pueden ejecutarse con equipamiento mecánico o manualmente. Asimismo, se pueden aplicar otras técnicas en estado endurecido en pavimentos en servicio o nuevos para mejorar el rendimiento de la superficie en parámetros como la fricción, el drenaje superficial y el ruido.

Es importante aplicar la textura de forma homogénea para producir condiciones uniformes de fricción y circulación, independientemente de la técnica utilizada. Los factores que más influyen en la textura cuando se aplica en estado fresco son la consistencia y las características del hormigón, el momento o tiempo en el que se realiza, la presión con la que se aplican las herramientas de texturizado, su limpieza y la presencia de agua de exudación en la superficie del hormigón, entre otros.

Entre las texturas que se pueden utilizar en la superficie del pavimento, se encuentran las siguientes:

  • Estriado transversal: se crea mediante el uso de peines de púas metálicas o de plástico. Esta textura proporciona una alta adherencia y resistencia al frenado, así como un buen drenaje. Sin embargo, también es ruidosa, por lo que se recomienda su uso en arcenes y en zonas muy lluviosas.
  • Estriado longitudinal oscilante: se consigue mediante el empleo de cepillos o peines, que generalmente están integrados en el carro del equipo de curado. Es fundamental que el dispositivo que crea la textura tenga un movimiento lateral, combinado con el avance, que provoque una ondulación sinusoidal para evitar el guiado de las ruedas. Generan un bajo nivel de ruido.
  • Terminación con arpillera: se logra aplicando una arpillera húmeda lastrada para obtener una microtextura adherente de baja rugosidad. Esta técnica suele combinarse con alguna de las otras texturas mencionadas anteriormente. Es una técnica sencilla, que puede aplicarse tanto de forma manual como automática, y además, genera poco ruido. Entre sus debilidades, destaca una baja profundidad de textura y una mayor pérdida de fricción inicial.
  • Árido visto: se consigue eliminando el mortero superficial del pavimento mediante la aplicación de un retardador de superficie sobre el hormigón fresco, lo que impide que el mortero se endurezca en los milímetros superiores. Después, se aplica un producto filmógeno de curado o una lámina de plástico sobre el retardador. Una vez que el resto del hormigón ha adquirido suficiente resistencia, lo cual ocurre generalmente al cabo de un día, se elimina el mortero mediante barrido, dejando el árido parcialmente visible. Este método, si se desarrolla correctamente, permite obtener pavimentos con alta rugosidad, buenas características de evacuación del agua de lluvia, antideslizantes y de muy baja sonoridad, cualidades que se mantienen durante toda su vida útil. Entre sus ventajas se encuentran los elevados índices de fricción, la baja generación de ruido y la elevada durabilidad. Sin embargo, también tiene algunas desventajas, como la necesidad de utilizar métodos y equipos especiales, su elevado coste y la importancia de contar con un constructor calificado.
Figura 2. Texturizado con cepillo en sentido transversal (manual y automatizada). https://web1.icpa.org.ar/wp-content/uploads/2019/04/2014-04-Texturas-pavimentos.pdf

Os dejo algunos vídeos que, espero, os sean de interés.

Referencias:

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Universidad Politécnica de Madrid, Madrid.

IECA (2012). Firmes de hormigón en carreteras. Guías técnicas. Firmes y explanadas.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.