¿Qué es la curva de compactación de un suelo?

Seguimos con este post la divulgación de conceptos básicos relacionados con una de las unidades de obra que más patologías conlleva a largo plazo: la compactación. En otros posts anteriores ya hablamos de los tramos de prueba y de la compactación dinámica. La compactación constituye una unidad de obra donde la interacción entre la naturaleza del suelo, sus condiciones, la maquinaria y el buen hacer de las personas que intervienen en ella son cruciales. Desgraciadamente, en numerosas ocasiones se trata a la compactación como una unidad de obra complementaria o auxiliar. Las variables que más influyen en la compactación son la naturaleza del terreno, su grado de humedad y la energía aplicada. Estas variables se estudian a continuación.

Figura 1. Curva de compactación

La densidad, humedad y huecos están relacionados entre sí. Se trata de comprobar empíricamente lo que ocurre al someter a un suelo a un proceso de compactación. Dicho experimento consiste en golpear capas dentro de un cilindro, mediante un procedimiento normalizado, y medir la densidad seca y humedad en cada caso. Se realizará el estudio sometiéndolo a diversas energías de compactación y humedades.

Este experimento permite la obtención de las curvas de compactación, que relacionan el peso específico seco y la humedad de las muestras de suelo compactadas con una energía determinada, y que presentan un máximo, más o menos acusado, según su naturaleza. Los valores típicos de los pesos unitarios máximos secos oscilan entre 16 y 20 kN/m3, con los valores máximos en el intervalo de 13 a 24 kN/m3. Cifras superiores a 23 kN/m3 son raras, ya que este valor es cercano al hormigón húmedo. Los contenidos típicos de humedad óptima oscilan entre el 10 y 20% con un intervalo máximo del 5 al 30%. Generalmente se requieren cinco puntos con el objeto de obtener una curva fiable, con una humedad entre puntos que no se diferencien en más del 3%.

Se puede definir como índice de compactación (IC) a la relación entre el peso específico seco del terreno compactado y el peso específico seco óptimo.

Antes de llegar a la humedad óptima, el agua favorece la densificación al actuar con cierto efecto lubricante, pero al pasar de la óptima, la densidad seca decrece ya que el aire no sale tan fácil por los huecos, y el agua desplaza a parte de las partículas sólidas. La rama descendente de la curva tiende a aproximarse asintóticamente a la de saturación del suelo. Hogentogler (1936) considera que la forma de la curva de compactación se debe a dichos procesos de hidratación, lubricación, hinchamiento y saturación reflejados en la Figura 2.

Figura 2. Efectos del contenido de humedad en la compactación

Si se aplican diferentes energías de compactación, ocurre lo que se indica en la Figura 3: el peso específico seco máximo aumenta, pero con una humedad menor y las ramas descendentes se acercan de forma progresiva con humedades altas, ya que el aumento de energía lo absorbe el exceso de agua. Los máximos suelen situarse sobre la misma línea de huecos de aire, en general alrededor de na=5%.

Figura 3. Variación de la energía de compactación

La composición granulométrica del suelo y su sensibilidad al agua de su fracción fina son muy significativas al compactar. Los terrenos granulares sin finos presentan curvas de compactación aplanadas, sin un máximo muy definido, teniendo escasa influencia su humedad. Los suelos finos (más del 35% en peso) presentan pesos específicos secos más bajos que si no tuviesen tantos finos, y por consiguiente precisan de mayor humedad. Lo idóneo es una mezcla de tamaños más o menos continua, con un máximo del 10 al 12% de finos.

Figura 4. Curvas de compactación para diversos materiales (Johnson y Sallberg, 1960)

En obra suele ser difícil mantener contenidos de agua próximos al óptimo, lo cual implica que si las curvas de compactación tienen ramas con fuertes pendientes, éstos materiales van a ser más difíciles de compactar, ya que pequeños cambios de humedad causan fuertes bajas en la densidad. Son preferibles curvas con cuyas ramas tengan pendientes más suaves.

Veamos, en 8 minutos, a dar dos pinceladas sobre el concepto de curva de compactación. Espero que os guste.

Referencias:

HOGENTOGLER, C.A. (1936). Essentials of soil compaction. Proceedings Highway Research Board, National Research Council, Washington, D.C., 309-316.

JOHNSON, A.W.; SALLBERG, J.R. (1960). Factors that Influence Field Compaction of Soils. Bulletin 272. HRB, National Research Council, Washington, D. C., 206 pp.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El compactador estático de patas apisonadoras

También llamados rodillos autopropulsados de impactos o de zapatas, son la réplica moderna a las de pata de cabra. En artículos anteriores ya comentamos aspectos relacionados con la curva de compactación, los tramos de prueba,  o las recomendaciones de trabajo en la compactación. En este nos centraremos en los compactadores estáticos de patas apisonadoras.

Compactador autopropulsado de patas apisonadoras. Fotografía de Víctor Yepes

Están formados por cuatro rodillos con patas de forma truncada y acabada en doble bisel, lo que permite no sacar el material al salir de la penetración en el terreno. La longitud no supera los 20 cm y su número varía entre 50 a 65 patas por rodillo. Se les suele acoplar una hoja empujadora para facilitar el extendido del material. La potencia oscila entre 50 y 300 kW.

Su chasis se encuentra articulado, pudiendo girar hasta 45º. El ancho de la máquina puede llegar a los 3,50 m. El peso total oscila entre las 8 y 40 toneladas. Son apisonadoras que pueden trabajar con velocidades máximas de 20-25 km/h, llamándose por ello compactadores de alta velocidad. Las velocidades de trabajo son más lentas en las primeras pasadas y más rápidas en las últimas.

Combinan el esfuerzo estático con el amasado del terreno, debido a la forma de los salientes, el efecto dinámico producido por la presión con gran velocidad, y cierto efecto de semivibración originado por el gran número de impactos próximos en un área tan reducida. Compactan casi todos los suelos con buenos rendimientos, salvo los muy arcillosos o con gran porcentaje de rocas grandes. También pueden utilizarse complementándose con pasadas de neumáticos en el caso de grava-cemento cuya curva tenga alto contenido de finos.

A continuación os paso un Polimedia para describir brevemente este tipo de máquinas. Espero que os guste.

Referencias:

ABECASIS, J. y ROCCI, S. (1987). Sistematización de los medios de compactación y su control. Vol. 19 Tecnología carreteras MOPU. Ed. Secretaría General Técnica MOPU. Madrid, diciembre.

ROJO, J. (1988): Teoría y práctica de la compactación. (I) Suelos. Ed. Dynapac. Impresión Sanmartín. Madrid.

YEPES, V. (1995). Equipos y métodos de compactación. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-797. 102 pp. Depósito Legal: V-1639-1995.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Ensayo de placa dinámica de 300 mm

Fuente: http://fernandeztadeo.com/WordPress/

En no pocas ocasiones interesa un método rápido, sencillo, fiable y seguro que nos aporte información sobre el grado de compactación de un terraplén o de una capa granular. En este sentido, la aprobación de la norma española UNE 103807-2:2008 ha supuesto un gran avance al normalizar la placa de carga dinámica de 300 mm de diámetro.

También es reciente la norma americana ASTM E2835 – 11 “Standard Test Method for Measuring Deflections using a Portable Impulse Plate Load Test Device”, donde se normalizan diferentes equipos portátiles para medir las deflexiones que se producen  mediante una placa de carga sometida a un impacto.

A continuación os paso un vídeo explicativo de gran interés del uso de la placa de carga dinámica HMP-LFG. Espero que os guste.

Otro vídeo al respecto es el siguiente:

Referencias:

Fernández Tadeo, C. (2006). Ensayo de placa de carga dinámica de 300 mm de diámetro. Boletín de la Asociación de Laboratorios Acreditados de la Comunidad de Madrid. (link)

Fortes, J.L. Nuevas alternativas al control de compactación en rellenos y explanadas (link)

Thomas, R.A.; Fernández Tadeo, C. (2009) Equipo ligero de impacto para el ensayo de placa de carga dinámica de 300 mm de diámetro. Jornadas Hispano-Portugesas sobre Geotecnia en las Infraestructuras Ferroviarias. (link)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Técnicas constructivas: Equipos de movimiento de tierras y compactación

Hemos considerado interesante presentar un curso sobre “Técnicas Constructivas de la Ingeniería Civil para Profesionales de la Edificación: Equipos de Movimento de Tierras y Compactación” porque pensamos que la transferencia de conocimiento y experiencia del campo de la ingeniería civil a otros profesionales centrados en la edificación puede mejorar sus competencias en la construcción de obras en general.

Os paso el contenido del curso, por si os pudiera servir de interés:

Descargar (PDF, 12KB)

Recomendaciones de trabajo en la compactación

Compactadora-Caterpillar¿Qué recomendaciones podemos dar para ejecutar correctamente la compactación de un suelo? En posts anteriores ya hemos descrito la curva de compactación, la elección de un equipo de compactación y el tramo de prueba. Ahora vamos a centrarnos en algunos consejos, espero que útiles, que permitan mejorar la productividad y la calidad de esta unidad de obra que suele presentar tantas patologías y quebraderos de cabeza. Para ello nos ayudaremos de un Polimedia que espero que os guste. Al final del artículo os he escrito algunas recomendaciones y algunas referencias por si os resultan útiles.

NORMAS Y RECOMENDACIONES DE TRABAJO

  • Una vez se ha extendido el material en tongadas con espesor adecuado y con el grado de humedad determinado[1], se procede de forma ordenada a compactar, controlando el número de pases y su distribución homogénea.
  • Se pueden comentar algunas recomendaciones de “buena práctica constructiva” en relación a la compactación.
  • Antes de iniciar la construcción de un terraplén o un pedraplén, se eliminará la tierra vegetal y se excavará, si procede, el terreno para asegurar la estabilidad del macizo.
  • Cuando se espera lluvia, es importante compactar lo más pronto posible los rellenos de granos finos todavía no compactados, puesto que un material esponjado tiene gran capacidad de retención de agua.
  • Para reanudar el trabajo lo antes posible, después de una lluvia, es buena práctica la eliminación con motoniveladora de la fina capa superficial de barrillo (2-3 cm) bajo la que el resto del material aparece poco afectado.
  • Con exceso de agua procedente de precipitaciones atmosféricas, puede realizarse la desecación natural mediante oreo. Ahora bien, con terrenos finos limo-arcillosos y humedades próximas al índice plástico, se estabilizan mediante la adición de cal, cenizas volantes, escorias o arenas.

  • El riego de las tongadas extendidas, siempre que sea necesario, se efectuará de forma que el humedecimiento de los materiales sea uniforme, y el contenido óptimo de humedad se obtendrá a la vista de los resultados verificados por el laboratorio de cada caso con el equipo de compactación previsto.
  • Si se comienza la compactación por los bordes del terraplén, conseguiremos cierto efecto de “confinamiento” que ayuda a la densificación.
  • Deben solaparse los pases de compactación, para uniformizarlos, debido a que en el centro de la máquina se consigue mayor eficacia.
  • Se deben ejecutar de forma suave los cambios de dirección en la marcha y los virajes, para no arrastrar el material.
  • Es bueno dar cierto sobreancho a los terraplenes, ya que los bordes quedan siempre compactados por debajo de lo debido.
  • Los bordes de los terraplenes a veces se precisa compactarlos, con lo cual necesitamos de un tractor o grúa que remolque por dicho terraplén al compactador.
  • La superficie de las distintas tongadas deberá tener la pendiente transversal necesaria para evacuar las aguas sin peligro de erosión. Esta pendiente normalmente varía entre el 2 y el 4%.
  • Si se usa un sólo equipo, se simplifican los controles, pero a veces se utilizan dos tipos, uno de mayor rendimiento, y otro que sella la terminación de cada tongada.
  • Si se utilizan equipos vibrantes, las últimas pasadas se realizarán sin aplicar la vibración, con objeto de cerrar las posibles irregularidades de la superficie.
  • Es importante la buena nivelación de la superficie a compactar, de otro modo, las zonas deprimidas que no son pisadas por el rodillo quedarán deficientes de compactación.
  • Se suspenderán los trabajos de compactación cuando la temperatura ambiente sea inferior a 2ºC. Los terrenos congelados no pueden compactarse.
  • Sobre las capas en ejecución se prohíbe el tráfico hasta que se complete su compactación. Si ello es imposible, se distribuirá sin concentrar las huellas en la superficie.
  • Si el terraplén tuviera que construirse sobre un firme existente, se escarificará y compactará éste para procurar su unión con la tongada inmediata superior. Los productos removidos no aprovechables se llevarán a vertedero.
  • Si el periodo de tiempo transcurrido entre el extendido y la compactación es largo, puede producirse la evaporación suficiente para dar como resultado un contenido inadecuado de humedad. El material debe ser compactado inmediatamente para evitar el mayor costo de humectación.
  • Al finalizar la jornada no deben dejarse montones de material sin extender ni capas sin compactar, pues si las condiciones atmosféricas son buenas ocurre lo indicado en el párrafo anterior, pero si llueve sobre el material esponjado, a pocos finos que posea, su capacidad de retención de agua será grande y quedará la obra impracticable, con el agravante de tener que sacar y tirar dicho material, pues el periodo de tiempo que sería necesario para su oreo nunca lo permitiría la marcha de la obra.
  • Los efectos nocivos de la lluvia sobre una tongada compactada con pata de cabra pueden reducirse si, antes de caer el agua sobre ella, se ha planchado con un rodillo liso estático o vibratorio.
  • El inconveniente de los rodillos lisos respecto a la unión entre capas[2] se remedia si se pasa una grada o un arado de discos para escarificar la superficie. Antes de este proceso la superficie lisa, y con algo de pendiente, protege contra la lluvia y permite la circulación de vehículos.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (1999). Prácticas de equipos de excavación, transporte y compactación de tierras. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-4036. 129 pp. Depósito Legal: V-5208-1999.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.


[1]La corrección de humedad es costosa y delicada, sobre todo en terrenos cohesivos. Es más fácil adicionar agua. El reducir humedad puede conseguirse mediante escarificado y volteo de las capas, dejándolas secar. A veces se recurre a métodos especiales como el sistema “sandwich”, que consiste en intercapar entre capas húmedas una capa granular para ir drenando el agua, o bien tratamientos con cal, que absorbe el resto de agua al hidratarse.

[2]Podría crearse una discontinuidad, con peligro de filtraciones. El arado de discos no debe faltar en la construcción de una presa de materiales sueltos de tipo cohesivo, ya que consigue cierto mezclado y amasado entre capas.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.