Se pueden construir puentes arco por voladizos sucesivos, sujetando cada tramo mediante tirantes desde torres provisionales. Una vez se tocan los semiarcos, se puede eliminar el atirantamiento y las torres y construir sobre el arco las pilas y el tablero. Es una técnica similar al avance por voladizos sucesivos de los tableros rectos, pudiéndose realizar con dovelas prefabricadas o bien por carro de avance hormigonando “in situ”. Este procedimiento constructivo permite la construcción de arcos de grandes luces, empleando un volumen de medios auxiliares reducido en comparación con otros métodos.
Este procedimiento constructivo se empleó en el montaje de cimbras, aunque hasta finales del siglo XIX no se empezó a utilizar para construir un arco completo. En efecto, James B. Eads construyó el puente metálico de San Luis (1867-1874) sobre el Mississippi con atirantamientos provisionales. El sistema también lo utilizó Gustave Eiffel en la construcción de los puentes arco metálicos de María Pía y Garabit.
La técnica empezó a usarse en arcos de hormigón en 1952, cuando Freyssinet empleó parcialmente este método en los arranques de los arcos en los viaductos de la carretera al puerto de La Guaira, en Caracas. El tramo central de la cimbra se elevó desde el fondo del barranco, apoyándose en los arranques de arco atirantados.
Una realización más reciente construida con este sistema de atirantamiento provisional es el puente arco de ferrocarril sobre el embalse de Contreras en la línea de alta velocidad Madrid-Levante (Manterola et al., 2012). Se trata de un arco de 261 m de luz, con tablero superior de hormigón pretensado y una longitud total de 587, 25 m. Los semiarcos avanzan por voladizos sucesivos mediante hormigonado con carro de avance, para lo cual se disponen dos pilonos metálicos sobre el tablero, en la vertical de unas pilas provisionales.
A continuación os dejo algunos vídeos que muestran la construcción del viaducto de Contreras. Espero que os sean de interés.
Referencia:
MANTEROLA, J.; MARTÍNEZ, A.; NAVARRO, J.A.; MARTÍN, B. (2012). Puente arco de ferrocarril sobre el embalse de Contreras en la línea de alta velocidad Madrid-Levante. Hormigón y Acero, 63:5-29.
La concepción de la superestructura del ferrocarril presenta ciertas semejanzas de evolución conceptual e histórica respecto a la de las carreteras. De hecho, el dualismo existente en los firmes de carreteras referido a los firmes flexibles y los rígidos, puede extenderse, de alguna forma, al existente en la tecnología del ferrocarril respecto a la superestructura de vía con balasto o sin él, es decir, con vía en placa. El debate entre el uso del balasto o de la vía en placa es un debate abierto (Puebla et al., 2000), donde los condicionantes técnicos, funcionales y económicos cobran especial importancia, especialmente cuando se refieren a las líneas de alta velocidad.
La superestructura de balasto presenta, sin duda, ventajas importantes como son los costes de construcción menores que las alternativas sin balasto, la posibilidad de modificar la situación de la vía sin causar problemas de explotación, la regulación sencilla de la altura en caso de asientos de terraplenes, una buena amortiguación acústica y una conservación avalada por la experiencia, con medios mecanizados (Estrade, 1991). Países mediterráneos como Francia, Italia o España han sido partidarios del balasto debido, entre otras causas, a la calidad de los yacimientos de rocas silíceas que permiten, según indican Puebla et al. (2000) una adecuada relación comportamiento/coste. Además, como indica Melis (2006a), los grandes descensos de los terraplenes impiden en ocasiones poner vía en placa sobre ellos. Ello supone, de hecho (Melis, 2006b) la práctica eliminación de los terraplenes altos en las líneas de alta velocidad, reduciendo su altura a 9 m y su asiento a 30 mm, bajando rasantes y alargando túneles.
Sin embargo, uno de los problemas más importantes de las líneas de alta velocidad es el mantenimiento de la calidad de la vía sobre balasto. Este hecho se constató ya en la línea del Tokaido, en Japón, en el año 1964, para velocidades máximas de 210 km/h. El mantenimiento de la calidad geométrica de la vía obliga a operaciones mecanizadas de mantenimiento. Esta dificultad, además, suele ser mayor en infraestructuras difíciles como puentes y túneles. Así, ya en 1924 en un túnel japonés se sustituyó el balasto por unos bloques de madera embebidos en hormigón, formando un basamento bajo cada carril para evitar los problemas con los flujos de agua. Por tanto, la necesidad de una alternativa al balasto se reveló como importante, a pesar de que dicha tecnología también presentaba problemas a resolver. Esta necesidad de un sistema de vía distinto al tradicional ya se puso de manifiesto en 1971 en el estudio HSB (ver Escolano, 1998) para velocidades superiores a los 200 km/h. Ello se debe a que el esfuerzo dinámico aumenta con la velocidad del tren y depende de la calidad posicional de la vía. Es por ello que Alemania adoptó la decisión de aplicar este tipo de montaje en todas sus nuevas líneas de alta velocidad. A todo ello habría que añadir el efecto del schotterflug o “vuelo del balasto” arrastrastrado en el caso de trenes circulando a elevada velocidad (Melis, 2006b).
Los elementos constitutivos de la vía en placa lo forma la plataforma, la solera, la placa soporte, la fijación del carril, la soldadura en barra larga y los elementos adicionales. Una ventaja que caracteriza a la vía en placa es que, frente a la rodadura, el sistema presenta una elasticidad y una amortiguación independiente de la climatología, con una alta disponibilidad para el servicio del vial, con un buen comportamiento ante la dinámica de la marcha, y por tanto, y bajo mantenimiento (Escolano, 1998). Además, las proyecciones de balasto quedan descartadas, precisan de una sección menor de los túneles, se adapta mejor al terreno y el comportamiento se garantiza para velocidades menores a 300 km/h (Escolano, 1998). Otro aspecto de gran importancia es, tal y como indica López-Pita (2001), la cuantificación de la rigidez vertical de la vía. Se trata de un indicador clave en los fenómenos de interacción vía-vehículo, y por tanto, en el deterioro de la vía, especialmente importante en las líneas de alta velocidad. En este sentido, López-Pita (2001) indica que la degradación de la capa de balasto por causa de las vibraciones generadas por el material ferroviario, especialmente en líneas de alta velocidad, podría limitarse con el empleo de vía en placas de asiento de elevada elasticidad. En este sentido, Sheng et al. (2004) comentan que la placa en vía puede reducir el nivel de vibración frente al balasto en el caso de presencia de irregularidades verticales. La solución de vía en placa es más cara de construcción, pero más económica en su mantenimiento. Así por ejemplo, Esveld (2001) indica que este coste de mantenimiento puede reducirse hasta un 70-90%. El encarecimiento se debe, fundamentalmente, a los bajos rendimientos. Además, el rectificado y ajustado del posicionamiento del carril se mueve dentro de límites muy estrictos.
Lei y Zhang (2011) presentaron un modelo de análisis dinámico que le permitió desarrollar un nuevo tipo de placa para vía. Poveda et al. (2015) han presentado recientemente un estudio numérico sobre fatiga en el diseño de placas para vía. Parte de estos autores presentaron también un diseño experimental que comprobaba el comportamiento a fatiga de estos elementos (Tarifa et al., 2015). El Ministerio de Fomento (2014), elaboró una monografía sobre la aplicación de los Eurocódigos para el cálculo de puentes de ferrocarril, centrándose en la vía en placa en aquellos aspectos no contradictorios con dichos códigos.
Puebla et al. (2000) indican cuatro grupos de sistemas de vía en placa: construcción en capas, construcción monolítica, construcción por bloques recubiertos de elastómero y sistemas de construcción especiales. En cualquier caso, el problema más importante que afecta a la viabilidad económica de la vía en placa es su materialización, es decir, los costes elevados derivados de su construcción. Las causas del bajo rendimiento y del elevado coste del montaje de vía sobre placa se debe fundamentalmente a dos motivos. El primero al propio montaje de la vía a su posición teórica definitiva, con un elevado grado de precisión y tolerancias muy restrictivas. Así, el hormigonado tradicional permite un rendimiento de 150 a 200 m/día, muy por debajo de los rendimientos en balasto, que pueden ser más de 1000 m/día. Incluso con el método Alemán, que consiste básicamente en introducir un tren de mezcladoras por una vía auxiliar -construida expresamente a tal efecto- y bombear el contenido de forma íntegra, los rendimientos no superan los 175 a 250 m/día. Es evidente que es necesario un salto tecnológico para superar esta barrera en los rendimientos para ser competitivo económicamente frente al balasto.
Os dejo a continuación un vídeo sobre el hormigonado tradicional de la vía en placa. Espero que os guste.
Os dejo también la Guía Técnica de IECA sobre “Vía en placa mediante losa portante de hormigón para ferrocarril”. Espero que os sea útil.
Escolano, J. (1998). La “vía en placa” en la DB AG. Revista de Obras Públicas, 145(3382):21-34.
Estrade, J.M. (1991) La superestructura de vía sin balasto: perspectivas de su aplicación en las nuevas líneas de alta velocidad. Revista de Obras Públicas, 138(3305):9-28.
Estrade, J.M. (1998) La superestructura de vía en placa en las nuevas líneas de alta velocidad de nuestro país. Revista de Obras Públicas, 145(3372):63-74.
Esveld, C. (2001). Modern railway track. 2nd ed. The Netherlands: Delft University of Technology.
Lei, X.; Zhang, B. (2011). Analysis of dynamic behavior for slab track of high-speed railway base don vehicle and track elements. ASCE Journal of Transportation Engineering, 137(4): 227-240.
López-Pita, A. (2001). La rigidez vertical de la vía y el deterioro de las líneas de alta velocidad. Revista de Obras Públicas, 148(3415):7-26.
Melis, M. (2006a). Terraplenes y balasto en la alta velocidad ferroviaria (primera parte). Revista de Obras Públicas, 153(3464):7-36.
Melis, M. (2006b). Terraplenes y balasto en la alta velocidad ferroviaria. Segunda parte: Los trazados de Alta velocidad en otros países. Revista de Obras Públicas, 153(3468):7-26.
Ministerio de Fomento (2014). Documentos complementarios no contradictorios para la aplicación de los Eurocódigos para el cálculo de puentes de ferrocarril. Centro de Publicaciones, 211 pp.
Poveda, E.; Yu, R.C.; Lancha, J.C.; Ruíz, G. (2015). A numerical study on the fatigue life design of concrete slabs for railway tracks. Engineering Structures, 100:455-467.
Puebla, J.; Fernández, A.; Gilaberte, M.; Hernández, S.; Ruíz, A. (2000). Para altas velocidades ¿Vía con o sin balasto? Revista de Obras Públicas, 147(3401): 29-40.
Sheng, X.; Jones, C; Thompson, D. (2004). A theoretical model for ground vibration from trains generated by vertical track irregularities. Journal of Sound and Vibration, 272(3–5):937–65.
Tarifa, M.; Zhang, X.; Ruíz, G.; Poveda, E. (2015). Full-scale fatigue tests of precast reinforced concrete slabs for railway tracks. Engineering Structures, 100: 610-621.
Los terrenos expansivos suponen un auténtico dolor de cabeza para los ingenieros. Si sumamos un terreno soluble y corrosivo, tenemos un buen problema a solucionar, tal y como nos comenta Enrique Montalar en su blog respecto a la construcción del túnel de El Regajal. Todas estas circunstancias obligaron a diseñar complejos procesos constructivos durante la ejecución del túnel con unos revestimientos estructurales de gran rigidez que, en muchos casos, debían quedar finalizados muy cerca del frente de excavación.
El túnel de El Regajal es uno de los elementos más importantes de la línea de alta velocidad Madrid-Castilla La Mancha-Comunidad Valenciana-Región de Murcia, tanto por su complicada ejecución desde el punto de vista geológico y geotécnico, como por el valor medioambiental de la infraestructura. Este túnel se incluye en el tramo Aranjuez-Ontígola, de 4,7 km de longitud, que discurre entre los términos municipales de Aranjuez (Madrid) y Ontígola (Toledo), y cuyas obras de plataforma cuentan con un presupuesto de 113,82 millones de euros. El proyecto lo hizo SENER, la empresa constructora fue la UTE ACCIONA-OBRAS SUBTERRÁNEAS y la asistencia técnica corrió a cargo de GETINSA, aunque cuando vieron lo que tenían entre manos entraron también en juego la UPM, la UPC y el CEDEX.
Os paso a continuación un vídeo que presenta el túnel de El Regajal, así como el proceso constructivo del túnel y singularidades de la obra.
El túnel ferroviario del Guadarrama está formado por dos túneles paralelos, uno para cada sentido de la circulación, de 28 km de longitud. Es el más largo construido en España, el cuarto más largo de Europa y el quinto de todo el mundo a fecha de 2008. Iniciado el 28 de septiembre de 2002, su entrada en servicio tuvo lugar el 22 de diciembre de 2007 y en su construcción han llegado a trabajar más de 4000 personas simultáneamente. Es una de las mayores obras de ingeniería civil ejecutada en España. Este túnel constituye la piedra angular de las líneas de alta velocidad que unirán Madrid con las principales ciudades del norte y noroeste de España.
Esta infraestructura atraviesa la sierra de Guadarrama, partiendo desde el término municipal de Miraflores de la Sierra (Madrid) a una cota a 998 m y alcanzando una altura máxima de 1.200 m, con una pendiente del 1,5%, y volviendo a descender hasta los 1.114 m ya en las proximidades de la ciudad de Segovia. El máximo recubrimiento de la bóveda del túnel se da bajo el entorno del Pico de Peñalara, con 992 m de altura en ese punto. Los túneles tienen un diámetro de excavación de 9,45 m y un diámetro interior de 8,50 m, estando separados sus ejes 30 m.
El proceso constructivo empleó cuatro tuneladoras de roca extradura, atacando desde sus cuatro bocas. Al tener que atravesar fallas de materiales poco resistentes y prever situaciones de bloqueo de las máquinas, el tipo de tuneladora fue de doble escudo, con una capacidad de empuje sobredimensionada. Estas máquinas extrajeron 4 millones de m³ de los túneles. Dispone de galerías de emergencia uniendo ambos corredores cada 250 m, una gran estancia autónoma y estanca a mitad de recorrido, con cabida para 1.200 personas para su uso en caso de emergencia y se han instalado ventiladores reversibles que puedan inyectar aire si ocurriese un incendio. El diseño se ha realizado para que los trenes que lo recorran puedan alcanzar altas velocidades sin comprometer con ello la infraestructura.
Os dejo un par de vídeos donde se explica la ejecución de esta infraestructura.
A continuación os dejo un vídeo, realizado por la empresa Proin 3D para ADIF, realmente interesante que trata de la construcción de un gran viaducto de 1488 m que cruza en río Tajo en una zona ensanchada por el embalse de Alcántara. Se trata de un tramo de la Línea de Alta Velocidad Madrid-Extremadura, en el subtramo Cañáveral-Embalse de Alcántara. Este viaducto presenta como característica principal un vano central tipo arco, de 324 m de luz y una altura superior a 90 m sobre el nivel medio del río.
El vídeo muestra el proceso constructivo de esta estructura singular. El arco se realiza mediante voladizos sucesivos atirantados, por medio de dos torres de atirantamiento situadas sobre las pilas ubicadas en los arranques del arco, en ambas márgenes del río. Cada torre se atiranta desde las cimentaciones de las pilas próximas que precisan de unidades de anclaje al terreno. La construcción del tablero se realiza vano a vano por medio de una cimbra autoportante dispuesta desde ambos estribos. Estas autocimbras son como encofrados apoyados sobre las pilas construidas previamente y sostienen vanos completos de hasta 60 metros de longitud, mientras se endurece el hormigón que le da la forma y capacidad final al tablero.