Resultados parciales del proyecto BRIDLIFE

ph_vigas-artesaEl objetivo del proyecto BRIDLIFE consiste en desarrollar una metodología que permita incorporar un análisis del ciclo de vida de puentes de hormigón pretensado, definiendo un proceso de toma de decisiones que integre los aspectos sociales y medioambientales mediante técnicas analíticas de toma de decisiones multicriterio. Los resultados esperados pretenden detallar qué tipologías, actuaciones de conservación y alternativas de demolición y reutilización son adecuadas para minimizar los impactos, dentro de una política de fuerte limitación presupuestaria que compromete seriamente las políticas de creación y conservación de las infraestructuras.

Este es un proyecto competitivo financiado por el Ministerio Español de Economía y Competitividad y fondos FEDER (proyecto de investigación BIA2014-56574-R), cuya duración abarca los años 2015-2017. En este momento, superado el ecuador del proyecto, podemos dar cuenta de algunos de los resultados ya publicados en revistas de impacto que espero os sean de interés.

Como antecedentes necesarios se indican algunos trabajos previos, fruto del proyecto HORSOST, precedente al actual. La optimización de un puente de vigas artesa se abordó con algoritmos híbridos basados en el recocido simulado [1] y algoritmos meméticos [2]; se utilizaron algoritmos de enjambres de luciérnagas para optimizar el coste y las emisiones de CO₂ de vigas en I, incorporando la carbonatación en el ciclo de vida [3]; asimismo se evaluó el ciclo de vida de hormigones con distintas adiciones incluyendo la carbonatación y la durabilidad [4].

Las primeras aportaciones realizadas en el año 2015, ya dentro del proyecto, fueron la optimización de estribos abiertos mediante algoritmos híbridos de escalada estocástica [5]; la optimización del coste de puentes en vigas artesa con hormigón con fibras [6] y la optimización de las emisiones de CO₂ de pasarelas de hormigón pretensado y sección en cajón [7]. Destaca también el trabajo desarrollado, basándose en una aproximación cognitiva, de una metodología que permite la toma de decisiones tras la aplicación de técnicas de optimización multiobjetivo [8].

En el año 2016 se empezaron a realizar aportaciones realizadas, fundamentalmente con la evaluación de los impactos sociales de las infraestructuras a lo largo del ciclo su ciclo de vida [9,10]. Se avanzó con la optimización de la energía embebida en puentes de vigas artesa [11] y en la optimización multiobjetivo del coste, las emisiones de CO₂ y la seguridad a lo largo del ciclo de vida de puentes cajón [12]. Se han comparado puentes losa postesados y puentes prefabricados óptimos [13]. Otra aportación de interés se hizo con la colaboración del profesor Dan M. Frangopol, que realizó una estancia en nuestro grupo de investigación. Se comparó el coste del ciclo de vida de puentes cajón usando una aproximación basada en la fiabilidad [14].

Durante el año 2017, último del proyecto, existen trabajos ya publicados y otros en proceso de revisión. Se describen brevemente los ya publicados. Se aplicó el análisis de ciclo de vida completo atendiendo a todo tipo de impactos ambientales a muros de contrafuertes [15], introduciendo una metodología que se está aplicando a estructuras más complejas como los puentes. Se ha introducido un metamodelo basado en redes neuronales para mejorar el rendimiento en el proceso de optimización multiobjetivo de puentes en cajón [16]. También se optimizaron las emisiones de CO2 en puentes de vigas artesa ejecutados con hormigones con fibras [17].

Aparte de estas aportaciones, directamente relacionadas con el proyecto BRIDLIFE, durante este periodo de tiempo destacan dos trabajos similares aplicados a la optimización del mantenimiento de pavimentos de carreteras desde los puntos de vista económicos y medioambientales [18,19].

Cabe destacar, por último, que durante los años 2015-2016 se han leído cinco tesis doctorales relacionadas, de forma directa o indirecta, con los objetivos desarrollados por el presente proyecto de investigación [20-24], existiendo otras cinco en estado avanzado de desarrollo.

Referencias:

[1] J.V. Martí, F. González-Vidosa, F.; V. Yepes, J. Alcalá, Design of prestressed concrete precast road bridges with hybrid simulated annealing, Engineering Structures. 48 (2013) 342-352.

[2] J.V. Martí, V. Yepes, F. González-Vidosa, A. Luz, Diseño automático de tableros óptimos de puentes de carretera de vigas artesa prefabricadas mediante algoritmos meméticos híbridos, Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería. 30(3) (2014) 145-154.

[3] T. García-Segura, V. Yepes, J.V. Martí, J. Alcalá, Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm, Latin American Journal of Solids and Structures. 11(7) (2014) 1190-1205.

[4] T. García-Segura, V. Yepes, J.V. Martí, J. Alcalá, Life-cycle greenhouse gas emissions of blended cement concrete including carbonation and durability, International Journal of Life Cycle Assessment. 19(1) (2014) 3-12.

[5] A. Luz, V. Yepes, F. González-Vidosa, J.V. Martí, Diseño de estribos abiertos en puentes de carretera obtenidos mediante optimización híbrida de escalada estocástica, Informes de la Construcción. 67(540) (2015) e114.

[6] J.V. Martí, V. Yepes, F. González-Vidosa, Memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement, Journal of Structural Engineering ASCE. 141(2) (2015) 04014114.

[7] T. García-Segura, V. Yepes, J. Alcalá, E. Pérez-López, Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges, Engineering Structures. 92 (2015) 112-122.

[8] V. Yepes, T. García-Segura, J.M. Moreno-Jiménez, A cognitive approach for the multi-objective optimization of RC structural problems, Archives of Civil and Mechanical Engineering. 15(4) (2015) 1024-1036.

[9] E. Pellicer, L.A. Sierra, V. Yepes, Appraisal of infrastructure sustainability by graduate students using an active-learning method, Journal of Cleaner Production. 113 (2016) 884-896.

[10] L.A. Sierra, E. Pellicer, V. Yepes, Social sustainability in the life cycle of Chilean public infrastructure, Journal of Construction Engineering and Management ASCE. 142(1) (2016) 05015020.

[11] J.V. Martí, T. García-Segura, V. Yepes. Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy, Journal of Cleaner Production. 120 (2016) 231-240.

[12] T. García-Segura, V. Yepes, Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety, Engineering Structures. 125 (2016) 325-336.

[13] J.V. Martí, J. Alcalá, T. García-Segura, V. Yepes, Heuristic design of precast-prestressed concrete U-beam and post-tensioned cast-in-place concrete slab road bridges, International Conference on High Performance and Optimum Design of Structures and Materials (HPSM/OPTI 216) (2016), 10 pp.

[14] T. García-Segura, V. Yepes, D.M. Frangopol, D.Y. Yang, Comparing the life-cycle cost of optimal bridge designs using a lifetime reliability-based approach, Fifth International Symposium on Life -Cycle Civil Engineering (IALCCE 2016). (2016) 1146-1153.

[15] P. Zastrow, F. Molina-Moreno, T. García-Segura, J.V. Martí, V. Yepes. Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study, Journal of Cleaner Production. 140 (2017) 1037-1048.

[16] T. García-Segura, V. Yepes, J. Alcalá, Computer-support tool to optimize bridges automatically, International Journal of Computational Methods and Experimental Measurements. 5(2) (2017) 171-178.

[17] V. Yepes, J.V. Martí, T. García-Segura, Design optimization of precast-prestressed concrete road bridges with steel fiber-reinforcement by a hybrid evolutionary algorithm, International Journal of Computational Methods and Experimental Measurements. 5(2) (2017) 179-189.

[18] C. Torres-Machi, A. Chamorro, E. Pellicer, V. Yepes, C. Videla, Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making, Transportation Research Record. 2523 (2015) 56-63.

[19] V Yepes, C. Torres-Machí, A. Chamorro, E. Pellicer, Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm, Journal of Civil Engineering and Management. 22(4) (2016) 540-550.

[20] C. Torres-Machí, Optimización heurística multiobjetivo para la gestión de activos de infraestructuras de transporte terrestre, Tesis doctoral, Universitat Politècnica de València y Pontificia Universidad Católica de Chile, 2015.

[21] A.M. Rodriguez-Calderita, Optimización heurística de forjados de losa postesa, Tesis doctoral, Universitat Politècnica de València, 2015.

[22] A.J. Luz, Diseño óptimo de estribos abiertos de hormigón armado en puentes de carretera mediante optimización heurística, Tesis doctoral, Universitat Politècnica de València, 2016.

[23] F. Navarro-Ferrer, Modelos predictivos de las características prestacionales de hormigones fabricados en condiciones industriales, Tesis doctoral, Universitat Politècnica de València, 2016.

[24] T. García-Segura, Efficient design of post-tensioned concrete box-girder road bridges based on sustainable multi-objective criteria, Tesis doctoral, Universitat Politècnica de València, 2016.