Sondeos para la explotación de acuíferos

Cuando se piensa en un pozo de agua, suele evocarse una imagen rústica y elemental: una estructura de piedra, una polea, un cubo y una cuerda. Este conjunto simboliza la autosuficiencia y la conexión directa con la tierra, una realidad que ha acompañado a la humanidad durante milenios. En el contexto actual, dicha imagen transmite una simplicidad que puede parecer casi anecdótica frente al avance tecnológico contemporáneo.

Sin embargo, detrás de esa apariencia tradicional se esconde un ámbito caracterizado por la ingeniería de alta precisión, una geología compleja y una normativa muy estricta. Los sondeos de agua modernos son proyectos altamente especializados que exigen un profundo conocimiento del subsuelo y el estricto cumplimiento de la legislación vigente. Desde su fase inicial hasta su clausura definitiva, cada etapa está marcada por exigencias técnicas que cuestionan las ideas más extendidas sobre este tipo de infraestructuras.

A partir del manual técnico Sondeos para explotación de acuíferos, este trabajo se adentra en ese mundo menos visible para exponer cinco aspectos inesperados y relevantes sobre la perforación, el mantenimiento y la clausura de los pozos de agua en la actualidad. El objetivo es mostrar que, en el fondo de un pozo, hay mucho más que un simple recurso hídrico.

1. Los múltiples usos de un sondeo

Los pozos suelen asociarse principalmente al abastecimiento de agua para consumo humano o para riego agrícola. Sin embargo, su funcionalidad es considerablemente más amplia y, en algunos casos, poco intuitiva. Desde el punto de vista técnico, los especialistas los clasifican en cuatro grandes categorías, lo que pone de manifiesto la versatilidad de estas infraestructuras.

  • Uso directo y uso indirecto: El uso directo es el más conocido y tradicional y comprende la captación de agua para el consumo humano, la ganadería y la agricultura. Por el contrario, en el uso indirecto, el agua no es el objetivo final, sino un medio para otros fines. En este grupo se incluyen, por ejemplo, los sondeos destinados al aprovechamiento de aguas termales con fines energéticos mediante la extracción de energía geotérmica, así como los pozos de uso industrial en los que el agua se emplea en procesos de fabricación o en operaciones de lixiviación para la recuperación de minerales contenidos en la roca.
  • Drenaje: cuando el objetivo es eliminar el agua: Una de las aplicaciones más contraintuitivas es la del drenaje. En estos casos, el objetivo no es localizar ni aprovechar el recurso hídrico, sino retirarlo del terreno. En grandes proyectos de obra civil, como la construcción de aparcamientos subterráneos o explotaciones mineras situadas por debajo del nivel freático, es imprescindible reducir la presencia de agua. Para ello, se realizan sondeos de achique que permiten extraer volúmenes significativos de agua de forma controlada, garantizando condiciones de trabajo seguras y estables.
  • Investigación: los instrumentos del hidrogeólogo: Por último, los sondeos de investigación, entre los que destacan los piezométricos, no se perforan con fines extractivos, sino para obtener datos. Estas instalaciones permiten a los hidrogeólogos monitorizar el estado de los acuíferos, medir sus niveles y analizar su comportamiento a lo largo del tiempo, por lo que constituyen una herramienta esencial para la gestión sostenible de este recurso estratégico.

2. La complejidad legal de la perforación de pozos

Si bien el proceso para obtener una hipoteca suele considerarse complejo, la legalización de un pozo de agua en España puede resultar aún más exigente. Lejos de tratarse de un mero procedimiento administrativo, la perforación de un sondeo implica recorrer un entramado normativo en el que intervienen distintos niveles de la administración pública: estatal, autonómico y local.

Uno de los primeros aspectos que sorprende es que, en el ordenamiento jurídico español, el agua tiene la consideración de bien de dominio público, por lo que su titularidad corresponde al Estado. En consecuencia, no se puede perforar un pozo en una propiedad privada sin la autorización administrativa correspondiente. Este proceso exige la elaboración y presentación de un proyecto técnico detallado ante la Confederación Hidrográfica competente y, además, ante la Dirección General de Minas.

La justificación de esta doble supervisión es de carácter técnico. Los equipos y procedimientos empleados para perforar a grandes profundidades comparten principios, tecnologías y riesgos con la actividad minera. Por este motivo, la normativa que regula la seguridad y las prácticas mineras resulta aplicable, independientemente de que el objetivo de la perforación sea la captación de agua y no la extracción de recursos minerales. Esta superposición legislativa pone de manifiesto la complejidad inherente a la gestión de un recurso esencial, en la que se busca compatibilizar su aprovechamiento con la protección del medio ambiente y la seguridad de las operaciones.

La actividad minera es un sector de indudable relevancia desde el punto de vista socioeconómico. No obstante, en la actualidad tiene una incidencia significativa en el medio ambiente y en la ordenación del territorio, por lo que es necesario conciliar adecuadamente el desarrollo de esta actividad con la protección de los distintos bienes jurídicos implicados.

En este contexto, aunque los procedimientos administrativos asociados puedan percibirse como complejos o excesivamente prolongados, resultan esenciales. Estos controles garantizan que la extracción de agua se realice de manera sostenible, evitando la sobreexplotación de los acuíferos y asegurando la conservación de un recurso natural que, al ser de carácter público, constituye un patrimonio común cuya gestión debe llevarse a cabo con criterios de responsabilidad y equilibrio ambiental.

3. Cuando el terreno se degrada desde el interior: el riesgo de la “tubificación”

Los marcos normativos regulan las actuaciones en superficie, pero en el subsuelo operan procesos naturales regidos por leyes físicas y geológicas propias, de gran alcance y, en determinados casos, con efectos altamente destructivos. Entre ellos destaca un fenómeno conocido como tubificación, una forma de erosión interna del terreno que puede acarrear consecuencias graves.

Tal y como se describe en la literatura técnica especializada, el proceso comienza cuando las corrientes de agua subterránea arrastran las partículas más finas del suelo, formando progresivamente conductos o galerías internas. Estos vacíos se desarrollan de manera imperceptible desde la superficie hasta que la pérdida de soporte provoca el debilitamiento del techo y su colapso repentino, lo que origina hundimientos o socavones. Una vez generados, estos conductos actúan como vías de drenaje que transportan agua y grandes volúmenes de material sólido, lo que acelera la erosión interna del terreno.

Las consecuencias de este fenómeno pueden ser especialmente graves: desde el socavamiento de las cimentaciones de las edificaciones y la aparición de fisuras en las infraestructuras hasta el hundimiento total del terreno en casos extremos. La tubificación pone de manifiesto que el subsuelo no es un medio inerte y estable, sino un sistema dinámico en el que la acción del agua puede moldear el terreno y, en determinadas circunstancias, comprometer su estabilidad, sin que aparezcan señales visibles inmediatas en la superficie.

4. Limpieza criogénica: aplicación del hielo seco para la mejora del rendimiento de un pozo

La hidrogeología recurre, en ocasiones, a técnicas procedentes de ámbitos aparentemente ajenos, lo que da lugar a soluciones innovadoras y altamente eficaces. Un ejemplo especialmente notable es el empleo de hielo seco en las operaciones de limpieza y rehabilitación de pozos, un procedimiento orientado a incrementar su rendimiento mediante la eliminación de obstrucciones internas.

El método consiste en la introducción controlada de bloques de dióxido de carbono (CO₂) en estado sólido, conocido como hielo seco, en el interior del sondeo. Al entrar en contacto con el agua, el CO₂ no fusiona, sino que sublima, pasando directamente del estado sólido al gaseoso. Esta transición rápida genera una intensa agitación y un burbujeo de gran energía, que favorecen el desprendimiento de lodos, incrustaciones y partículas finas acumuladas en las fracturas y poros del acuífero.

No obstante, el efecto más significativo se produce a mayores profundidades. A partir de aproximadamente 42 metros, la elevada presión hidrostática de la columna de agua impide la conversión inmediata del CO₂ en gas. En estas condiciones, el dióxido de carbono se disuelve abruptamente en el agua, dando lugar a una solución altamente sobresaturada. Esta transformación casi instantánea libera una gran cantidad de energía y, cuando la generación de gas supera la capacidad de evacuación del pozo, se produce una potente columna ascendente de agua que vacía el sondeo de forma súbita, expulsando las impurezas acumuladas en un proceso comparable al de un géiser controlado.

5. Sellar un pozo no es simplemente cerrar un hueco: la ingeniería de la clausura

El abandono de un pozo de agua puede parecer, a primera vista, una operación sencilla, limitada a rellenar el hueco excavado. Sin embargo, la realidad dista mucho de esta percepción. La clausura de un sondeo constituye un proceso técnico de elevada complejidad, comparable en rigor a su propia construcción, y tiene como finalidad principal la protección de los acuíferos y del medio ambiente a largo plazo.

Una de las técnicas menos intuitivas se aplica en pozos con revestimiento metálico. Antes de proceder a su relleno definitivo, en determinados casos resulta necesario perforar o “punzonar” la tubería desde el interior mediante herramientas hidráulicas. El objetivo de esta operación es garantizar que el material de sellado, habitualmente un mortero de cemento, no se limite a ocupar el interior del tubo, sino que atraviese las perforaciones y se adhiera eficazmente al terreno circundante. De este modo se consigue un sellado continuo y monolítico que aísla por completo el pozo y evita cualquier comunicación indeseada entre las formaciones acuíferas.

La dificultad técnica aumenta cuando se trata de un pozo artesiano, caracterizado por la presencia de agua a presión que aflora de forma natural. Su sellado puede compararse con la obturación de una conducción sometida a presión sin interrumpir previamente el suministro. Una de las soluciones empleadas consiste en instalar temporalmente una prolongación de la tubería en la boca del pozo. Este procedimiento, basado en principios físicos elementales, permite aumentar la altura de la columna de agua y generar una contrapresión suficiente para neutralizar el empuje del acuífero. De este modo, los técnicos pueden inyectar el material de sellado sin que se desplace, asegurando una clausura efectiva y duradera.

Conclusión

Como se ha expuesto, los pozos de agua son mucho más que simples perforaciones en el terreno. Son infraestructuras de notable complejidad técnica que interactúan con un medio geológico dinámico y están sujetas a una normativa cuyo objetivo es proteger un recurso natural esencial e insustituible. Desde la diversidad de sus aplicaciones, que van mucho más allá del consumo directo, hasta los avanzados procedimientos de limpieza criogénica y las rigurosas técnicas de clausura, todas sus fases ponen de manifiesto una profundidad científica y tecnológica que a menudo pasa inadvertida.

Así pues, la próxima vez que se beba un vaso de agua, conviene reflexionar sobre el largo y complejo recorrido que ha seguido desde las capas más profundas de la Tierra hasta su uso final. Esta reflexión nos lleva a considerar que hay muchos aspectos fundamentales de la gestión de los recursos naturales que sustentan nuestra vida cotidiana que permanecen fuera de nuestra percepción habitual.

En esta conversación se pueden escuchar los conceptos básicos de lo tratado en este artículo.

Aquí tenéis un vídeo resumen del contenido.

Aquí os dejo una presentación sobre los conceptos clave.

Pincha aquí para descargar

Y también este documento, de la Universidad Politécnica de Madrid, que recoge y amplía todos estos conceptos.

Pincha aquí para descargar

Curso:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Perforación con hélice corta

Cuando se trata de perforaciones de diámetros elevados y la extracción del material se realiza de forma discontinua, se utiliza la perforación con hélice corta (intermittent augering).

Con este procedimiento se pueden realizar perforaciones de hasta 2,5 m de diámetro y de hasta 50 m de profundidad. El terreno debe estar lo suficientemente seco y cohesivo para evitar derrumbes en las paredes. En caso contrario, habría que recurrir a la perforación con lodos y extracción con cazo.

 

Referencias:

YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Perforación rotativa por corte

Figura 1. Secuencia de corte

La perforación rotativa por corte tuvo su máximo desarrollo en la década de los 40 en las minas de carbón americanas. Hoy día su uso se limita a las rocas blandas y de pequeños diámetros, aunque en los trabajos a cielo abierto este sistema entra en competencia con el arranque directo y en los trabajos subterráneos con la perforación rotopercusiva.

Con este sistema, la fuerza de avance trata de mantener en contacto el útil de corte con la roca, de forma que el filo sea el encargado de realizar los sucesivos cortes.

El corte se realiza con bocas que presentan elementos de carburo de tungsteno u otros materiales como los diamantes sintéticos, pudiéndose distinguir varios tipos:

  • Bocas bilabiales o de tenedor, en diámetros de 36 a 50 mm
  • Bocas trialetas o multialetas, en diámetros de 50 a 115 mm
  • Bocas de labios reemplazables, con elementos escariadores y perfil de corte escalonado, en diámetros de 150 a 400 mm
Figura 2. Tipos de bocas para perforación por corte

El ángulo de ataque α del útil de corte varía entre 110º y 140º, siendo más obtuso cuanto más dura sea la roca. El ángulo del labio de corte β varía entre 75º y 80º. El ángulo de corte γ oscila entre -6º y 4º, siendo positivo en rocas blandas y negativo en las duras.

Figura 3. Ángulos característicos de un útil de corte

 

Figura 4. Trayectoria de un punto de la boca

Existe una relación empírica entre el diámetro de perforación, la velocidad de penetración y el tipo de roca:

donde

Vp = Velocidad de penetración

μ = Coeficiente de fricción de la roca

E = Empuje sobre la boca

Vr = Velocidad de rotación

re = Radio efectivo de la roca

Ev = Energía específica de la roca

Ar = Área de la sección transversal del barreno

 

Sin embargo, en la práctica existe una desviación importante de los datos, pues el coeficiente de fricción depende del empuje y la velocidad de rotación se limita por el desgaste continuo que se produce en las bocas al aumentar el número de revoluciones.

Figura 5. Relación entre el empuje y la velocidad de penetración

En la práctica, se pueden definir dos campos claros de operatividad de este sistema de perforación rotativa:

  • Aquellas rocas de resistencia a compresión menor a 80 MPa
  • Rocas con contenido en sílice menor al 8%, para evitar un desgaste excesivo

La eliminación del detrito de perforación suele realizarse con un fluido de barrido que puede ser aire, en los trabajos a cielo abierto o agua o aire húmedo en los trabajos de interior. Emplear aire con inyección de agua no sólo facilita la evacuación del detritus y favorece la velocidad de avance, sino que también refrigera las bocas de perforación y disminuye su desgaste. Además, evita el colmatado de la perforación y elimina el polvo. Se necesita aproximadamente de 1000 a 1500 l/min de aire y por cada perforadora unos 250 cm3/min de agua.

En rocas muy blandas (30 a 40 MPa) puede emplearse varillaje helicoidal, de paso mayor cuanto más grande sea la velocidad de penetración, para evacuar el residuo de la perforación.

Figura 6. Varilla helicoidal y bocas de perforación

Os dejo a continuación un vídeo donde explico, en general, la perforación rotativa de rocas. Espero que os complemente la información anterior.

Referencias:

INSTITUTO TECNOLÓGICO Y MINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Ed. IGME. Madrid, 500 pp.

YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Plataformas petrolíferas

Plataforma Mittelplate en Alemania. Wikipedia

El mundo necesita energía desesperadamente. Pero cada vez cuesta más encontrar petróleo y gas. Las prospecciones se llevan a sitios complicados. Los primeros pozos petroleros se perforaban mediante percusión, martillando una herramienta sujeta a un cable. Poco tiempo después las herramientas de cables fueron substituidas por la perforación rotatoria, que permitía perforar a mayor profundidad y en menor tiempo. En 1989 se alcanzó un récord en el pozo Kola Borehole al norte de Rusia, que alcanzó 12.262 m de profundidad, usando un motor de perforación no rotatoria en el fango.

Una plataforma petrolífera o plataforma petrolera es una estructura de grandes dimensiones cuya función es extraer petróleo y gas natural de los yacimientos del lecho marino que luego serán exportados hacia la costa. También sirve como vivienda de los trabajadores que operan en ella y como torre de telecomunicaciones. Dependiendo de las circunstancias, la plataforma puede estar fija al fondo del océano, flotar o ser una isla artificial.

1, 2) Plataformas convencionales fijas; 3) Plataformas de torre autoelevable; 4, 5) Plataformas flotantes tensionadas; 6) Plataformas Spar; 7,8) Plataformas semi-sumergibles; 9) Plataformas en barcos perforadores; 10) Plataformas sustentadas en el zócalo y unidas a instalaciones de extracción en el fondo marino. Wikipedia

Os dejo un vídeo donde podéis ver una plataforma petrolífera de récord. Es tan alta como la Torre Eiffel y pesa unas 20.000 toneladas. La compañía Shell ha tardado un año y medio en construirla.

Sondeo a rotación con barrena helicoidal

pilote-cpi8-2grandeEl sondeo a rotación con barrena helicoidal, maciza o hueca es un método a perforación a destroza en la que los materiales salen desmenuzados por la boca del sondeo. Se puede utilizar si el terreno es relativamente blando y cohesivo, y no se encuentran capas cementadas, gravas, o roca en toda la profundidad de realización del sondeo. Si se emplea la barra helicoidal hueca, es posible la toma de muestras inalteradas y la realización de ensayos «in situ» por el interior de la sonda.

Podemos destacar tres tipos fundamentales: hélice corta, hélice continua y cucharas auger.

Hélice corta
Hélice continua

Os dejo un vídeo explicativo de estas técnicas. Espero que os guste.

Referencia:

YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia, 89 pp.

Perforación a rotación por circulación inversa

Figura 1. Perforación inversa.

Existen dos posibilidades a la hora de realizar una perforación a rotación: la rotación con circulación directa y la rotación con circulación inversa. La diferencia entre ambas estriba en el sentido de circulación del fluido de perforación. En la circulación inversa, objeto de este post, el fluido de perforación y el detritus se eleva a la superficie por el interior del varillaje hasta una balsa de lodos. En este depósito, el lodo se recupera para volver a introducirlo en la perforación por el espacio anular comprendido entre el varillaje y la perforación. La principal diferencia entre los equipos de rotación directa o los de rotación inversa es que, mientras los primeros utilizan una bomba de lodos, los segundos utilizan un compresor, que generalmente suele llevar su propio motor. En ambos casos, estos elementos suelen ir montados sobre el propio chasis de la máquina, aunque a veces, debido al tamaño de los compresores, suelen ir en remolques independientes.

Este sentido inverso de circulación es adecuado cuando el diámetro de la perforación es elevado (un diámetro habitual de trabajo es de 600 mm, pudiendo ser mayor). El método de perforación por Circulación Inversa depende del potencial del agua para contener las paredes de la perforación, precisando un mínimo de 3 metros de columna desde el fondo de la perforación. Ante suelos de alta transmisividad, igualmente puede ser requerido un elevado ratio de bombeo de fluido de perforación, dadas las perdidas, o bien se puede necesitar algún aditivo para impermeabilizar las paredes de la perforación, que posteriormente deberá ser eliminado mediante el debido desarrollo.

Figura 2. Perforación inversa. Imagen: Sondeos Martínez (Villena, Alicante)

Para entender mejor este sistema, os dejo a continuación unos vídeos explicativos que espero os gusten.

 [politube2]65114:450:358[/politube2]

Referencias:

YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia, 89 pp.